tracing_attributes/
expand.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
use std::iter;

use proc_macro2::TokenStream;
use quote::{quote, quote_spanned, ToTokens};
use syn::visit_mut::VisitMut;
use syn::{
    punctuated::Punctuated, spanned::Spanned, Block, Expr, ExprAsync, ExprCall, FieldPat, FnArg,
    Ident, Item, ItemFn, Pat, PatIdent, PatReference, PatStruct, PatTuple, PatTupleStruct, PatType,
    Path, ReturnType, Signature, Stmt, Token, Type, TypePath,
};

use crate::{
    attr::{Field, Fields, FormatMode, InstrumentArgs},
    MaybeItemFn, MaybeItemFnRef,
};

/// Given an existing function, generate an instrumented version of that function
pub(crate) fn gen_function<'a, B: ToTokens + 'a>(
    input: MaybeItemFnRef<'a, B>,
    args: InstrumentArgs,
    instrumented_function_name: &str,
    self_type: Option<&TypePath>,
) -> proc_macro2::TokenStream {
    // these are needed ahead of time, as ItemFn contains the function body _and_
    // isn't representable inside a quote!/quote_spanned! macro
    // (Syn's ToTokens isn't implemented for ItemFn)
    let MaybeItemFnRef {
        outer_attrs,
        inner_attrs,
        vis,
        sig,
        block,
    } = input;

    let Signature {
        output,
        inputs: params,
        unsafety,
        asyncness,
        constness,
        abi,
        ident,
        generics:
            syn::Generics {
                params: gen_params,
                where_clause,
                ..
            },
        ..
    } = sig;

    let warnings = args.warnings();

    let (return_type, return_span) = if let ReturnType::Type(_, return_type) = &output {
        (erase_impl_trait(return_type), return_type.span())
    } else {
        // Point at function name if we don't have an explicit return type
        (syn::parse_quote! { () }, ident.span())
    };
    // Install a fake return statement as the first thing in the function
    // body, so that we eagerly infer that the return type is what we
    // declared in the async fn signature.
    // The `#[allow(..)]` is given because the return statement is
    // unreachable, but does affect inference, so it needs to be written
    // exactly that way for it to do its magic.
    let fake_return_edge = quote_spanned! {return_span=>
        #[allow(unreachable_code, clippy::diverging_sub_expression, clippy::let_unit_value)]
        if false {
            let __tracing_attr_fake_return: #return_type =
                unreachable!("this is just for type inference, and is unreachable code");
            return __tracing_attr_fake_return;
        }
    };
    let block = quote! {
        {
            #fake_return_edge
            #block
        }
    };

    let body = gen_block(
        &block,
        params,
        asyncness.is_some(),
        args,
        instrumented_function_name,
        self_type,
    );

    quote!(
        #(#outer_attrs) *
        #vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #output
        #where_clause
        {
            #(#inner_attrs) *
            #warnings
            #body
        }
    )
}

/// Instrument a block
fn gen_block<B: ToTokens>(
    block: &B,
    params: &Punctuated<FnArg, Token![,]>,
    async_context: bool,
    mut args: InstrumentArgs,
    instrumented_function_name: &str,
    self_type: Option<&TypePath>,
) -> proc_macro2::TokenStream {
    // generate the span's name
    let span_name = args
        // did the user override the span's name?
        .name
        .as_ref()
        .map(|name| quote!(#name))
        .unwrap_or_else(|| quote!(#instrumented_function_name));

    let level = args.level();

    let follows_from = args.follows_from.iter();
    let follows_from = quote! {
        #(for cause in #follows_from {
            __tracing_attr_span.follows_from(cause);
        })*
    };

