cxx/cxx_vector.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//! Less used details of `CxxVector` are exposed in this module. `CxxVector`
//! itself is exposed at the crate root.
use crate::extern_type::ExternType;
use crate::kind::Trivial;
use crate::string::CxxString;
use crate::unique_ptr::UniquePtr;
use core::ffi::c_void;
use core::fmt::{self, Debug};
use core::iter::FusedIterator;
use core::marker::{PhantomData, PhantomPinned};
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::pin::Pin;
use core::slice;
/// Binding to C++ `std::vector<T, std::allocator<T>>`.
///
/// # Invariants
///
/// As an invariant of this API and the static analysis of the cxx::bridge
/// macro, in Rust code we can never obtain a `CxxVector` by value. Instead in
/// Rust code we will only ever look at a vector behind a reference or smart
/// pointer, as in `&CxxVector<T>` or `UniquePtr<CxxVector<T>>`.
#[repr(C, packed)]
pub struct CxxVector<T> {
// A thing, because repr(C) structs are not allowed to consist exclusively
// of PhantomData fields.
_void: [c_void; 0],
// The conceptual vector elements to ensure that autotraits are propagated
// correctly, e.g. CxxVector is UnwindSafe iff T is.
_elements: PhantomData<[T]>,
// Prevent unpin operation from Pin<&mut CxxVector<T>> to &mut CxxVector<T>.
_pinned: PhantomData<PhantomPinned>,
}
impl<T> CxxVector<T>
where
T: VectorElement,
{
/// Constructs a new heap allocated vector, wrapped by UniquePtr.
///
/// The C++ vector is default constructed.
pub fn new() -> UniquePtr<Self> {
unsafe { UniquePtr::from_raw(T::__vector_new()) }
}
/// Returns the number of elements in the vector.
///
/// Matches the behavior of C++ [std::vector\<T\>::size][size].
///
/// [size]: https://en.cppreference.com/w/cpp/container/vector/size
pub fn len(&self) -> usize {
T::__vector_size(self)
}
/// Returns true if the vector contains no elements.
///
/// Matches the behavior of C++ [std::vector\<T\>::empty][empty].
///
/// [empty]: https://en.cppreference.com/w/cpp/container/vector/empty
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns a reference to an element at the given position, or `None` if
/// out of bounds.
pub fn get(&self, pos: usize) -> Option<&T> {
if pos < self.len() {
Some(unsafe { self.get_unchecked(pos) })
} else {
None
}
}
/// Returns a pinned mutable reference to an element at the given position,
/// or `None` if out of bounds.
pub fn index_mut(self: Pin<&mut Self>, pos: usize) -> Option<Pin<&mut T>> {
if pos < self.len() {
Some(unsafe { self.index_unchecked_mut(pos) })
} else {
None
}
}
/// Returns a reference to an element without doing bounds checking.
///
/// This is generally not recommended, use with caution! Calling this method
/// with an out-of-bounds index is undefined behavior even if the resulting
/// reference is not used.
///
/// Matches the behavior of C++
/// [std::vector\<T\>::operator\[\] const][operator_at].
///
/// [operator_at]: https://en.cppreference.com/w/cpp/container/vector/operator_at
pub unsafe fn get_unchecked(&self, pos: usize) -> &T {
let this = self as *const CxxVector<T> as *mut CxxVector<T>;
unsafe {
let ptr = T::__get_unchecked(this, pos) as *const T;
&*ptr
}
}
/// Returns a pinned mutable reference to an element without doing bounds
/// checking.
///
/// This is generally not recommended, use with caution! Calling this method
/// with an out-of-bounds index is undefined behavior even if the resulting
/// reference is not used.
///
/// Matches the behavior of C++
/// [std::vector\<T\>::operator\[\]][operator_at].
