1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::errors::Result;
use crate::file::metadata::{KeyValue, ParquetMetaData};
use crate::file::page_index::index::Index;
use crate::file::writer::TrackedWrite;
use crate::file::PARQUET_MAGIC;
use crate::format::{ColumnIndex, OffsetIndex, RowGroup};
use crate::schema::types;
use crate::schema::types::{SchemaDescPtr, SchemaDescriptor, TypePtr};
use crate::thrift::TSerializable;
use std::io::Write;
use std::sync::Arc;
use thrift::protocol::TCompactOutputProtocol;
/// Writes `crate::file::metadata` structures to a thrift encoded byte stream
///
/// See [`ParquetMetaDataWriter`] for background and example.
pub(crate) struct ThriftMetadataWriter<'a, W: Write> {
buf: &'a mut TrackedWrite<W>,
schema: &'a TypePtr,
schema_descr: &'a SchemaDescPtr,
row_groups: Vec<RowGroup>,
column_indexes: Option<&'a [Vec<Option<ColumnIndex>>]>,
offset_indexes: Option<&'a [Vec<Option<OffsetIndex>>]>,
key_value_metadata: Option<Vec<KeyValue>>,
created_by: Option<String>,
writer_version: i32,
}
impl<'a, W: Write> ThriftMetadataWriter<'a, W> {
/// Serialize all the offset indexes to `self.buf`,
///
/// Note: also updates the `ColumnChunk::offset_index_offset` and
/// `ColumnChunk::offset_index_length` to reflect the position and length
/// of the serialized offset indexes.
fn write_offset_indexes(&mut self, offset_indexes: &[Vec<Option<OffsetIndex>>]) -> Result<()> {
// iter row group
// iter each column
// write offset index to the file
for (row_group_idx, row_group) in self.row_groups.iter_mut().enumerate() {
for (column_idx, column_metadata) in row_group.columns.iter_mut().enumerate() {
if let Some(offset_index) = &offset_indexes[row_group_idx][column_idx] {
let start_offset = self.buf.bytes_written();
let mut protocol = TCompactOutputProtocol::new(&mut self.buf);
offset_index.write_to_out_protocol(&mut protocol)?;
let end_offset = self.buf.bytes_written();
// set offset and index for offset index
column_metadata.offset_index_offset = Some(start_offset as i64);
column_metadata.offset_index_length = Some((end_offset - start_offset) as i32);
}
}
}
Ok(())
}
/// Serialize all the column indexes to the `self.buf`
///
/// Note: also updates the `ColumnChunk::column_index_offset` and
/// `ColumnChunk::column_index_length` to reflect the position and length
/// of the serialized column indexes.
fn write_column_indexes(&mut self, column_indexes: &[Vec<Option<ColumnIndex>>]) -> Result<()> {
// iter row group
// iter each column
// write column index to the file
for (row_group_idx, row_group) in self.row_groups.iter_mut().enumerate() {
for (column_idx, column_metadata) in row_group.columns.iter_mut().enumerate() {
if let Some(column_index) = &column_indexes[row_group_idx][column_idx] {
let start_offset = self.buf.bytes_written();
let mut protocol = TCompactOutputProtocol::new(&mut self.buf);
column_index.write_to_out_protocol(&mut protocol)?;
let end_offset = self.buf.bytes_written();
// set offset and index for offset index
column_metadata.column_index_offset = Some(start_offset as i64);
column_metadata.column_index_length = Some((end_offset - start_offset) as i32);
}
}
}
Ok(())
}
/// Assembles and writes the final metadata to self.buf
pub fn finish(mut self) -> Result<crate::format::FileMetaData> {
let num_rows = self.row_groups.iter().map(|x| x.num_rows).sum();
// Write column indexes and offset indexes
if let Some(column_indexes) = self.column_indexes {
self.write_column_indexes(column_indexes)?;
}
if let Some(offset_indexes) = self.offset_indexes {
self.write_offset_indexes(offset_indexes)?;
}
// We only include ColumnOrder for leaf nodes.
// Currently only supported ColumnOrder is TypeDefinedOrder so we set this
// for all leaf nodes.
// Even if the column has an undefined sort order, such as INTERVAL, this
// is still technically the defined TYPEORDER so it should still be set.
let column_orders = (0..self.schema_descr.num_columns())
.map(|_| crate::format::ColumnOrder::TYPEORDER(crate::format::TypeDefinedOrder {}))
.collect();
// This field is optional, perhaps in cases where no min/max fields are set
// in any Statistics or ColumnIndex object in the whole file.
