mz_compute/sink/correction_v2.rs
1// Copyright Materialize, Inc. and contributors. All rights reserved.
2//
3// Use of this software is governed by the Business Source License
4// included in the LICENSE file.
5//
6// As of the Change Date specified in that file, in accordance with
7// the Business Source License, use of this software will be governed
8// by the Apache License, Version 2.0.
9
10//! An implementation of the `Correction` data structure used by the MV sink's `write_batches`
11//! operator to stash updates before they are written.
12//!
13//! The `Correction` data structure provides methods to:
14//! * insert new updates
15//! * advance the compaction frontier (called `since`)
16//! * obtain an iterator over consolidated updates before some `upper`
17//! * force consolidation of updates before some `upper`
18//!
19//! The goal is to provide good performance for each of these operations, even in the presence of
20//! future updates. MVs downstream of temporal filters might have to deal with large amounts of
21//! retractions for future times and we want those to be handled efficiently as well.
22//!
23//! Note that `Correction` does not provide a method to directly remove updates. Instead updates
24//! are removed by inserting their retractions so that they consolidate away to nothing.
25//!
26//! ## Storage of Updates
27//!
28//! Stored updates are of the form `(data, time, diff)`, where `time` and `diff` are fixed to
29//! [`mz_repr::Timestamp`] and [`mz_repr::Diff`], respectively.
30//!
31//! [`CorrectionV2`] holds onto a list of [`Chain`]s containing [`Chunk`]s of stashed updates. Each
32//! [`Chunk`] is a columnation region containing a fixed maximum number of updates. All updates in
33//! a chunk, and all updates in a chain, are ordered by (time, data) and consolidated.
34//!
35//! ```text
36//! chain[0] | chain[1] | chain[2]
37//! | |
38//! chunk[0] | chunk[0] | chunk[0]
39//! (a, 1, +1) | (a, 1, +1) | (d, 3, +1)
40//! (b, 1, +1) | (b, 2, -1) | (d, 4, -1)
41//! chunk[1] | chunk[1] |
42//! (c, 1, +1) | (c, 2, -2) |
43//! (a, 2, -1) | (c, 4, -1) |
44//! chunk[2] | |
45//! (b, 2, +1) | |
46//! (c, 2, +1) | |
47//! chunk[3] | |
48//! (b, 3, -1) | |
49//! (c, 3, +1) | |
50//! ```
51//!
52//! The "chain invariant" states that each chain has at least [`CHAIN_PROPORTIONALITY`] times as
53//! many chunks as the next one. This means that chain sizes will often be powers of
54//! `CHAIN_PROPORTIONALITY`, but they don't have to be. For example, for a proportionality of 2,
55//! the chain sizes `[11, 5, 2, 1]` would satisfy the chain invariant.
56//!
57//! Choosing the `CHAIN_PROPORTIONALITY` value allows tuning the trade-off between memory and CPU
58//! resources required to maintain corrections. A higher proportionality forces more frequent chain
59//! merges, and therefore consolidation, reducing memory usage but increasing CPU usage.
60//!
61//! ## Inserting Updates
62//!
63//! A batch of updates is appended as a new chain. Then chains are merged at the end of the chain
64//! list until the chain invariant is restored.
65//!
66//! Inserting an update into the correction buffer can be expensive: It involves allocating a new
67//! chunk, copying the update in, and then likely merging with an existing chain to restore the
68//! chain invariant. If updates trickle in in small batches, this can cause a considerable
69//! overhead. The amortize this overhead, new updates aren't immediately inserted into the sorted
70//! chains but instead stored in a [`Stage`] buffer. Once enough updates have been staged to fill a
71//! [`Chunk`], they are sorted an inserted into the chains.
72//!
73//! The insert operation has an amortized complexity of O(log N), with N being the current number
74//! of updates stored.
75//!
76//! ## Retrieving Consolidated Updates
77//!
78//! Retrieving consolidated updates before a given `upper` works by first consolidating all updates
79//! at times before the `upper`, merging them all into one chain, then returning an iterator over
80//! that chain.
81//!
82//! Because each chain contains updates ordered by time first, consolidation of all updates before
83//! an `upper` is possible without touching updates at future times. It works by merging the chains
84//! only up to the `upper`, producing a merged chain containing consolidated times before the
85//! `upper` and leaving behind the chain parts containing later times. The complexity of this
86//! operation is O(U log K), with U being the number of updates before `upper` and K the number
87//! of chains.
