crc32c/combine.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
//! Implements the CRC32c "combine" function, which calculates the CRC32c of two byte streams
//! concatenated together using their individual CRC32c values (plus the length of the second byte
//! stream).
//!
//! This module is essentially a line-by-line translation of ZLIB's CRC "combine" function
//! implementation from C to Rust, except for the CRC polynomial used (original uses the CRC32
//! polynomial 0xedb88320UL, we use the CRC32c polynomial 0x82F63B78).
//!
//! Link to original implementation: https://github.com/madler/zlib/blob/master/crc32.c
//!
//! This file is based on the Zlib project, located at: https://github.com/madler/zlib,
//! which includes the following notice:
//!
//! crc32.c -- compute the CRC-32 of a data stream
//! Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
//! For conditions of distribution and use, see copyright notice in zlib.h
//!
//! Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
//! CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
//! tables for updating the shift register in one step with three exclusive-ors
//! instead of four steps with four exclusive-ors. This results in about a
//! factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
const GF2_DIM: usize = 32;
fn gf2_matrix_times(mat: &[u32; GF2_DIM], mut vec: u32) -> u32 {
let mut sum = 0;
let mut idx = 0;
while vec > 0 {
if vec & 1 == 1 {
sum ^= mat[idx];
}
vec >>= 1;
idx += 1;
}
sum
}
fn gf2_matrix_square(square: &mut [u32; GF2_DIM], mat: &[u32; GF2_DIM]) {
for n in 0..GF2_DIM {
square[n] = gf2_matrix_times(mat, mat[n]);
}
}
pub(crate) fn crc32c_combine(mut crc1: u32, crc2: u32, mut len2: usize) -> u32 {
let mut row: u32 = 1;
let mut even = [0u32; GF2_DIM]; /* even-power-of-two zeros operator */
let mut odd = [0u32; GF2_DIM]; /* odd-power-of-two zeros operator */
/* degenerate case (also disallow negative lengths) */
if len2 == 0 {
return crc1;
}
/* put operator for one zero bit in odd */
odd[0] = 0x82F63B78; /* CRC-32c polynomial */
#[allow(clippy::needless_range_loop)]
for n in 1..GF2_DIM {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(&mut even, &odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(&mut odd, &even);
/* apply len2 zeros to crc1 (first square will put the operator for one
zero byte, eight zero bits, in even) */
loop {
/* apply zeros operator for this bit of len2 */
gf2_matrix_square(&mut even, &odd);
if len2 & 1 == 1 {
crc1 = gf2_matrix_times(&even, crc1);
}
len2 >>= 1;
/* if no more bits set, then done */
if len2 == 0 {
break;
}
/* another iteration of the loop with odd and even swapped */
gf2_matrix_square(&mut odd, &even);
if len2 & 1 == 1 {
crc1 = gf2_matrix_times(&odd, crc1);
}
len2 >>= 1;
/* if no more bits set, then done */
if len2 == 0 {
break;
}
}
/* return combined crc */
crc1 ^= crc2;
crc1
}