rayon_core/
job.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use crate::latch::Latch;
use crate::unwind;
use crossbeam_deque::{Injector, Steal};
use std::any::Any;
use std::cell::UnsafeCell;
use std::mem;

pub(super) enum JobResult<T> {
    None,
    Ok(T),
    Panic(Box<dyn Any + Send>),
}

/// A `Job` is used to advertise work for other threads that they may
/// want to steal. In accordance with time honored tradition, jobs are
/// arranged in a deque, so that thieves can take from the top of the
/// deque while the main worker manages the bottom of the deque. This
/// deque is managed by the `thread_pool` module.
pub(super) trait Job {
    /// Unsafe: this may be called from a different thread than the one
    /// which scheduled the job, so the implementer must ensure the
    /// appropriate traits are met, whether `Send`, `Sync`, or both.
    unsafe fn execute(this: *const Self);
}

/// Effectively a Job trait object. Each JobRef **must** be executed
/// exactly once, or else data may leak.
///
/// Internally, we store the job's data in a `*const ()` pointer.  The
/// true type is something like `*const StackJob<...>`, but we hide
/// it. We also carry the "execute fn" from the `Job` trait.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct JobRef {
    pointer: *const (),
    execute_fn: unsafe fn(*const ()),
}

unsafe impl Send for JobRef {}
unsafe impl Sync for JobRef {}

impl JobRef {
    /// Unsafe: caller asserts that `data` will remain valid until the
    /// job is executed.
    pub(super) unsafe fn new<T>(data: *const T) -> JobRef
    where
        T: Job,
    {
        let fn_ptr: unsafe fn(*const T) = <T as Job>::execute;

        // erase types:
        JobRef {
            pointer: data as *const (),
            execute_fn: mem::transmute(fn_ptr),
        }
    }

    #[inline]
    pub(super) unsafe fn execute(&self) {
        (self.execute_fn)(self.pointer)
    }
}

/// A job that will be owned by a stack slot. This means that when it
/// executes it need not free any heap data, the cleanup occurs when
/// the stack frame is later popped.  The function parameter indicates
/// `true` if the job was stolen -- executed on a different thread.
pub(super) struct StackJob<L, F, R>
where
    L: Latch + Sync,
    F: FnOnce(bool) -> R + Send,
    R: Send,
{
    pub(super) latch: L,
    func: UnsafeCell<Option<F>>,
    result: UnsafeCell<JobResult<R>>,
}

impl<L, F, R> StackJob<L, F, R>
where
    L: Latch + Sync,
    F: FnOnce(bool) -> R + Send,
    R: Send,
{
    pub(super) fn new(func: F, latch: L) -> StackJob<L, F, R> {
        StackJob {
            latch,
            func: UnsafeCell::new(Some(func)),
            result: UnsafeCell::new(JobResult::None),
        }
    }

    pub(super) unsafe fn as_job_ref(&self) -> JobRef {
        JobRef::new(self)
    }

    pub(super) unsafe fn run_inline(self, stolen: bool) -> R {
        self.func.into_inner().unwrap()(stolen)
    }

    pub(super) unsafe fn into_result(self) -> R {
        self.result.into_inner().into_return_value()
    }
}

impl<L, F, R> Job for StackJob<L, F, R>
where
    L: Latch + Sync,
    F: FnOnce(bool) -> R + Send,
    R: Send,
{
    unsafe fn execute(this: *const Self) {
        fn call<R>(func: impl FnOnce(bool) -> R) -> impl FnOnce() -> R {
            move || func(true)
        }

        let this = &*this;
        let abort = unwind::AbortIfPanic;
        let func = (*this.func.get()).take().unwrap();
        (*this.result.get()) = match unwind::halt_unwinding(call(func)) {
            Ok(x) => JobResult::Ok(x),
            Err(x) => JobResult::Panic(x),
        };
        this.latch.set();
        mem::forget(abort);
    }
}

/// Represents a job stored in the heap. Used to implement
/// `scope`. Unlike `StackJob`, when executed, `HeapJob` simply
/// invokes a closure, which then triggers the appropriate logic to
/// signal that the job executed.
///
/// (Probably `StackJob` should be refactored in a similar fashion.)
pub(super) struct HeapJob<BODY>
where
    BODY: FnOnce() + Send,
{
    job: UnsafeCell<Option<BODY>>,
}

impl<BODY> HeapJob<BODY>
where
    BODY: FnOnce() + Send,
{
    pub(super) fn new(func: BODY) -> Self {
        HeapJob {
            job: UnsafeCell::new(Some(func)),
        }
    }

    /// Creates a `JobRef` from this job -- note that this hides all
    /// lifetimes, so it is up to you to ensure that this JobRef
    /// doesn't outlive any data that it closes over.
    pub(super) unsafe fn as_job_ref(self: Box<Self>) -> JobRef {
        let this: *const Self = mem::transmute(self);
        JobRef::new(this)
    }
}

impl<BODY> Job for HeapJob<BODY>
where
    BODY: FnOnce() + Send,
{
    unsafe fn execute(this: *const Self) {
        let this: Box<Self> = mem::transmute(this);
        let job = (*this.job.get()).take().unwrap();
        job();
    }
}

impl<T> JobResult<T> {
    /// Convert the `JobResult` for a job that has finished (and hence
    /// its JobResult is populated) into its return value.
    ///
    /// NB. This will panic if the job panicked.
    pub(super) fn into_return_value(self) -> T {
        match self {
            JobResult::None => unreachable!(),
            JobResult::Ok(x) => x,
            JobResult::Panic(x) => unwind::resume_unwinding(x),
        }
    }
}

/// Indirect queue to provide FIFO job priority.
pub(super) struct JobFifo {
    inner: Injector<JobRef>,
}

impl JobFifo {
    pub(super) fn new() -> Self {
        JobFifo {
            inner: Injector::new(),
        }
    }

    pub(super) unsafe fn push(&self, job_ref: JobRef) -> JobRef {
        // A little indirection ensures that spawns are always prioritized in FIFO order.  The
        // jobs in a thread's deque may be popped from the back (LIFO) or stolen from the front
        // (FIFO), but either way they will end up popping from the front of this queue.
        self.inner.push(job_ref);
        JobRef::new(self)
    }
}

impl Job for JobFifo {
    unsafe fn execute(this: *const Self) {
        // We "execute" a queue by executing its first job, FIFO.
        loop {
            match (*this).inner.steal() {
                Steal::Success(job_ref) => break job_ref.execute(),
                Steal::Empty => panic!("FIFO is empty"),
                Steal::Retry => {}
            }
        }
    }
}