triomphe/offset_arc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
use core::fmt;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::ops::Deref;
use core::ptr;
use super::{Arc, ArcBorrow};
/// An `Arc`, except it holds a pointer to the T instead of to the
/// entire ArcInner.
///
/// An `OffsetArc<T>` has the same layout and ABI as a non-null
/// `const T*` in C, and may be used in FFI function signatures.
///
/// ```text
/// Arc<T> OffsetArc<T>
/// | |
/// v v
/// ---------------------
/// | RefCount | T (data) | [ArcInner<T>]
/// ---------------------
/// ```
///
/// This means that this is a direct pointer to
/// its contained data (and can be read from by both C++ and Rust),
/// but we can also convert it to a "regular" `Arc<T>` by removing the offset.
///
/// This is very useful if you have an Arc-containing struct shared between Rust and C++,
/// and wish for C++ to be able to read the data behind the `Arc` without incurring
/// an FFI call overhead.
#[derive(Eq)]
#[repr(transparent)]
pub struct OffsetArc<T> {
pub(crate) ptr: ptr::NonNull<T>,
pub(crate) phantom: PhantomData<T>,
}
unsafe impl<T: Sync + Send> Send for OffsetArc<T> {}
unsafe impl<T: Sync + Send> Sync for OffsetArc<T> {}
impl<T> Deref for OffsetArc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &*self.ptr.as_ptr() }
}
}
impl<T> Clone for OffsetArc<T> {
#[inline]
fn clone(&self) -> Self {
Arc::into_raw_offset(self.clone_arc())
}
}
impl<T> Drop for OffsetArc<T> {
fn drop(&mut self) {
let _ = Arc::from_raw_offset(OffsetArc {
ptr: self.ptr,
phantom: PhantomData,
});
}
}
impl<T: fmt::Debug> fmt::Debug for OffsetArc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: PartialEq> PartialEq for OffsetArc<T> {
fn eq(&self, other: &OffsetArc<T>) -> bool {
*(*self) == *(*other)
}
#[allow(clippy::partialeq_ne_impl)]
fn ne(&self, other: &OffsetArc<T>) -> bool {
*(*self) != *(*other)
}
}
impl<T> OffsetArc<T> {
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<T>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe { ManuallyDrop::new(Arc::from_raw(self.ptr.as_ptr())) };
// Expose the transient Arc to the callback, which may clone it if it wants
// and forward the result to the user
f(&transient)
}
/// If uniquely owned, provide a mutable reference
/// Else create a copy, and mutate that
///
/// This is functionally the same thing as `Arc::make_mut`
#[inline]
pub fn make_mut(&mut self) -> &mut T
where
T: Clone,
{
unsafe {
// extract the OffsetArc as an owned variable
let this = ptr::read(self);
// treat it as a real Arc
let mut arc = Arc::from_raw_offset(this);
// obtain the mutable reference. Cast away the lifetime
// This may mutate `arc`
let ret = Arc::make_mut(&mut arc) as *mut _;
// Store the possibly-mutated arc back inside, after converting
// it to a OffsetArc again
ptr::write(self, Arc::into_raw_offset(arc));
&mut *ret
}
}
/// Clone it as an `Arc`
#[inline]
pub fn clone_arc(&self) -> Arc<T> {
OffsetArc::with_arc(self, |a| a.clone())
}
/// Produce a pointer to the data that can be converted back
/// to an `Arc`
#[inline]
pub fn borrow_arc(&self) -> ArcBorrow<'_, T> {
ArcBorrow(&**self)
}
}