    // generate this inside a closure, so we can return early on errors.
    let span = (|| {
        // Pull out the arguments-to-be-skipped first, so we can filter results
        // below.
        let param_names: Vec<(Ident, (Ident, RecordType))> = params
            .clone()
            .into_iter()
            .flat_map(|param| match param {
                FnArg::Typed(PatType { pat, ty, .. }) => {
                    param_names(*pat, RecordType::parse_from_ty(&*ty))
                }
                FnArg::Receiver(_) => Box::new(iter::once((
                    Ident::new("self", param.span()),
                    RecordType::Debug,
                ))),
            })
            // Little dance with new (user-exposed) names and old (internal)
            // names of identifiers. That way, we could do the following
            // even though async_trait (<=0.1.43) rewrites "self" as "_self":
            // ```
            // #[async_trait]
            // impl Foo for FooImpl {
            //     #[instrument(skip(self))]
            //     async fn foo(&self, v: usize) {}
            // }
            // ```
            .map(|(x, record_type)| {
                // if we are inside a function generated by async-trait <=0.1.43, we need to
                // take care to rewrite "_self" as "self" for 'user convenience'
                if self_type.is_some() && x == "_self" {
                    (Ident::new("self", x.span()), (x, record_type))
                } else {
                    (x.clone(), (x, record_type))
                }
            })
            .collect();

        for skip in &args.skips {
            if !param_names.iter().map(|(user, _)| user).any(|y| y == skip) {
                return quote_spanned! {skip.span()=>
                    compile_error!("attempting to skip non-existent parameter")
                };
            }
        }

        let target = args.target();

        let parent = args.parent.iter();

        // filter out skipped fields
        let quoted_fields: Vec<_> = param_names
            .iter()
            .filter(|(param, _)| {
                if args.skip_all || args.skips.contains(param) {
                    return false;
                }

                // If any parameters have the same name as a custom field, skip
                // and allow them to be formatted by the custom field.
                if let Some(ref fields) = args.fields {
                    fields.0.iter().all(|Field { ref name, .. }| {
                        let first = name.first();
                        first != name.last() || !first.iter().any(|name| name == &param)
                    })
                } else {
                    true
                }
            })
            .map(|(user_name, (real_name, record_type))| match record_type {
                RecordType::Value => quote!(#user_name = #real_name),
                RecordType::Debug => quote!(#user_name = tracing::field::debug(&#real_name)),
            })
            .collect();

        // replace every use of a variable with its original name
        if let Some(Fields(ref mut fields)) = args.fields {
            let mut replacer = IdentAndTypesRenamer {
                idents: param_names.into_iter().map(|(a, (b, _))| (a, b)).collect(),
                types: Vec::new(),
            };

            // when async-trait <=0.1.43 is in use, replace instances
            // of the "Self" type inside the fields values
            if let Some(self_type) = self_type {
                replacer.types.push(("Self", self_type.clone()));
            }

            for e in fields.iter_mut().filter_map(|f| f.value.as_mut()) {
                syn::visit_mut::visit_expr_mut(&mut replacer, e);
            }
        }

        let custom_fields = &args.fields;

        quote!(tracing::span!(
            target: #target,
            #(parent: #parent,)*
            #level,
            #span_name,
            #(#quoted_fields,)*
            #custom_fields

        ))
    })();

    let target = args.target();

    let err_event = match args.err_mode {
        Some(FormatMode::Default) | Some(FormatMode::Display) => {
            Some(quote!(tracing::error!(target: #target, error = %e)))
        }
        Some(FormatMode::Debug) => Some(quote!(tracing::error!(target: #target, error = ?e))),
        _ => None,
    };

    let ret_event = match args.ret_mode {
        Some(FormatMode::Display) => Some(quote!(
            tracing::event!(target: #target, #level, return = %x)
        )),
        Some(FormatMode::Default) | Some(FormatMode::Debug) => Some(quote!(
            tracing::event!(target: #target, #level, return = ?x)
        )),
        _ => None,
    };

