proptest_derive/derive.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
// Copyright 2018 The proptest developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Provides actual deriving logic for the crate.
use proc_macro2::{Span, TokenStream};
use syn::spanned::Spanned;
use syn::{DeriveInput, Expr, Field, Ident, Path, Type, Variant};
use crate::ast::*;
use crate::attr::{self, ParamsMode, ParsedAttributes, StratMode};
use crate::error::{self, Context, Ctx, DeriveResult};
use crate::use_tracking::{UseMarkable, UseTracker};
use crate::util::{fields_to_vec, is_unit_type, self_ty};
use crate::void::IsUninhabited;
//==============================================================================
// API
//==============================================================================
pub fn impl_proptest_arbitrary(ast: DeriveInput) -> TokenStream {
let mut ctx = Context::default();
let result = derive_proptest_arbitrary(&mut ctx, ast);
match (result, ctx.check()) {
(Ok(derive), Ok(())) => derive,
(_, Err(err)) => err,
(Err(result), Ok(())) => panic!(
"[proptest_derive]: internal error, this is a bug! \
result: {:?}",
result
),
}
}
/// Simplified version of `DeriveInput` from syn letting us be generic over
/// the body.
struct DeriveData<B> {
ident: Ident,
attrs: ParsedAttributes,
tracker: UseTracker,
body: B,
}
/// Entry point for deriving `Arbitrary`.
fn derive_proptest_arbitrary(
ctx: Ctx,
ast: DeriveInput,
) -> DeriveResult<TokenStream> {
use syn::Data::*;
// Deny lifetimes on type.
error::if_has_lifetimes(ctx, &ast);
// Parse top level attributes:
let attrs = attr::parse_top_attributes(ctx, &ast.attrs)?;
// Initialize tracker:
let mut tracker = UseTracker::new(ast.generics);
if attrs.no_bound {
tracker.no_track();
}
// Compile into our own high level IR for the impl:
let the_impl = match ast.data {
// Deal with structs:
Struct(data) => derive_struct(
ctx,
DeriveData {
tracker,
attrs,
ident: ast.ident,
body: fields_to_vec(data.fields),
},
),
// Deal with enums:
Enum(data) => derive_enum(
ctx,
DeriveData {
tracker,
attrs,
ident: ast.ident,
body: data.variants.into_iter().collect(),
},
),
// Unions are not supported:
_ => error::not_struct_or_enum(ctx)?,
}?;
// Linearise the IR into Rust code:
let q = the_impl.into_tokens(ctx)?;
// We're done!
Ok(q)
}
//==============================================================================
// Struct
//==============================================================================
/// Entry point for deriving `Arbitrary` for `struct`s.
fn derive_struct(
ctx: Ctx,
mut ast: DeriveData<Vec<Field>>,
) -> DeriveResult<Impl> {
// Deny attributes that are only for enum variants:
error::if_enum_attrs_present(ctx, &ast.attrs, error::STRUCT);
// Deny an explicit strategy directly on the struct.
error::if_strategy_present(ctx, &ast.attrs, error::STRUCT);
let v_path = ast.ident.clone().into();
let parts = if ast.body.is_empty() {
// Deriving for a unit struct.
error::if_present_on_unit_struct(ctx, &ast.attrs);
let (strat, ctor) = pair_unit_self(&v_path);
(Params::empty(), strat, ctor)
} else {
// Not a unit struct.
// Ensures that the fields of the given struct has fields which are all
// inhabited. If one field is uninhabited, the entire product type is
// uninhabited.
//
// A unit struct in the other branch is by definition always inhabited.
if (&*ast.body).is_uninhabited() {
error::uninhabited_struct(ctx);
}
// Construct the closure for `.prop_map`:
let closure = map_closure(v_path, &ast.body);
// The complexity of the logic depends mostly now on whether
// parameters were set directly on the type or not.
let parts = if let Some(param_ty) = ast.attrs.params.into_option() {
// Parameters was set on the struct itself, the logic is simpler.
add_top_params(
param_ty,
derive_product_has_params(
ctx,
&mut ast.tracker,
error::STRUCT_FIELD,
closure,
ast.body,
)?,
)
} else {
// We need considerably more complex logic.
derive_product_no_params(
ctx,
&mut ast.tracker,
ast.body,
error::STRUCT_FIELD,
)?