///
/// [operator_at]: https://en.cppreference.com/w/cpp/container/vector/operator_at
pub unsafe fn index_unchecked_mut(self: Pin<&mut Self>, pos: usize) -> Pin<&mut T> {
unsafe {
let ptr = T::__get_unchecked(self.get_unchecked_mut(), pos);
Pin::new_unchecked(&mut *ptr)
}
}
/// Returns a slice to the underlying contiguous array of elements.
pub fn as_slice(&self) -> &[T]
where
T: ExternType<Kind = Trivial>,
{
let len = self.len();
if len == 0 {
// The slice::from_raw_parts in the other branch requires a nonnull
// and properly aligned data ptr. C++ standard does not guarantee
// that data() on a vector with size 0 would return a nonnull
// pointer or sufficiently aligned pointer, so using it would be
// undefined behavior. Create our own empty slice in Rust instead
// which upholds the invariants.
&[]
} else {
let this = self as *const CxxVector<T> as *mut CxxVector<T>;
let ptr = unsafe { T::__get_unchecked(this, 0) };
unsafe { slice::from_raw_parts(ptr, len) }
}
}
/// Returns a slice to the underlying contiguous array of elements by
/// mutable reference.
pub fn as_mut_slice(self: Pin<&mut Self>) -> &mut [T]
where
T: ExternType<Kind = Trivial>,
{
let len = self.len();
if len == 0 {
&mut []
} else {
let ptr = unsafe { T::__get_unchecked(self.get_unchecked_mut(), 0) };
unsafe { slice::from_raw_parts_mut(ptr, len) }
}
}
/// Returns an iterator over elements of type `&T`.
pub fn iter(&self) -> Iter<T> {
Iter { v: self, index: 0 }
}
/// Returns an iterator over elements of type `Pin<&mut T>`.
pub fn iter_mut(self: Pin<&mut Self>) -> IterMut<T> {
IterMut { v: self, index: 0 }
}
/// Appends an element to the back of the vector.
///
/// Matches the behavior of C++ [std::vector\<T\>::push_back][push_back].
///
/// [push_back]: https://en.cppreference.com/w/cpp/container/vector/push_back
pub fn push(self: Pin<&mut Self>, value: T)
where
T: ExternType<Kind = Trivial>,
{
let mut value = ManuallyDrop::new(value);
unsafe {
// C++ calls move constructor followed by destructor on `value`.
T::__push_back(self, &mut value);
}
}
/// Removes the last element from a vector and returns it, or `None` if the
/// vector is empty.
pub fn pop(self: Pin<&mut Self>) -> Option<T>
where
T: ExternType<Kind = Trivial>,
{
if self.is_empty() {
None
} else {
let mut value = MaybeUninit::uninit();
Some(unsafe {
T::__pop_back(self, &mut value);
value.assume_init()
})
}
}
}
/// Iterator over elements of a `CxxVector` by shared reference.
///
/// The iterator element type is `&'a T`.
pub struct Iter<'a, T> {
v: &'a CxxVector<T>,
index: usize,
}
impl<'a, T> IntoIterator for &'a CxxVector<T>
where
T: VectorElement,
{
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T> Iterator for Iter<'a, T>
where
T: VectorElement,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let next = self.v.get(self.index)?;
self.index += 1;
Some(next)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<'a, T> ExactSizeIterator for Iter<'a, T>
where
T: VectorElement,
{
fn len(&self) -> usize {
self.v.len() - self.index
}
}
impl<'a, T> FusedIterator for Iter<'a, T> where T: VectorElement {}
/// Iterator over elements of a `CxxVector` by pinned mutable reference.
///
/// The iterator element type is `Pin<&'a mut T>`.
pub struct IterMut<'a, T> {
v: Pin<&'a mut CxxVector<T>>,
index: usize,
}
impl<'a, T> IntoIterator for Pin<&'a mut CxxVector<T>>
where
T: VectorElement,
{
type Item = Pin<&'a mut T>;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<'a, T> Iterator for IterMut<'a, T>
where
T: VectorElement,
{
type Item = Pin<&'a mut T>;
fn next(&mut self) -> Option<Self::Item> {
let next = self.v.as_mut().index_mut(self.index)?;
self.index += 1;
// Extend lifetime to allow simultaneous holding of nonoverlapping
// elements, analogous to slice::split_first_mut.