88//!
89//! Unfortunately, performing consolidation as described above can break the chain invariant and we
90//! might need to restore it by merging chains, including ones containing future updates. This is
91//! something that would be great to fix! In the meantime the hope is that in steady state it
92//! doesn't matter too much because either there are no future retractions and U is approximately
93//! equal to N, or the amount of future retractions is much larger than the amount of current
94//! changes, in which case removing the current changes has a good chance of leaving the chain
95//! invariant intact.
96//!
97//! ## Merging Chains
98//!
99//! Merging multiple chains into a single chain is done using a k-way merge. As the input chains
100//! are sorted by (time, data) and consolidated, the same properties hold for the output chain. The
101//! complexity of a merge of K chains containing N updates is O(N log K).
102//!
103//! There is a twist though: Merging also has to respect the `since` frontier, which determines how
104//! far the times of updates should be advanced. Advancing times in a sorted chain of updates
105//! can make them become unsorted, so we cannot just merge the chains from top to bottom.
106//!
107//! For example, consider these two chains, assuming `since = [2]`:
108//! chain 1: [(c, 1, +1), (b, 2, -1), (a, 3, -1)]
109//! chain 2: [(b, 1, +1), (a, 2, +1), (c, 2, -1)]
110//! After time advancement, the chains look like this:
111//! chain 1: [(c, 2, +1), (b, 2, -1), (a, 3, -1)]
112//! chain 2: [(b, 2, +1), (a, 2, +1), (c, 2, -1)]
113//! Merging them naively yields [(b, 2, +1), (a, 2, +1), (b, 2, -1), (a, 3, -1)], a chain that's
114//! neither sorted nor consolidated.
115//!
116//! Instead we need to merge sub-chains, one for each distinct time that's before or at the
117//! `since`. Each of these sub-chains retains the (time, data) ordering after the time advancement
118//! to `since`, so merging those yields the expected result.
119//!
120//! For the above example, the chains we would merge are:
121//! chain 1.a: [(c, 2, +1)]
122//! chain 1.b: [(b, 2, -1), (a, 3, -1)]
123//! chain 2.a: [(b, 2, +1)],
124//! chain 2.b: [(a, 2, +1), (c, 2, -1)]
125
126use std::borrow::Borrow;
127use std::cmp::Ordering;
128use std::collections::{BinaryHeap, VecDeque};
129use std::fmt;
130use std::rc::Rc;
131
132use differential_dataflow::containers::{Columnation, TimelyStack};
133use differential_dataflow::trace::implementations::BatchContainer;
134use mz_persist_client::metrics::{SinkMetrics, SinkWorkerMetrics, UpdateDelta};
135use mz_repr::{Diff, Timestamp};
136use timely::container::SizableContainer;
137use timely::progress::Antichain;
138use timely::{Container, PartialOrder};
139
140use crate::sink::correction::LengthAndCapacity;
141
142/// Determines the size factor of subsequent chains required by the chain invariant.
143const CHAIN_PROPORTIONALITY: usize = 3;
144
145/// Convenient alias for use in data trait bounds.
146pub trait Data: differential_dataflow::Data + Columnation {}
147impl<D: differential_dataflow::Data + Columnation> Data for D {}
148
149/// A data structure used to store corrections in the MV sink implementation.
150///
151/// In contrast to `CorrectionV1`, this implementation stores updates in columnation regions,
152/// allowing their memory to be transparently spilled to disk.
153#[derive(Debug)]
154pub(super) struct CorrectionV2<D: Data> {
155 /// Chains containing sorted updates.
156 chains: Vec<Chain<D>>,
157 /// A staging area for updates, to speed up small inserts.
158 stage: Stage<D>,
159 /// The frontier by which all contained times are advanced.
160 since: Antichain<Timestamp>,
161
162 /// Total length and capacity of chunks in `chains`.
163 ///
164 /// Tracked to maintain metrics.
165 total_size: LengthAndCapacity,
166 /// Global persist sink metrics.
167 metrics: SinkMetrics,
168 /// Per-worker persist sink metrics.
169 worker_metrics: SinkWorkerMetrics,
170}
171
172impl<D: Data> CorrectionV2<D> {
173 /// Construct a new [`CorrectionV2`] instance.