.finish(closure)
};
// Possibly apply filter:
add_top_filter(ast.attrs.filter, parts)
};
// We're done!
Ok(Impl::new(ast.ident, ast.tracker, parts))
}
/// Apply the filter at the top level if provided.
fn add_top_filter(filter: Vec<Expr>, parts: ImplParts) -> ImplParts {
let (params, strat, ctor) = parts;
let (strat, ctor) = add_filter_self(filter, (strat, ctor));
(params, strat, ctor)
}
/// Apply a filter with `Self` as the input type to the predicate.
fn add_filter_self(filter: Vec<Expr>, pair: StratPair) -> StratPair {
pair_filter(filter, self_ty(), pair)
}
/// Determine the `Parameters` part. We've already handled everything else.
/// After this, we have all parts needed for an impl. If `None` is given,
/// then the unit type `()` will be used for `Parameters`.
fn add_top_params(
param_ty: Option<Type>,
(strat, ctor): StratPair,
) -> ImplParts {
let params = Params::empty();
if let Some(params_ty) = param_ty {
// We need to add `let params = _top;`.
(params + params_ty, strat, extract_api(ctor, FromReg::Top))
} else {
(params, strat, ctor)
}
}
/// Deriving for a list of fields (product type) on
/// which `params` or `no_params` was set directly.
fn derive_product_has_params(
ctx: Ctx,
ut: &mut UseTracker,
item: &str,
closure: MapClosure,
fields: Vec<Field>,
) -> DeriveResult<StratPair> {
// Fold into an accumulator of the strategy types and the expressions
// that produces the strategy. Finally turn the accumulator into
// a `.prop_map(..)` that produces the composite strategy.
let len = fields.len();
fields
.into_iter()
.try_fold(StratAcc::new(len), |acc, field| {
let attrs = attr::parse_attributes(ctx, &field.attrs)?;
// Deny attributes that are only for enum variants:
error::if_enum_attrs_present(ctx, &attrs, item);
// Deny setting parameters on the field since it has been set on parent:
error::if_specified_params(ctx, &attrs, item);
// Determine the strategy for this field and add it to acc.
let span = field.span();
let ty = field.ty.clone();
let pair =
product_handle_default_params(ut, ty, span, attrs.strategy);
let pair = pair_filter(attrs.filter, field.ty, pair);
Ok(acc.add(pair))
})
.map(|acc| acc.finish(closure))
}
/// Determine strategy using "Default" semantics for a product.
fn product_handle_default_params(
ut: &mut UseTracker,
ty: Type,
span: Span,
strategy: StratMode,
) -> StratPair {
match strategy {
// Specific strategy - use the given expr and erase the type
// (since we don't know about it):
StratMode::Strategy(strat) => pair_existential(ty, strat),
// Specific value - use the given expr:
StratMode::Value(value) => pair_value(ty, value),
// Specific regex - dispatch to `_regex` function based on `ty`:
StratMode::Regex(regex) => pair_regex(ty, regex),
// Use Arbitrary for the given type and mark the type as used:
StratMode::Arbitrary => {
ty.mark_uses(ut);
pair_any(ty, span)
}
}
}
/// Deriving for a list of fields (product type) on
/// which `params` or `no_params` was NOT set directly.
fn derive_product_no_params(
ctx: Ctx,
ut: &mut UseTracker,
fields: Vec<Field>,
item: &str,
) -> DeriveResult<PartsAcc<Ctor>> {
// Fold into an accumulator of the strategy types and the expressions
// that produces the strategy. We then just return that accumulator
// and let the caller of this function determine what to do with it.
let acc = PartsAcc::new(fields.len());
fields.into_iter().try_fold(acc, |mut acc, field| {
let attrs = attr::parse_attributes(ctx, &field.attrs)?;
// Deny attributes that are only for enum variants:
error::if_enum_attrs_present(ctx, &attrs, item);
let span = field.span();
let ty = field.ty;
let strat = pair_filter(
attrs.filter,
ty.clone(),
match attrs.params {
// Parameters were not set on the field:
ParamsMode::Passthrough => match attrs.strategy {
// Specific strategy - use the given expr and erase the type:
StratMode::Strategy(strat) => pair_existential(ty, strat),
// Specific value - use the given expr:
StratMode::Value(value) => pair_value(ty, value),
// Specific regex - dispatch to `_regex` function:
StratMode::Regex(regex) => pair_regex(ty, regex),
// Use Arbitrary for the given type and mark the type as used:
StratMode::Arbitrary => {
ty.mark_uses(ut);
// We use the Parameters type of the field's type.