    // Generate the instrumented function body.
    // If the function is an `async fn`, this will wrap it in an async block,
    // which is `instrument`ed using `tracing-futures`. Otherwise, this will
    // enter the span and then perform the rest of the body.
    // If `err` is in args, instrument any resulting `Err`s.
    // If `ret` is in args, instrument any resulting `Ok`s when the function
    // returns `Result`s, otherwise instrument any resulting values.
    if async_context {
        let mk_fut = match (err_event, ret_event) {
            (Some(err_event), Some(ret_event)) => quote_spanned!(block.span()=>
                async move {
                    match async move #block.await {
                        #[allow(clippy::unit_arg)]
                        Ok(x) => {
                            #ret_event;
                            Ok(x)
                        },
                        Err(e) => {
                            #err_event;
                            Err(e)
                        }
                    }
                }
            ),
            (Some(err_event), None) => quote_spanned!(block.span()=>
                async move {
                    match async move #block.await {
                        #[allow(clippy::unit_arg)]
                        Ok(x) => Ok(x),
                        Err(e) => {
                            #err_event;
                            Err(e)
                        }
                    }
                }
            ),
            (None, Some(ret_event)) => quote_spanned!(block.span()=>
                async move {
                    let x = async move #block.await;
                    #ret_event;
                    x
                }
            ),
            (None, None) => quote_spanned!(block.span()=>
                async move #block
            ),
        };

        return quote!(
            let __tracing_attr_span = #span;
            let __tracing_instrument_future = #mk_fut;
            if !__tracing_attr_span.is_disabled() {
                #follows_from
                tracing::Instrument::instrument(
                    __tracing_instrument_future,
                    __tracing_attr_span
                )
                .await
            } else {
                __tracing_instrument_future.await
            }
        );
    }

    let span = quote!(
        // These variables are left uninitialized and initialized only
        // if the tracing level is statically enabled at this point.
        // While the tracing level is also checked at span creation
        // time, that will still create a dummy span, and a dummy guard
        // and drop the dummy guard later. By lazily initializing these
        // variables, Rust will generate a drop flag for them and thus
        // only drop the guard if it was created. This creates code that
        // is very straightforward for LLVM to optimize out if the tracing
        // level is statically disabled, while not causing any performance
        // regression in case the level is enabled.
        let __tracing_attr_span;
        let __tracing_attr_guard;
        if tracing::level_enabled!(#level) {
            __tracing_attr_span = #span;
            #follows_from
            __tracing_attr_guard = __tracing_attr_span.enter();
        }
    );

    match (err_event, ret_event) {
        (Some(err_event), Some(ret_event)) => quote_spanned! {block.span()=>
            #span
            #[allow(clippy::redundant_closure_call)]
            match (move || #block)() {
                #[allow(clippy::unit_arg)]
                Ok(x) => {
                    #ret_event;
                    Ok(x)
                },
                Err(e) => {
                    #err_event;
                    Err(e)
                }
            }
        },
        (Some(err_event), None) => quote_spanned!(block.span()=>
            #span
            #[allow(clippy::redundant_closure_call)]
            match (move || #block)() {
                #[allow(clippy::unit_arg)]
                Ok(x) => Ok(x),
                Err(e) => {
                    #err_event;
                    Err(e)
                }
            }
        ),
        (None, Some(ret_event)) => quote_spanned!(block.span()=>
            #span
            #[allow(clippy::redundant_closure_call)]
            let x = (move || #block)();
            #ret_event;
            x
        ),
        (None, None) => quote_spanned!(block.span() =>
            // Because `quote` produces a stream of tokens _without_ whitespace, the
            // `if` and the block will appear directly next to each other. This
            // generates a clippy lint about suspicious `if/else` formatting.
            // Therefore, suppress the lint inside the generated code...
            #[allow(clippy::suspicious_else_formatting)]
            {
                #span
                // ...but turn the lint back on inside the function body.
                #[warn(clippy::suspicious_else_formatting)]
                #block
            }
        ),
    }
}

/// Indicates whether a field should be recorded as `Value` or `Debug`.
enum RecordType {
    /// The field should be recorded using its `Value` implementation.
    Value,
    /// The field should be recorded using `tracing::field::debug()`.
    Debug,
}

impl RecordType {
    /// Array of primitive types which should be recorded as [RecordType::Value].
    const TYPES_FOR_VALUE: &'static [&'static str] = &[
        "bool",
        "str",
        "u8",
        "i8",
        "u16",
        "i16",
        "u32",
        "i32",
        "u64",
        "i64",
        "f32",
        "f64",
        "usize",
        "isize",
        "NonZeroU8",
        "NonZeroI8",
        "NonZeroU16",
        "NonZeroI16",
        "NonZeroU32",
        "NonZeroI32",
        "NonZeroU64",
        "NonZeroI64",
        "NonZeroUsize",
        "NonZeroIsize",
        "Wrapping",
    ];