// But for simplicity we always set this field.
let column_orders = Some(column_orders);
let file_metadata = crate::format::FileMetaData {
num_rows,
row_groups: self.row_groups,
key_value_metadata: self.key_value_metadata.clone(),
version: self.writer_version,
schema: types::to_thrift(self.schema.as_ref())?,
created_by: self.created_by.clone(),
column_orders,
encryption_algorithm: None,
footer_signing_key_metadata: None,
};
// Write file metadata
let start_pos = self.buf.bytes_written();
{
let mut protocol = TCompactOutputProtocol::new(&mut self.buf);
file_metadata.write_to_out_protocol(&mut protocol)?;
}
let end_pos = self.buf.bytes_written();
// Write footer
let metadata_len = (end_pos - start_pos) as u32;
self.buf.write_all(&metadata_len.to_le_bytes())?;
self.buf.write_all(&PARQUET_MAGIC)?;
Ok(file_metadata)
}
pub fn new(
buf: &'a mut TrackedWrite<W>,
schema: &'a TypePtr,
schema_descr: &'a SchemaDescPtr,
row_groups: Vec<RowGroup>,
created_by: Option<String>,
writer_version: i32,
) -> Self {
Self {
buf,
schema,
schema_descr,
row_groups,
column_indexes: None,
offset_indexes: None,
key_value_metadata: None,
created_by,
writer_version,
}
}
pub fn with_column_indexes(mut self, column_indexes: &'a [Vec<Option<ColumnIndex>>]) -> Self {
self.column_indexes = Some(column_indexes);
self
}
pub fn with_offset_indexes(mut self, offset_indexes: &'a [Vec<Option<OffsetIndex>>]) -> Self {
self.offset_indexes = Some(offset_indexes);
self
}
pub fn with_key_value_metadata(mut self, key_value_metadata: Vec<KeyValue>) -> Self {
self.key_value_metadata = Some(key_value_metadata);
self
}
}
/// Writes [`ParquetMetaData`] to a byte stream
///
/// This structure handles the details of writing the various parts of Parquet
/// metadata into a byte stream. It is used to write the metadata into a parquet
/// file and can also write metadata into other locations (such as a store of
/// bytes).
///
/// # Discussion
///
/// The process of writing Parquet metadata is tricky because the
/// metadata is not stored as a single inline thrift structure. It can have
/// several "out of band" structures such as the [`OffsetIndex`] and
/// BloomFilters stored in separate structures whose locations are stored as
/// offsets from the beginning of the file.
///
/// Note: this writer does not directly write BloomFilters. In order to write
/// BloomFilters, write the bloom filters into the buffer before creating the
/// metadata writer. Then set the corresponding `bloom_filter_offset` and
/// `bloom_filter_length` on [`ColumnChunkMetaData`] passed to this writer.
///
/// # Output Format
///
/// The format of the metadata is as follows:
///
/// 1. Optional [`ColumnIndex`] (thrift encoded)
/// 2. Optional [`OffsetIndex`] (thrift encoded)
/// 3. [`FileMetaData`] (thrift encoded)
/// 4. Length of encoded `FileMetaData` (4 bytes, little endian)
/// 5. Parquet Magic Bytes (4 bytes)
///
/// [`FileMetaData`]: crate::format::FileMetaData
/// [`ColumnChunkMetaData`]: crate::file::metadata::ColumnChunkMetaData
///
/// ```text
/// ┌──────────────────────┐
/// │ │
/// │ ... │
/// │ │
/// │┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ │
/// │ ColumnIndex ◀│─ ─ ─
/// ││ (Optional) │ │ │
/// │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
/// │┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ │ │ FileMetadata
/// │ OffsetIndex │ contains embedded
/// ││ (Optional) │◀┼ ─ │ offsets to
/// │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │ │ ColumnIndex and
/// │╔═══════════════════╗ │ │ OffsetIndex
/// │║ ║ │ │
/// │║ ║ ┼ ─ │
/// │║ FileMetadata ║ │
/// │║ ║ ┼ ─ ─ ┘
/// │║ ║ │
/// │╚═══════════════════╝ │
/// │┌───────────────────┐ │
/// ││ metadata length │ │ length of FileMetadata (only)
/// │└───────────────────┘ │
/// │┌───────────────────┐ │
/// ││ 'PAR1' │ │ Parquet Magic Bytes
/// │└───────────────────┘ │
/// └──────────────────────┘
/// Output Buffer
/// ```
///
/// # Example
/// ```no_run
/// # use parquet::file::metadata::{ParquetMetaData, ParquetMetaDataWriter};
/// # fn get_metadata() -> ParquetMetaData { unimplemented!(); }
/// // write parquet metadata to an in-memory buffer
/// let mut buffer = vec![];
/// let metadata: ParquetMetaData = get_metadata();
/// let writer = ParquetMetaDataWriter::new(&mut buffer, &metadata);
/// // write the metadata to the buffer
/// writer.finish().unwrap();
/// assert!(!buffer.is_empty());
/// ```
pub struct ParquetMetaDataWriter<'a, W: Write> {
buf: TrackedWrite<W>,
metadata: &'a ParquetMetaData,
}
impl<'a, W: Write> ParquetMetaDataWriter<'a, W> {
/// Create a new `ParquetMetaDataWriter` to write to `buf`
///
/// Note any embedded offsets in the metadata will be written assuming the
/// metadata is at the start of the buffer. If the metadata is being written
/// to a location other than the start of the buffer, see [`Self::new_with_tracked`]
///
/// See example on the struct level documentation
pub fn new(buf: W, metadata: &'a ParquetMetaData) -> Self {
Self::new_with_tracked(TrackedWrite::new(buf), metadata)
}
/// Create a new ParquetMetaDataWriter to write to `buf`
///
/// This method is used when the metadata is being written to a location other
/// than the start of the buffer.