let pref = acc.add_param(arbitrary_param(&ty));
pair_any_with(ty, pref, span)
}
},
// no_params set on the field:
ParamsMode::Default => {
product_handle_default_params(ut, ty, span, attrs.strategy)
}
// params(<type>) set on the field:
ParamsMode::Specified(params_ty) =>
// We need to extract the param as the binding `params`:
{
extract_nparam(
&mut acc,
params_ty,
match attrs.strategy {
// Specific strategy - use the given expr and erase the type:
StratMode::Strategy(strat) => {
pair_existential(ty, strat)
}
// Specific value - use the given expr in a closure and erase:
StratMode::Value(value) => {
pair_value_exist(ty, value)
}
// Logic error by user; Pointless to specify params and
// regex because the params can never be used in the regex.
StratMode::Regex(regex) => {
error::cant_set_param_and_regex(ctx, item);
pair_regex(ty, regex)
}
// Logic error by user.
// Pointless to specify params and not the strategy. Bail!
StratMode::Arbitrary => {
error::cant_set_param_but_not_strat(
ctx, &ty, item,
)?
}
},
)
}
},
);
Ok(acc.add_strat(strat))
})
}
/// Wrap the given constructor with a let binding
/// moving `param_<x>` into `params`.
fn extract_nparam<C>(
acc: &mut PartsAcc<C>,
params_ty: Type,
(strat, ctor): StratPair,
) -> StratPair {
(
strat,
extract_api(ctor, FromReg::Num(acc.add_param(params_ty))),
)
}
//==============================================================================
// Enum
//==============================================================================
/// Entry point for deriving `Arbitrary` for `enum`s.
fn derive_enum(
ctx: Ctx,
mut ast: DeriveData<Vec<Variant>>,
) -> DeriveResult<Impl> {
// An enum can't be skipped, ensure it hasn't been:
error::if_skip_present(ctx, &ast.attrs, error::ENUM);
// We don't allow a strategy on the enum directly:
error::if_strategy_present(ctx, &ast.attrs, error::ENUM);
// We don't allow weight on enums directly:
error::if_weight_present(ctx, &ast.attrs, error::ENUM);
// Bail if there are no variants:
if ast.body.is_empty() {
error::uninhabited_enum_with_no_variants(ctx)?;
}
// Bail if all variants are uninhabited:
if (&*ast.body).is_uninhabited() {
error::uninhabited_enum_variants_uninhabited(ctx)?;
}
// The complexity of the logic depends mostly now on whether
// parameters were set directly on the type or not.
let parts = if let Some(sty) = ast.attrs.params.into_option() {
// The logic is much simpler in this branch.
derive_enum_has_params(ctx, &mut ast.tracker, &ast.ident, ast.body, sty)
} else {
// And considerably more complex here.
derive_enum_no_params(ctx, &mut ast.tracker, &ast.ident, ast.body)
}?;
let parts = add_top_filter(ast.attrs.filter, parts);
// We're done!
Ok(Impl::new(ast.ident, ast.tracker, parts))
}
/// Deriving for a enum on which `params` or `no_params` was NOT set directly.
fn derive_enum_no_params(
ctx: Ctx,
ut: &mut UseTracker,
_self: &Ident,
variants: Vec<Variant>,
) -> DeriveResult<ImplParts> {
// Initialize the accumulator:
let mut acc = PartsAcc::new(variants.len());
// Fold into the accumulator the strategies for each variant:
for variant in variants {
if let Some((weight, ident, fields, attrs)) =
keep_inhabited_variant(ctx, _self, variant)?
{
let path = parse_quote!( #_self::#ident );
let (strat, ctor) = if fields.is_empty() {
// Unit variant:
pair_unit_variant(ctx, &attrs, path)
} else {
// Not a unit variant:
derive_variant_with_fields(
ctx, ut, path, attrs, fields, &mut acc,
)?