    /// Parse `RecordType` from [Type] by looking up
    /// the [RecordType::TYPES_FOR_VALUE] array.
    fn parse_from_ty(ty: &Type) -> Self {
        match ty {
            Type::Path(TypePath { path, .. })
                if path
                    .segments
                    .iter()
                    .last()
                    .map(|path_segment| {
                        let ident = path_segment.ident.to_string();
                        Self::TYPES_FOR_VALUE.iter().any(|&t| t == ident)
                    })
                    .unwrap_or(false) =>
            {
                RecordType::Value
            }
            Type::Reference(syn::TypeReference { elem, .. }) => RecordType::parse_from_ty(elem),
            _ => RecordType::Debug,
        }
    }
}

fn param_names(pat: Pat, record_type: RecordType) -> Box<dyn Iterator<Item = (Ident, RecordType)>> {
    match pat {
        Pat::Ident(PatIdent { ident, .. }) => Box::new(iter::once((ident, record_type))),
        Pat::Reference(PatReference { pat, .. }) => param_names(*pat, record_type),
        // We can't get the concrete type of fields in the struct/tuple
        // patterns by using `syn`. e.g. `fn foo(Foo { x, y }: Foo) {}`.
        // Therefore, the struct/tuple patterns in the arguments will just
        // always be recorded as `RecordType::Debug`.
        Pat::Struct(PatStruct { fields, .. }) => Box::new(
            fields
                .into_iter()
                .flat_map(|FieldPat { pat, .. }| param_names(*pat, RecordType::Debug)),
        ),
        Pat::Tuple(PatTuple { elems, .. }) => Box::new(
            elems
                .into_iter()
                .flat_map(|p| param_names(p, RecordType::Debug)),
        ),
        Pat::TupleStruct(PatTupleStruct {
            pat: PatTuple { elems, .. },
            ..
        }) => Box::new(
            elems
                .into_iter()
                .flat_map(|p| param_names(p, RecordType::Debug)),
        ),

        // The above *should* cover all cases of irrefutable patterns,
        // but we purposefully don't do any funny business here
        // (such as panicking) because that would obscure rustc's
        // much more informative error message.
        _ => Box::new(iter::empty()),
    }
}

/// The specific async code pattern that was detected
enum AsyncKind<'a> {
    /// Immediately-invoked async fn, as generated by `async-trait <= 0.1.43`:
    /// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))`
    Function(&'a ItemFn),
    /// A function returning an async (move) block, optionally `Box::pin`-ed,
    /// as generated by `async-trait >= 0.1.44`:
    /// `Box::pin(async move { ... })`
    Async {
        async_expr: &'a ExprAsync,
        pinned_box: bool,
    },
}

pub(crate) struct AsyncInfo<'block> {
    // statement that must be patched
    source_stmt: &'block Stmt,
    kind: AsyncKind<'block>,
    self_type: Option<TypePath>,
    input: &'block ItemFn,
}

impl<'block> AsyncInfo<'block> {
    /// Get the AST of the inner function we need to hook, if it looks like a
    /// manual future implementation.
    ///
    /// When we are given a function that returns a (pinned) future containing the
    /// user logic, it is that (pinned) future that needs to be instrumented.
    /// Were we to instrument its parent, we would only collect information
    /// regarding the allocation of that future, and not its own span of execution.
    ///
    /// We inspect the block of the function to find if it matches any of the
    /// following patterns:
    ///
    /// - Immediately-invoked async fn, as generated by `async-trait <= 0.1.43`:
    ///   `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))`
    ///
    /// - A function returning an async (move) block, optionally `Box::pin`-ed,
    ///   as generated by `async-trait >= 0.1.44`:
    ///   `Box::pin(async move { ... })`
    ///
    /// We the return the statement that must be instrumented, along with some
    /// other information.
    /// 'gen_body' will then be able to use that information to instrument the
    /// proper function/future.
    ///
    /// (this follows the approach suggested in
    /// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
    pub(crate) fn from_fn(input: &'block ItemFn) -> Option<Self> {
        // are we in an async context? If yes, this isn't a manual async-like pattern
        if input.sig.asyncness.is_some() {
            return None;
        }

        let block = &input.block;