unsafe {
let ptr = Pin::into_inner_unchecked(next) as *mut T;
Some(Pin::new_unchecked(&mut *ptr))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<'a, T> ExactSizeIterator for IterMut<'a, T>
where
T: VectorElement,
{
fn len(&self) -> usize {
self.v.len() - self.index
}
}
impl<'a, T> FusedIterator for IterMut<'a, T> where T: VectorElement {}
impl<T> Debug for CxxVector<T>
where
T: VectorElement + Debug,
{
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.debug_list().entries(self).finish()
}
}
/// Trait bound for types which may be used as the `T` inside of a
/// `CxxVector<T>` in generic code.
///
/// This trait has no publicly callable or implementable methods. Implementing
/// it outside of the CXX codebase requires using [explicit shim trait impls],
/// adding the line `impl CxxVector<MyType> {}` in the same `cxx::bridge` that
/// defines `MyType`.
///
/// # Example
///
/// A bound `T: VectorElement` may be necessary when manipulating [`CxxVector`]
/// in generic code.
///
/// ```
/// use cxx::vector::{CxxVector, VectorElement};
/// use std::fmt::Display;
///
/// pub fn take_generic_vector<T>(vector: &CxxVector<T>)
/// where
/// T: VectorElement + Display,
/// {
/// println!("the vector elements are:");
/// for element in vector {
/// println!(" • {}", element);
/// }
/// }
/// ```
///
/// Writing the same generic function without a `VectorElement` trait bound
/// would not compile.
///
/// [explicit shim trait impls]: https://cxx.rs/extern-c++.html#explicit-shim-trait-impls
pub unsafe trait VectorElement: Sized {
#[doc(hidden)]
fn __typename(f: &mut fmt::Formatter) -> fmt::Result;
#[doc(hidden)]
fn __vector_new() -> *mut CxxVector<Self>;
#[doc(hidden)]
fn __vector_size(v: &CxxVector<Self>) -> usize;
#[doc(hidden)]
unsafe fn __get_unchecked(v: *mut CxxVector<Self>, pos: usize) -> *mut Self;
#[doc(hidden)]
unsafe fn __push_back(v: Pin<&mut CxxVector<Self>>, value: &mut ManuallyDrop<Self>) {
// Opaque C type vector elements do not get this method because they can
// never exist by value on the Rust side of the bridge.
let _ = v;
let _ = value;
unreachable!()
}
#[doc(hidden)]
unsafe fn __pop_back(v: Pin<&mut CxxVector<Self>>, out: &mut MaybeUninit<Self>) {
// Opaque C type vector elements do not get this method because they can
// never exist by value on the Rust side of the bridge.
let _ = v;
let _ = out;
unreachable!()
}
#[doc(hidden)]
fn __unique_ptr_null() -> MaybeUninit<*mut c_void>;
#[doc(hidden)]
unsafe fn __unique_ptr_raw(raw: *mut CxxVector<Self>) -> MaybeUninit<*mut c_void>;
#[doc(hidden)]
unsafe fn __unique_ptr_get(repr: MaybeUninit<*mut c_void>) -> *const CxxVector<Self>;
#[doc(hidden)]
unsafe fn __unique_ptr_release(repr: MaybeUninit<*mut c_void>) -> *mut CxxVector<Self>;
#[doc(hidden)]
unsafe fn __unique_ptr_drop(repr: MaybeUninit<*mut c_void>);
}
macro_rules! vector_element_by_value_methods {
(opaque, $segment:expr, $ty:ty) => {};
(trivial, $segment:expr, $ty:ty) => {
unsafe fn __push_back(v: Pin<&mut CxxVector<$ty>>, value: &mut ManuallyDrop<$ty>) {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$push_back")]
fn __push_back(_: Pin<&mut CxxVector<$ty>>, _: &mut ManuallyDrop<$ty>);
}
unsafe { __push_back(v, value) }
}
