1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//! Index by chars.

use crate::byte_chunk::{ByteChunk, Chunk};

/// Counts the chars in a string slice.
///
/// Runs in O(N) time.
#[inline]
pub fn count(text: &str) -> usize {
    count_impl::<Chunk>(text.as_bytes())
}

/// Converts from byte-index to char-index in a string slice.
///
/// If the byte is in the middle of a multi-byte char, returns the index of
/// the char that the byte belongs to.
///
/// Any past-the-end index will return the one-past-the-end char index.
///
/// Runs in O(N) time.
#[inline]
pub fn from_byte_idx(text: &str, byte_idx: usize) -> usize {
    let bytes = text.as_bytes();

    // Ensure the index is either a char boundary or is off the end of
    // the text.
    let mut i = byte_idx;
    while Some(true) == bytes.get(i).map(|byte| (*byte & 0xC0) == 0x80) {
        i -= 1;
    }

    count_impl::<Chunk>(&bytes[0..i.min(bytes.len())])
}

/// Converts from char-index to byte-index in a string slice.
///
/// Any past-the-end index will return the one-past-the-end byte index.
///
/// Runs in O(N) time.
#[inline]
pub fn to_byte_idx(text: &str, char_idx: usize) -> usize {
    to_byte_idx_impl::<Chunk>(text, char_idx)
}

//-------------------------------------------------------------

#[inline(always)]
fn to_byte_idx_impl<T: ByteChunk>(text: &str, char_idx: usize) -> usize {
    // Get `middle` so we can do more efficient chunk-based counting.
    // We can't use this to get `end`, however, because the start index of
    // `end` actually depends on the accumulating char counts during the
    // counting process.
    let (start, middle, _) = unsafe { text.as_bytes().align_to::<T>() };

    let mut byte_count = 0;
    let mut char_count = 0;

    // Take care of any unaligned bytes at the beginning.
    for byte in start.iter() {
        char_count += ((*byte & 0xC0) != 0x80) as usize;
        if char_count > char_idx {
            break;
        }
        byte_count += 1;
    }

    // Process chunks in the fast path.
    let mut chunks = middle;
    let mut max_round_len = char_idx.saturating_sub(char_count) / T::MAX_ACC;
    while max_round_len > 0 && !chunks.is_empty() {
        // Choose the largest number of chunks we can do this round
        // that will neither overflow `max_acc` nor blast past the
        // char we're looking for.
        let round_len = T::MAX_ACC.min(max_round_len).min(chunks.len());
        max_round_len -= round_len;
        let round = &chunks[..round_len];
        chunks = &chunks[round_len..];

        // Process the chunks in this round.
        let mut acc = T::zero();
        for chunk in round.iter() {
            acc = acc.add(chunk.bitand(T::splat(0xc0)).cmp_eq_byte(0x80));
        }
        char_count += (T::SIZE * round_len) - acc.sum_bytes();
        byte_count += T::SIZE * round_len;
    }

    // Process chunks in the slow path.
    for chunk in chunks.iter() {
        let new_char_count =
            char_count + T::SIZE - chunk.bitand(T::splat(0xc0)).cmp_eq_byte(0x80).sum_bytes();
        if new_char_count >= char_idx {
            break;
        }
        char_count = new_char_count;
        byte_count += T::SIZE;
    }

    // Take care of any unaligned bytes at the end.
    let end = &text.as_bytes()[byte_count..];
    for byte in end.iter() {
        char_count += ((*byte & 0xC0) != 0x80) as usize;
        if char_count > char_idx {
            break;
        }
        byte_count += 1;
    }

    byte_count
}

#[inline(always)]
pub(crate) fn count_impl<T: ByteChunk>(text: &[u8]) -> usize {
    if text.len() < T::SIZE {
        // Bypass the more complex routine for short strings, where the
        // complexity hurts performance.
        text.iter()
            .map(|byte| ((byte & 0xC0) != 0x80) as usize)
            .sum()
    } else {
        // Get `middle` for more efficient chunk-based counting.
        let (start, middle, end) = unsafe { text.align_to::<T>() };

        let mut inv_count = 0;

        // Take care of unaligned bytes at the beginning.
        for byte in start.iter() {
            inv_count += ((byte & 0xC0) == 0x80) as usize;
        }

        // Take care of the middle bytes in big chunks.
        for chunks in middle.chunks(T::MAX_ACC) {
            let mut acc = T::zero();
            for chunk in chunks.iter() {
                acc = acc.add(chunk.bitand(T::splat(0xc0)).cmp_eq_byte(0x80));
            }
            inv_count += acc.sum_bytes();
        }

        // Take care of unaligned bytes at the end.
        for byte in end.iter() {
            inv_count += ((byte & 0xC0) == 0x80) as usize;
        }

        text.len() - inv_count
    }
}

//=============================================================

#[cfg(test)]
mod tests {
    use super::*;

    // 124 bytes, 100 chars, 4 lines
    const TEXT_LINES: &str = "Hello there!  How're you doing?\nIt's \
                              a fine day, isn't it?\nAren't you glad \
                              we're alive?\nこんにちは、みんなさん!";