        // list of async functions declared inside the block
        let inside_funs = block.stmts.iter().filter_map(|stmt| {
            if let Stmt::Item(Item::Fn(fun)) = &stmt {
                // If the function is async, this is a candidate
                if fun.sig.asyncness.is_some() {
                    return Some((stmt, fun));
                }
            }
            None
        });

        // last expression of the block: it determines the return value of the
        // block, this is quite likely a `Box::pin` statement or an async block
        let (last_expr_stmt, last_expr) = block.stmts.iter().rev().find_map(|stmt| {
            if let Stmt::Expr(expr) = stmt {
                Some((stmt, expr))
            } else {
                None
            }
        })?;

        // is the last expression an async block?
        if let Expr::Async(async_expr) = last_expr {
            return Some(AsyncInfo {
                source_stmt: last_expr_stmt,
                kind: AsyncKind::Async {
                    async_expr,
                    pinned_box: false,
                },
                self_type: None,
                input,
            });
        }

        // is the last expression a function call?
        let (outside_func, outside_args) = match last_expr {
            Expr::Call(ExprCall { func, args, .. }) => (func, args),
            _ => return None,
        };

        // is it a call to `Box::pin()`?
        let path = match outside_func.as_ref() {
            Expr::Path(path) => &path.path,
            _ => return None,
        };
        if !path_to_string(path).ends_with("Box::pin") {
            return None;
        }

        // Does the call take an argument? If it doesn't,
        // it's not gonna compile anyway, but that's no reason
        // to (try to) perform an out of bounds access
        if outside_args.is_empty() {
            return None;
        }

        // Is the argument to Box::pin an async block that
        // captures its arguments?
        if let Expr::Async(async_expr) = &outside_args[0] {
            return Some(AsyncInfo {
                source_stmt: last_expr_stmt,
                kind: AsyncKind::Async {
                    async_expr,
                    pinned_box: true,
                },
                self_type: None,
                input,
            });
        }

        // Is the argument to Box::pin a function call itself?
        let func = match &outside_args[0] {
            Expr::Call(ExprCall { func, .. }) => func,
            _ => return None,
        };

        // "stringify" the path of the function called
        let func_name = match **func {
            Expr::Path(ref func_path) => path_to_string(&func_path.path),
            _ => return None,
        };

        // Was that function defined inside of the current block?
        // If so, retrieve the statement where it was declared and the function itself
        let (stmt_func_declaration, func) = inside_funs
            .into_iter()
            .find(|(_, fun)| fun.sig.ident == func_name)?;

        // If "_self" is present as an argument, we store its type to be able to rewrite "Self" (the
        // parameter type) with the type of "_self"
        let mut self_type = None;
        for arg in &func.sig.inputs {
            if let FnArg::Typed(ty) = arg {
                if let Pat::Ident(PatIdent { ref ident, .. }) = *ty.pat {
                    if ident == "_self" {
                        let mut ty = *ty.ty.clone();
                        // extract the inner type if the argument is "&self" or "&mut self"
                        if let Type::Reference(syn::TypeReference { elem, .. }) = ty {
                            ty = *elem;
                        }

                        if let Type::Path(tp) = ty {
                            self_type = Some(tp);
                            break;
                        }
                    }
                }
            }
        }