};
acc = acc.add_strat((strat, (weight, ctor)));
}
}
ensure_union_has_strategies(ctx, &acc.strats);
// Package the strategies into a union.
Ok(acc.finish(ctx))
}
/// Ensure that there's at least one generatable variant for a union.
fn ensure_union_has_strategies<C>(ctx: Ctx, strats: &StratAcc<C>) {
if strats.is_empty() {
// We didn't accumulate any strategies,
// so we can't construct any variant.
error::uninhabited_enum_because_of_skipped_variants(ctx);
}
}
/// Derive for a variant which has fields and where the
/// variant or its fields may specify `params` or `no_params`.
fn derive_variant_with_fields<C>(
ctx: Ctx,
ut: &mut UseTracker,
v_path: Path,
attrs: ParsedAttributes,
fields: Vec<Field>,
acc: &mut PartsAcc<C>,
) -> DeriveResult<StratPair> {
let filter = attrs.filter.clone();
let pair = match attrs.params {
// Parameters were not set on the variant:
ParamsMode::Passthrough => match attrs.strategy {
// Specific strategy - use the given expr and erase the type:
StratMode::Strategy(strat) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_existential_self(strat)
}
// Specific value - use the given expr:
StratMode::Value(value) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_value_self(value)
}
StratMode::Regex(regex) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_regex_self(regex)
}
// No explicit strategy, use strategies for variant fields instead:
StratMode::Arbitrary => {
variant_no_explicit_strategy(ctx, ut, v_path, fields, acc)?
}
},
// no_params set on the variant:
ParamsMode::Default => {
variant_handle_default_params(ctx, ut, v_path, attrs, fields)?
}
// params(<type>) set on the variant:
ParamsMode::Specified(params_ty) => extract_nparam(
acc,
params_ty,
match attrs.strategy {
// Specific strategy - use the given expr and erase the type:
StratMode::Strategy(strat) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_existential_self(strat)
}
// Specific value - use the given expr in a closure and erase:
StratMode::Value(value) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_value_exist_self(value)
}
// Logic error by user; Pointless to specify params and regex
// because the params can never be used in the regex.
StratMode::Regex(regex) => {
error::cant_set_param_and_regex(ctx, error::ENUM_VARIANT);
deny_all_attrs_on_fields(ctx, fields)?;
pair_regex_self(regex)
}
// Logic error by user. Pointless to specify params and not
// the strategy. Bail!
StratMode::Arbitrary => {
let ty = self_ty();
error::cant_set_param_but_not_strat(
ctx,
&ty,
error::ENUM_VARIANT,
)?
}
},
),
};
let pair = add_filter_self(filter, pair);
Ok(pair)
}
/// Derive for a variant on which params were not set and on which no explicit
/// strategy was set (or where it doesn't make sense...) and which has fields.
fn variant_no_explicit_strategy<C>(
ctx: Ctx,
ut: &mut UseTracker,
v_path: Path,
fields: Vec<Field>,
acc: &mut PartsAcc<C>,
) -> DeriveResult<StratPair> {
// Compute parts for the inner product:
let closure = map_closure(v_path, &fields);
let fields_acc =
derive_product_no_params(ctx, ut, fields, error::ENUM_VARIANT_FIELD)?;
let (params, count) = fields_acc.params.consume();
let (strat, ctor) = fields_acc.strats.finish(closure);
// Add params types from inner derive as a single type
// in the outer params types.
let params_ty = params.into();
Ok((
strat,
if is_unit_type(¶ms_ty) {
ctor
} else {
let pref = acc.add_param(params_ty);
extract_all(ctor, count, FromReg::Num(pref))
},
))
}
/// Determine strategy using "Default" semantics for a variant.
fn variant_handle_default_params(
ctx: Ctx,
ut: &mut UseTracker,
v_path: Path,
attrs: ParsedAttributes,
fields: Vec<Field>,
) -> DeriveResult<StratPair> {
let pair = match attrs.strategy {
// Specific strategy - use the given expr and erase the type:
StratMode::Strategy(strat) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_existential_self(strat)
}
// Specific value - use the given expr:
StratMode::Value(value) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_value_self(value)
}
StratMode::Regex(regex) => {
deny_all_attrs_on_fields(ctx, fields)?;
pair_regex_self(regex)
}
// Use Arbitrary for the factors (fields) of variant:
StratMode::Arbitrary =>
// Fields are not allowed to specify params.