unsafe fn __pop_back(v: Pin<&mut CxxVector<$ty>>, out: &mut MaybeUninit<$ty>) {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$pop_back")]
fn __pop_back(_: Pin<&mut CxxVector<$ty>>, _: &mut MaybeUninit<$ty>);
}
unsafe { __pop_back(v, out) }
}
};
}
macro_rules! impl_vector_element {
($kind:ident, $segment:expr, $name:expr, $ty:ty) => {
const_assert_eq!(0, mem::size_of::<CxxVector<$ty>>());
const_assert_eq!(1, mem::align_of::<CxxVector<$ty>>());
unsafe impl VectorElement for $ty {
fn __typename(f: &mut fmt::Formatter) -> fmt::Result {
f.write_str($name)
}
fn __vector_new() -> *mut CxxVector<Self> {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$new")]
fn __vector_new() -> *mut CxxVector<$ty>;
}
unsafe { __vector_new() }
}
fn __vector_size(v: &CxxVector<$ty>) -> usize {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$size")]
fn __vector_size(_: &CxxVector<$ty>) -> usize;
}
unsafe { __vector_size(v) }
}
unsafe fn __get_unchecked(v: *mut CxxVector<$ty>, pos: usize) -> *mut $ty {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$get_unchecked")]
fn __get_unchecked(_: *mut CxxVector<$ty>, _: usize) -> *mut $ty;
}
unsafe { __get_unchecked(v, pos) }
}
vector_element_by_value_methods!($kind, $segment, $ty);
fn __unique_ptr_null() -> MaybeUninit<*mut c_void> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$null")]
fn __unique_ptr_null(this: *mut MaybeUninit<*mut c_void>);
}
let mut repr = MaybeUninit::uninit();
unsafe { __unique_ptr_null(&mut repr) }
repr
}
unsafe fn __unique_ptr_raw(raw: *mut CxxVector<Self>) -> MaybeUninit<*mut c_void> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$raw")]
fn __unique_ptr_raw(this: *mut MaybeUninit<*mut c_void>, raw: *mut CxxVector<$ty>);
}
let mut repr = MaybeUninit::uninit();
unsafe { __unique_ptr_raw(&mut repr, raw) }
repr
}
unsafe fn __unique_ptr_get(repr: MaybeUninit<*mut c_void>) -> *const CxxVector<Self> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$get")]
fn __unique_ptr_get(this: *const MaybeUninit<*mut c_void>) -> *const CxxVector<$ty>;
}
unsafe { __unique_ptr_get(&repr) }
}
unsafe fn __unique_ptr_release(mut repr: MaybeUninit<*mut c_void>) -> *mut CxxVector<Self> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$release")]
fn __unique_ptr_release(this: *mut MaybeUninit<*mut c_void>) -> *mut CxxVector<$ty>;
}
unsafe { __unique_ptr_release(&mut repr) }
}
unsafe fn __unique_ptr_drop(mut repr: MaybeUninit<*mut c_void>) {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$drop")]
fn __unique_ptr_drop(this: *mut MaybeUninit<*mut c_void>);
}
unsafe { __unique_ptr_drop(&mut repr) }
}
}
};
}
macro_rules! impl_vector_element_for_primitive {
($ty:ident) => {
impl_vector_element!(trivial, stringify!($ty), stringify!($ty), $ty);
};
}
impl_vector_element_for_primitive!(u8);
impl_vector_element_for_primitive!(u16);
impl_vector_element_for_primitive!(u32);
impl_vector_element_for_primitive!(u64);
impl_vector_element_for_primitive!(usize);
impl_vector_element_for_primitive!(i8);
impl_vector_element_for_primitive!(i16);
impl_vector_element_for_primitive!(i32);
impl_vector_element_for_primitive!(i64);
impl_vector_element_for_primitive!(isize);
impl_vector_element_for_primitive!(f32);
impl_vector_element_for_primitive!(f64);
impl_vector_element!(opaque, "string", "CxxString", CxxString);