174 pub fn new(metrics: SinkMetrics, worker_metrics: SinkWorkerMetrics) -> Self {
175 Self {
176 chains: Default::default(),
177 stage: Default::default(),
178 since: Antichain::from_elem(Timestamp::MIN),
179 total_size: Default::default(),
180 metrics,
181 worker_metrics,
182 }
183 }
184
185 /// Insert a batch of updates.
186 pub fn insert(&mut self, updates: &mut Vec<(D, Timestamp, Diff)>) {
187 let Some(since_ts) = self.since.as_option() else {
188 // If the since is the empty frontier, discard all updates.
189 updates.clear();
190 return;
191 };
192
193 for (_, time, _) in &mut *updates {
194 *time = std::cmp::max(*time, *since_ts);
195 }
196
197 self.insert_inner(updates);
198 }
199
200 /// Insert a batch of updates, after negating their diffs.
201 pub fn insert_negated(&mut self, updates: &mut Vec<(D, Timestamp, Diff)>) {
202 let Some(since_ts) = self.since.as_option() else {
203 // If the since is the empty frontier, discard all updates.
204 updates.clear();
205 return;
206 };
207
208 for (_, time, diff) in &mut *updates {
209 *time = std::cmp::max(*time, *since_ts);
210 *diff = -*diff;
211 }
212
213 self.insert_inner(updates);
214 }
215
216 /// Insert a batch of updates.
217 ///
218 /// All times are expected to be >= the `since`.
219 fn insert_inner(&mut self, updates: &mut Vec<(D, Timestamp, Diff)>) {
220 debug_assert!(updates.iter().all(|(_, t, _)| self.since.less_equal(t)));
221
222 if let Some(chain) = self.stage.insert(updates) {
223 self.chains.push(chain);
224
225 // Restore the chain invariant.
226 let merge_needed = |chains: &[Chain<_>]| match chains {
227 [.., prev, last] => last.len() * CHAIN_PROPORTIONALITY > prev.len(),
228 _ => false,
229 };
230
231 while merge_needed(&self.chains) {
232 let a = self.chains.pop().unwrap();
233 let b = self.chains.pop().unwrap();
234 let merged = merge_chains([a, b], &self.since);
235 self.chains.push(merged);
236 }
237 };
238
239 self.update_metrics();
240 }
241
242 /// Return consolidated updates before the given `upper`.
243 pub fn updates_before<'a>(
244 &'a mut self,
245 upper: &Antichain<Timestamp>,
246 ) -> impl Iterator<Item = (D, Timestamp, Diff)> + 'a {
247 let mut result = None;
248
249 if !PartialOrder::less_than(&self.since, upper) {
250 // All contained updates are beyond the upper.
251 return result.into_iter().flatten();
252 }
253
254 self.consolidate_before(upper);
255
256 // There is at most one chain that contains updates before `upper` now.
257 result = self
258 .chains
259 .iter()
260 .find(|c| c.first().is_some_and(|(_, t, _)| !upper.less_equal(&t)))
261 .map(move |c| {
262 let upper = upper.clone();
263 c.iter().take_while(move |(_, t, _)| !upper.less_equal(t))
264 });
265
266 result.into_iter().flatten()
267 }
268
269 /// Consolidate all updates before the given `upper`.
270 ///
271 /// Once this method returns, all remaining updates before `upper` are contained in a single
272 /// chain. Note that this chain might also contain updates beyond `upper` though!
273 fn consolidate_before(&mut self, upper: &Antichain<Timestamp>) {
274 if self.chains.is_empty() && self.stage.is_empty() {
275 return;
276 }
277
278 let mut chains = std::mem::take(&mut self.chains);
279 chains.extend(self.stage.flush());
280
281 if chains.is_empty() {
282 // We can only get here if the stage contained updates but they all got consolidated
283 // away by `flush`, so we need to update the metrics before we return.
284 self.update_metrics();
285 return;
286 }
287
288 let (merged, remains) = merge_chains_up_to(chains, &self.since, upper);
289
290 self.chains = remains;
291 if !merged.is_empty() {
292 // We put the merged chain at the end, assuming that its contents are likely to
293 // consolidate with retractions that will arrive soon.
294 self.chains.push(merged);
295 }
296
297 // Restore the chain invariant.
298 //
299 // This part isn't great. We've taken great care so far to only look at updates with times
300 // before `upper`, but now we might end up merging all chains anyway in the worst case.
301 // There might be something smarter we could do to avoid merging as much as possible. For
302 // example, we could consider sorting chains by length first, or inspect the contained
303 // times and prefer merging chains that have a chance at consolidating with one another.