{
derive_product_has_params(
ctx,
ut,
error::ENUM_VARIANT_FIELD,
map_closure(v_path, &fields),
fields,
)?
}
};
Ok(pair)
}
/// Ensures that there are no proptest attributes on any of the fields.
fn deny_all_attrs_on_fields(ctx: Ctx, fields: Vec<Field>) -> DeriveResult<()> {
fields.into_iter().try_for_each(|field| {
let f_attr = attr::parse_attributes(ctx, &field.attrs)?;
error::if_anything_specified(ctx, &f_attr, error::ENUM_VARIANT_FIELD);
Ok(())
})
}
/// Derive for a variant which has fields and where the
/// variant or its fields may NOT specify `params` or `no_params`.
fn derive_enum_has_params(
ctx: Ctx,
ut: &mut UseTracker,
_self: &Ident,
variants: Vec<Variant>,
sty: Option<Type>,
) -> DeriveResult<ImplParts> {
// Initialize the accumulator:
let mut acc = StratAcc::new(variants.len());
// Fold into the accumulator the strategies for each variant:
for variant in variants {
let parts = keep_inhabited_variant(ctx, _self, variant)?;
if let Some((weight, ident, fields, attrs)) = parts {
let path = parse_quote!( #_self::#ident );
let (strat, ctor) = if fields.is_empty() {
// Unit variant:
pair_unit_variant(ctx, &attrs, path)
} else {
// Not a unit variant:
let filter = attrs.filter.clone();
add_filter_self(
filter,
variant_handle_default_params(
ctx, ut, path, attrs, fields,
)?,
)
};
acc = acc.add((strat, (weight, ctor)));
}
}
ensure_union_has_strategies(ctx, &acc);
Ok(add_top_params(sty, acc.finish(ctx)))
}
/// Filters out uninhabited and variants that we've been ordered to skip.
fn keep_inhabited_variant(
ctx: Ctx,
_self: &Ident,
variant: Variant,
) -> DeriveResult<Option<(u32, Ident, Vec<Field>, ParsedAttributes)>> {
let attrs = attr::parse_attributes(ctx, &variant.attrs)?;
let fields = fields_to_vec(variant.fields);
if attrs.skip {
// We've been ordered to skip this variant!
// Check that all other attributes are not set.
ensure_has_only_skip_attr(ctx, &attrs, error::ENUM_VARIANT);
fields.into_iter().try_for_each(|field| {
let f_attrs = attr::parse_attributes(ctx, &field.attrs)?;
error::if_skip_present(ctx, &f_attrs, error::ENUM_VARIANT_FIELD);
ensure_has_only_skip_attr(ctx, &f_attrs, error::ENUM_VARIANT_FIELD);
Ok(())
})?;
return Ok(None);
}
// If the variant is uninhabited, we can't generate it, so skip it.
if (&*fields).is_uninhabited() {
return Ok(None);
}
// Compute the weight:
let weight = attrs.weight.unwrap_or(1);
Ok(Some((weight, variant.ident, fields, attrs)))
}
/// Ensures that no other attributes than skip are present.
fn ensure_has_only_skip_attr(ctx: Ctx, attrs: &ParsedAttributes, item: &str) {
if attrs.params.is_set() {
error::skipped_variant_has_param(ctx, item);
}
if attrs.strategy.is_set() {
error::skipped_variant_has_strat(ctx, item);
}
if attrs.weight.is_some() {
error::skipped_variant_has_weight(ctx, item);
}
if !attrs.filter.is_empty() {
error::skipped_variant_has_filter(ctx, item);
}
}
/// Deal with a unit variant.
fn pair_unit_variant(
ctx: Ctx,
attrs: &ParsedAttributes,
v_path: Path,
) -> StratPair {
error::if_present_on_unit_variant(ctx, attrs);
pair_unit_self(&v_path)
}
//==============================================================================
// Combined accumulator
//==============================================================================
/// Combined accumulator for the parameters and strategies.
