1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
use std::collections::BTreeMap;
use std::iter;
use std::sync::LazyLock;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::operators::arrange::Arranged;
use differential_dataflow::trace::cursor::IntoOwned;
use differential_dataflow::trace::{Batch, BatchReader, Cursor, TraceReader};
use differential_dataflow::{AsCollection, Collection};
use itertools::{EitherOrBoth, Itertools};
use maplit::btreemap;
use mz_ore::cast::CastFrom;
use mz_repr::{CatalogItemId, ColumnName, ColumnType, Datum, Diff, Row, RowPacker, ScalarType};
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::operators::Operator;
use timely::dataflow::{Scope, Stream};
use crate::avro::DiffPair;
/// Given a stream of batches, produce a stream of groups of DiffPairs, grouped
/// by key, at each timestamp.
///
// This is useful for some sink envelopes (e.g., Debezium and Upsert), which
// need to do specific logic based on the _entire_ set of before/after diffs for
// a given key at each timestamp.
pub fn combine_at_timestamp<G: Scope, Tr>(
arranged: Arranged<G, Tr>,
) -> Collection<G, (Option<Row>, Vec<DiffPair<Row>>), Diff>
where
G::Timestamp: Lattice + Copy,
Tr: Clone
+ for<'a> TraceReader<
Key<'a> = &'a Option<Row>,
Val<'a> = &'a Row,
Time = G::Timestamp,
Diff = Diff,
>,
Tr::Batch: Batch,
for<'a> Tr::TimeGat<'a>: Ord,
{
let x: Stream<G, ((Option<Row>, Vec<DiffPair<Row>>), G::Timestamp, Diff)> = arranged
.stream
.unary(Pipeline, "combine_at_timestamp", move |_, _| {
move |input, output| {
while let Some((cap, batches)) = input.next() {
let mut session = output.session(&cap);
for batch in batches.drain(..) {
let mut befores = vec![];
let mut afters = vec![];
let mut cursor = batch.cursor();
while cursor.key_valid(&batch) {
let k = cursor.key(&batch);
// Partition updates into retractions (befores)
// and insertions (afters).
while cursor.val_valid(&batch) {
let v = cursor.val(&batch);
cursor.map_times(&batch, |t, diff| {
let diff = diff.into_owned();
let update = (
t.into_owned(),
v.clone(),
usize::cast_from(diff.unsigned_abs()),
);
if diff < 0 {
befores.push(update);
} else {
afters.push(update);
}
});
cursor.step_val(&batch);
}
// Sort by timestamp.
befores.sort_by_key(|(t, _v, _diff)| *t);
afters.sort_by_key(|(t, _v, _diff)| *t);
// Convert diff into unary representation.
let befores = befores
.drain(..)
.flat_map(|(t, v, cnt)| iter::repeat((t, v)).take(cnt));
let afters = afters
.drain(..)
.flat_map(|(t, v, cnt)| iter::repeat((t, v)).take(cnt));
// At each timestamp, zip together the insertions
// and retractions into diff pairs.
let groups = itertools::merge_join_by(
befores,
afters,
|(t1, _v1), (t2, _v2)| t1.cmp(t2),
)
.map(|pair| match pair {
EitherOrBoth::Both((t, before), (_t, after)) => {
(t, Some(before.clone()), Some(after.clone()))
}
EitherOrBoth::Left((t, before)) => (t, Some(before.clone()), None),
EitherOrBoth::Right((t, after)) => (t, None, Some(after.clone())),
})
.group_by(|(t, _before, _after)| *t);
// For each timestamp, emit the group of
// `DiffPair`s.
for (t, group) in &groups {
let group = group
.map(|(_t, before, after)| DiffPair { before, after })
.collect();
session.give(((k.clone(), group), t, 1));
}
cursor.step_key(&batch);
}
}
}
}
});
x.as_collection()
}
// NOTE(benesch): statically allocating transient IDs for the
// transaction and row types is a bit of a hack to allow us to attach
// custom names to these types in the generated Avro schema. In the
// future, these types should be real types that get created in the
// catalog with userspace IDs when the user creates the sink, and their
// names and IDs should be plumbed in from the catalog at the moment
// the sink is created.
pub(crate) const TRANSACTION_TYPE_ID: CatalogItemId = CatalogItemId::Transient(1);
pub(crate) const DBZ_ROW_TYPE_ID: CatalogItemId = CatalogItemId::Transient(2);
pub static ENVELOPE_CUSTOM_NAMES: LazyLock<BTreeMap<CatalogItemId, String>> = LazyLock::new(|| {
btreemap! {
TRANSACTION_TYPE_ID => "transaction".into(),
DBZ_ROW_TYPE_ID => "row".into(),
}
});
pub(crate) fn dbz_envelope(
names_and_types: Vec<(ColumnName, ColumnType)>,
) -> Vec<(ColumnName, ColumnType)> {
let row = ColumnType {
nullable: true,
scalar_type: ScalarType::Record {
fields: names_and_types.into(),
custom_id: Some(DBZ_ROW_TYPE_ID),
},
};
vec![("before".into(), row.clone()), ("after".into(), row)]
}
pub fn dbz_format(rp: &mut RowPacker, dp: DiffPair<Row>) {
if let Some(before) = dp.before {
rp.push_list_with(|rp| rp.extend_by_row(&before));
} else {
rp.push(Datum::Null);
}
if let Some(after) = dp.after {
rp.push_list_with(|rp| rp.extend_by_row(&after));
} else {
rp.push(Datum::Null);
}
}