    #[test]
    fn count_01() {
        let text = "Hello せかい! Hello せかい! Hello せかい! Hello せかい! Hello せかい!";

        assert_eq!(54, count(text));
    }

    #[test]
    fn count_02() {
        assert_eq!(100, count(TEXT_LINES));
    }

    #[test]
    fn from_byte_idx_01() {
        let text = "Hello せかい!";
        assert_eq!(0, from_byte_idx(text, 0));
        assert_eq!(1, from_byte_idx(text, 1));
        assert_eq!(6, from_byte_idx(text, 6));
        assert_eq!(6, from_byte_idx(text, 7));
        assert_eq!(6, from_byte_idx(text, 8));
        assert_eq!(7, from_byte_idx(text, 9));
        assert_eq!(7, from_byte_idx(text, 10));
        assert_eq!(7, from_byte_idx(text, 11));
        assert_eq!(8, from_byte_idx(text, 12));
        assert_eq!(8, from_byte_idx(text, 13));
        assert_eq!(8, from_byte_idx(text, 14));
        assert_eq!(9, from_byte_idx(text, 15));
        assert_eq!(10, from_byte_idx(text, 16));
        assert_eq!(10, from_byte_idx(text, 17));
        assert_eq!(10, from_byte_idx(text, 18));
        assert_eq!(10, from_byte_idx(text, 19));
    }

    #[test]
    fn from_byte_idx_02() {
        let text = "";
        assert_eq!(0, from_byte_idx(text, 0));
        assert_eq!(0, from_byte_idx(text, 1));

        let text = "h";
        assert_eq!(0, from_byte_idx(text, 0));
        assert_eq!(1, from_byte_idx(text, 1));
        assert_eq!(1, from_byte_idx(text, 2));

        let text = "hi";
        assert_eq!(0, from_byte_idx(text, 0));
        assert_eq!(1, from_byte_idx(text, 1));
        assert_eq!(2, from_byte_idx(text, 2));
        assert_eq!(2, from_byte_idx(text, 3));
    }

    #[test]
    fn from_byte_idx_03() {
        let text = "せかい";
        assert_eq!(0, from_byte_idx(text, 0));
        assert_eq!(0, from_byte_idx(text, 1));
        assert_eq!(0, from_byte_idx(text, 2));
        assert_eq!(1, from_byte_idx(text, 3));
        assert_eq!(1, from_byte_idx(text, 4));
        assert_eq!(1, from_byte_idx(text, 5));
        assert_eq!(2, from_byte_idx(text, 6));
        assert_eq!(2, from_byte_idx(text, 7));
        assert_eq!(2, from_byte_idx(text, 8));
        assert_eq!(3, from_byte_idx(text, 9));
        assert_eq!(3, from_byte_idx(text, 10));
        assert_eq!(3, from_byte_idx(text, 11));
        assert_eq!(3, from_byte_idx(text, 12));
    }

    #[test]
    fn from_byte_idx_04() {
        // Ascii range
        for i in 0..88 {
            assert_eq!(i, from_byte_idx(TEXT_LINES, i));
        }

        // Hiragana characters
        for i in 88..125 {
            assert_eq!(88 + ((i - 88) / 3), from_byte_idx(TEXT_LINES, i));
        }

        // Past the end
        for i in 125..130 {
            assert_eq!(100, from_byte_idx(TEXT_LINES, i));
        }
    }

    #[test]
    fn to_byte_idx_01() {
        let text = "Hello せかい!";
        assert_eq!(0, to_byte_idx(text, 0));
        assert_eq!(1, to_byte_idx(text, 1));
        assert_eq!(2, to_byte_idx(text, 2));
        assert_eq!(5, to_byte_idx(text, 5));
        assert_eq!(6, to_byte_idx(text, 6));
        assert_eq!(12, to_byte_idx(text, 8));
        assert_eq!(15, to_byte_idx(text, 9));
        assert_eq!(16, to_byte_idx(text, 10));
    }

    #[test]
    fn to_byte_idx_02() {
        let text = "せかい";
        assert_eq!(0, to_byte_idx(text, 0));
        assert_eq!(3, to_byte_idx(text, 1));
        assert_eq!(6, to_byte_idx(text, 2));
        assert_eq!(9, to_byte_idx(text, 3));
    }

    #[test]
    fn to_byte_idx_03() {
        let text = "Hello world!";
        assert_eq!(0, to_byte_idx(text, 0));
        assert_eq!(1, to_byte_idx(text, 1));
        assert_eq!(8, to_byte_idx(text, 8));
        assert_eq!(11, to_byte_idx(text, 11));
        assert_eq!(12, to_byte_idx(text, 12));
    }

    #[test]
    fn to_byte_idx_04() {
        let text = "Hello world! Hello せかい! Hello world! Hello せかい! \
                    Hello world! Hello せかい! Hello world! Hello せかい! \
                    Hello world! Hello せかい! Hello world! Hello せかい! \
                    Hello world! Hello せかい! Hello world! Hello せかい!";
        assert_eq!(0, to_byte_idx(text, 0));
        assert_eq!(30, to_byte_idx(text, 24));
        assert_eq!(60, to_byte_idx(text, 48));
        assert_eq!(90, to_byte_idx(text, 72));
        assert_eq!(115, to_byte_idx(text, 93));
        assert_eq!(120, to_byte_idx(text, 96));
        assert_eq!(150, to_byte_idx(text, 120));
        assert_eq!(180, to_byte_idx(text, 144));
        assert_eq!(210, to_byte_idx(text, 168));
        assert_eq!(239, to_byte_idx(text, 191));
    }

    #[test]
    fn to_byte_idx_05() {
        // Ascii range
        for i in 0..88 {
            assert_eq!(i, to_byte_idx(TEXT_LINES, i));
        }

        // Hiragana characters
        for i in 88..100 {
            assert_eq!(88 + ((i - 88) * 3), to_byte_idx(TEXT_LINES, i));
        }

        // Past the end
        for i in 100..110 {
            assert_eq!(124, to_byte_idx(TEXT_LINES, i));
        }
    }
}