struct PartsAcc<C> {
/// The accumulator for the parameters.
params: ParamAcc,
/// The accumulator for the strategies.
strats: StratAcc<C>,
}
impl<C> PartsAcc<C> {
/// Constructs a new accumulator with the size
/// passed on to the accumulator for the strategies.
fn new(size: usize) -> Self {
Self {
params: ParamAcc::empty(),
strats: StratAcc::new(size),
}
}
/// Adds a strategy to the accumulator.
fn add_strat(self, pair: (Strategy, C)) -> Self {
Self {
strats: self.strats.add(pair),
params: self.params,
}
}
/// Adds a parameter type to the accumulator and returns how many types
/// there were before adding.
fn add_param(&mut self, ty: Type) -> usize {
self.params.add(ty)
}
}
impl PartsAcc<Ctor> {
/// Finishes off the accumulator by returning the parts needed for
/// deriving. The resulting strategy is a mapping of the parts into
/// the `Self` type.
fn finish(self, closure: MapClosure) -> ImplParts {
let (params, count) = self.params.consume();
let (strat, ctor) = self.strats.finish(closure);
(params, strat, extract_all(ctor, count, FromReg::Top))
}
}
impl PartsAcc<(u32, Ctor)> {
/// Finishes off the accumulator by returning the parts needed for
/// deriving. The resultant strategy is one that randomly picks
/// one of the parts based on the relative weights in the `u32`.
fn finish(self, ctx: Ctx) -> ImplParts {
let (params, count) = self.params.consume();
let (strat, ctor) = self.strats.finish(ctx);
(params, strat, extract_all(ctor, count, FromReg::Top))
}
}
//==============================================================================
// Param accumulator
//==============================================================================
/// Accumulator of the parameter types.
struct ParamAcc {
/// The accumulated parameters types.
types: Params,
}
impl ParamAcc {
/// Returns an empty accumulator.
fn empty() -> Self {
Self {
types: Params::empty(),
}
}
/// Adds a type to the accumulator and returns the type count before adding.
fn add(&mut self, ty: Type) -> usize {
let var = self.types.len();
self.types += ty;
var
}
/// Consumes the accumulator returning the types and the count.
fn consume(self) -> (Params, usize) {
let count = self.types.len();
(self.types, count)
}
}
//==============================================================================
// Strategy accumulator
//==============================================================================
/// Accumulator of a sequence of strategies (both type and constructor).
struct StratAcc<C> {
/// The type half of the accumulator:
types: Vec<Strategy>,
/// The constructors (Rust expression that makes the strategy) half:
ctors: Vec<C>,
}
impl<C> StratAcc<C> {
/// Construct the given accumulator with
/// initial capacity according to `size`.
fn new(size: usize) -> Self {
Self {
types: Vec::with_capacity(size),
ctors: Vec::with_capacity(size),
}
}
/// Add the given type and constructor pair to
/// the accumulator which is moved and returned.
fn add(mut self, (strat, ctor): (Strategy, C)) -> Self {
self.types.push(strat);
self.ctors.push(ctor);
self
}
/// Consume the accumulator returning the:
/// + sequence of strategies
/// + sequence of constructors
fn consume(self) -> (Vec<Strategy>, Vec<C>) {
(self.types, self.ctors)
}
/// Returns `true` iff nothing has been accumulated yet.
fn is_empty(&self) -> bool {
self.types.is_empty()
}
}
impl StratAcc<Ctor> {
/// Finishes off the accumulator by returning
/// a `.prop_map(<closure>)` of the strategies.
fn finish(self, closure: MapClosure) -> StratPair {
pair_map(self.consume(), closure)
}
}
impl StratAcc<(u32, Ctor)> {
/// Finishes off the accumulator by returning a union of the
/// strategies where the resultant strategy randomly picks
/// one of the summands based on the relative weights provided.
fn finish(self, ctx: Ctx) -> StratPair {
// Check that the weight sum <= u32::MAX
if self
.ctors
.iter()
.map(|&(w, _)| w)
.try_fold(0u32, |acc, w| acc.checked_add(w))
.is_none()
{
error::weight_overflowing(ctx)
}
pair_oneof(self.consume())
}
}