///
/// See example on the struct level documentation
pub fn new_with_tracked(buf: TrackedWrite<W>, metadata: &'a ParquetMetaData) -> Self {
Self { buf, metadata }
}
/// Write the metadata to the buffer
pub fn finish(mut self) -> Result<()> {
let file_metadata = self.metadata.file_metadata();
let schema = Arc::new(file_metadata.schema().clone());
let schema_descr = Arc::new(SchemaDescriptor::new(schema.clone()));
let created_by = file_metadata.created_by().map(str::to_string);
let row_groups = self
.metadata
.row_groups()
.iter()
.map(|rg| rg.to_thrift())
.collect::<Vec<_>>();
let key_value_metadata = file_metadata.key_value_metadata().cloned();
let column_indexes = self.convert_column_indexes();
let offset_indexes = self.convert_offset_index();
let mut encoder = ThriftMetadataWriter::new(
&mut self.buf,
&schema,
&schema_descr,
row_groups,
created_by,
file_metadata.version(),
);
encoder = encoder.with_column_indexes(&column_indexes);
encoder = encoder.with_offset_indexes(&offset_indexes);
if let Some(key_value_metadata) = key_value_metadata {
encoder = encoder.with_key_value_metadata(key_value_metadata);
}
encoder.finish()?;
Ok(())
}
fn convert_column_indexes(&self) -> Vec<Vec<Option<ColumnIndex>>> {
if let Some(row_group_column_indexes) = self.metadata.column_index() {
(0..self.metadata.row_groups().len())
.map(|rg_idx| {
let column_indexes = &row_group_column_indexes[rg_idx];
column_indexes
.iter()
.map(|column_index| match column_index {
Index::NONE => None,
Index::BOOLEAN(column_index) => Some(column_index.to_thrift()),
Index::BYTE_ARRAY(column_index) => Some(column_index.to_thrift()),
Index::DOUBLE(column_index) => Some(column_index.to_thrift()),
Index::FIXED_LEN_BYTE_ARRAY(column_index) => {
Some(column_index.to_thrift())
}
Index::FLOAT(column_index) => Some(column_index.to_thrift()),
Index::INT32(column_index) => Some(column_index.to_thrift()),
Index::INT64(column_index) => Some(column_index.to_thrift()),
Index::INT96(column_index) => Some(column_index.to_thrift()),
})
.collect()
})
.collect()
} else {
// make a None for each row group, for each column
self.metadata
.row_groups()
.iter()
.map(|rg| std::iter::repeat(None).take(rg.columns().len()).collect())
.collect()
}
}
fn convert_offset_index(&self) -> Vec<Vec<Option<OffsetIndex>>> {
if let Some(row_group_offset_indexes) = self.metadata.offset_index() {
(0..self.metadata.row_groups().len())
.map(|rg_idx| {
let offset_indexes = &row_group_offset_indexes[rg_idx];
offset_indexes
.iter()
.map(|offset_index| Some(offset_index.to_thrift()))
.collect()
})
.collect()
} else {
// make a None for each row group, for each column
self.metadata
.row_groups()
.iter()
.map(|rg| std::iter::repeat(None).take(rg.columns().len()).collect())
.collect()
}
}
}