        Some(AsyncInfo {
            source_stmt: stmt_func_declaration,
            kind: AsyncKind::Function(func),
            self_type,
            input,
        })
    }

    pub(crate) fn gen_async(
        self,
        args: InstrumentArgs,
        instrumented_function_name: &str,
    ) -> Result<proc_macro::TokenStream, syn::Error> {
        // let's rewrite some statements!
        let mut out_stmts: Vec<TokenStream> = self
            .input
            .block
            .stmts
            .iter()
            .map(|stmt| stmt.to_token_stream())
            .collect();

        if let Some((iter, _stmt)) = self
            .input
            .block
            .stmts
            .iter()
            .enumerate()
            .find(|(_iter, stmt)| *stmt == self.source_stmt)
        {
            // instrument the future by rewriting the corresponding statement
            out_stmts[iter] = match self.kind {
                // `Box::pin(immediately_invoked_async_fn())`
                AsyncKind::Function(fun) => {
                    let fun = MaybeItemFn::from(fun.clone());
                    gen_function(
                        fun.as_ref(),
                        args,
                        instrumented_function_name,
                        self.self_type.as_ref(),
                    )
                }
                // `async move { ... }`, optionally pinned
                AsyncKind::Async {
                    async_expr,
                    pinned_box,
                } => {
                    let instrumented_block = gen_block(
                        &async_expr.block,
                        &self.input.sig.inputs,
                        true,
                        args,
                        instrumented_function_name,
                        None,
                    );
                    let async_attrs = &async_expr.attrs;
                    if pinned_box {
                        quote! {
                            Box::pin(#(#async_attrs) * async move { #instrumented_block })
                        }
                    } else {
                        quote! {
                            #(#async_attrs) * async move { #instrumented_block }
                        }
                    }
                }
            };
        }

        let vis = &self.input.vis;
        let sig = &self.input.sig;
        let attrs = &self.input.attrs;
        Ok(quote!(
            #(#attrs) *
            #vis #sig {
                #(#out_stmts) *
            }
        )
        .into())
    }
}

// Return a path as a String
fn path_to_string(path: &Path) -> String {
    use std::fmt::Write;
    // some heuristic to prevent too many allocations
    let mut res = String::with_capacity(path.segments.len() * 5);
    for i in 0..path.segments.len() {
        write!(&mut res, "{}", path.segments[i].ident)
            .expect("writing to a String should never fail");
        if i < path.segments.len() - 1 {
            res.push_str("::");
        }
    }
    res
}

/// A visitor struct to replace idents and types in some piece
/// of code (e.g. the "self" and "Self" tokens in user-supplied
/// fields expressions when the function is generated by an old
/// version of async-trait).
struct IdentAndTypesRenamer<'a> {
    types: Vec<(&'a str, TypePath)>,
    idents: Vec<(Ident, Ident)>,
}

impl<'a> VisitMut for IdentAndTypesRenamer<'a> {
    // we deliberately compare strings because we want to ignore the spans
    // If we apply clippy's lint, the behavior changes
    #[allow(clippy::cmp_owned)]
    fn visit_ident_mut(&mut self, id: &mut Ident) {
        for (old_ident, new_ident) in &self.idents {
            if id.to_string() == old_ident.to_string() {
                *id = new_ident.clone();
            }
        }
    }

    fn visit_type_mut(&mut self, ty: &mut Type) {
        for (type_name, new_type) in &self.types {
            if let Type::Path(TypePath { path, .. }) = ty {
                if path_to_string(path) == *type_name {
                    *ty = Type::Path(new_type.clone());
                }
            }
        }
    }
}

// A visitor struct that replace an async block by its patched version
struct AsyncTraitBlockReplacer<'a> {
    block: &'a Block,
    patched_block: Block,
}

impl<'a> VisitMut for AsyncTraitBlockReplacer<'a> {
    fn visit_block_mut(&mut self, i: &mut Block) {
        if i == self.block {
            *i = self.patched_block.clone();
        }
    }
}

// Replaces any `impl Trait` with `_` so it can be used as the type in
// a `let` statement's LHS.
struct ImplTraitEraser;

impl VisitMut for ImplTraitEraser {
    fn visit_type_mut(&mut self, t: &mut Type) {
        if let Type::ImplTrait(..) = t {
            *t = syn::TypeInfer {
                underscore_token: Token![_](t.span()),
            }
            .into();
        } else {
            syn::visit_mut::visit_type_mut(self, t);
        }
    }
}

fn erase_impl_trait(ty: &Type) -> Type {
    let mut ty = ty.clone();
    ImplTraitEraser.visit_type_mut(&mut ty);
    ty
}