304 let mut i = self.chains.len().saturating_sub(1);
305 while i > 0 {
306 let needs_merge = self.chains.get(i).is_some_and(|a| {
307 let b = &self.chains[i - 1];
308 a.len() * CHAIN_PROPORTIONALITY > b.len()
309 });
310 if needs_merge {
311 let a = self.chains.remove(i);
312 let b = std::mem::take(&mut self.chains[i - 1]);
313 let merged = merge_chains([a, b], &self.since);
314 self.chains[i - 1] = merged;
315 } else {
316 // Only advance the index if we didn't merge. A merge can reduce the size of the
317 // chain at `i - 1`, causing an violation of the chain invariant with the next
318 // chain, so we might need to merge the two before proceeding to lower indexes.
319 i -= 1;
320 }
321 }
322
323 self.update_metrics();
324 }
325
326 /// Advance the since frontier.
327 ///
328 /// # Panics
329 ///
330 /// Panics if the given `since` is less than the current since frontier.
331 pub fn advance_since(&mut self, since: Antichain<Timestamp>) {
332 assert!(PartialOrder::less_equal(&self.since, &since));
333 self.stage.advance_times(&since);
334 self.since = since;
335 }
336
337 /// Consolidate all updates at the current `since`.
338 pub fn consolidate_at_since(&mut self) {
339 let upper_ts = self.since.as_option().and_then(|t| t.try_step_forward());
340 if let Some(upper_ts) = upper_ts {
341 let upper = Antichain::from_elem(upper_ts);
342 self.consolidate_before(&upper);
343 }
344 }
345
346 /// Update persist sink metrics.
347 fn update_metrics(&mut self) {
348 let mut new_size = self.stage.get_size();
349 for chain in &mut self.chains {
350 new_size += chain.get_size();
351 }
352
353 let old_size = self.total_size;
354 let len_delta = UpdateDelta::new(new_size.length, old_size.length);
355 let cap_delta = UpdateDelta::new(new_size.capacity, old_size.capacity);
356 self.metrics
357 .report_correction_update_deltas(len_delta, cap_delta);
358 self.worker_metrics
359 .report_correction_update_totals(new_size.length, new_size.capacity);
360
361 self.total_size = new_size;
362 }
363}
364
365/// A chain of [`Chunk`]s containing updates.
366///
367/// All updates in a chain are sorted by (time, data) and consolidated.
368///
369/// Note that, in contrast to [`Chunk`]s, chains can be empty. Though we generally try to avoid
370/// keeping around empty chains.
371#[derive(Debug)]
372struct Chain<D: Data> {
373 /// The contained chunks.
374 chunks: Vec<Chunk<D>>,
375 /// Cached value of the current chain size, for efficient updating of metrics.
376 cached_size: Option<LengthAndCapacity>,
377}
378
379impl<D: Data> Default for Chain<D> {
380 fn default() -> Self {
381 Self {
382 chunks: Default::default(),
383 cached_size: None,
384 }
385 }
386}
387
388impl<D: Data> Chain<D> {
389 /// Return whether the chain is empty.
390 fn is_empty(&self) -> bool {
391 self.chunks.is_empty()
392 }
393
394 /// Return the length of the chain, in chunks.
395 fn len(&self) -> usize {
396 self.chunks.len()
397 }
398
399 /// Push an update onto the chain.
400 ///
401 /// The update must sort after all updates already in the chain, in (time, data)-order, to
402 /// ensure the chain remains sorted.
403 fn push<DT: Borrow<D>>(&mut self, update: (DT, Timestamp, Diff)) {
404 let (d, t, r) = update;
405 let update = (d.borrow(), t, r);
406
407 debug_assert!(self.can_accept(update));
408
409 match self.chunks.last_mut() {
410 Some(c) if !c.at_capacity() => c.push(update),
411 Some(_) | None => {
412 let chunk = Chunk::from_update(update);
413 self.push_chunk(chunk);
414 }
415 }
416
417 self.invalidate_cached_size();
418 }
419
420 /// Push a chunk onto the chain.
421 ///
422 /// All updates in the chunk must sort after all updates already in the chain, in
423 /// (time, data)-order, to ensure the chain remains sorted.
424 fn push_chunk(&mut self, chunk: Chunk<D>) {
425 debug_assert!(self.can_accept(chunk.first()));
426
427 self.chunks.push(chunk);
428 self.invalidate_cached_size();
429 }
430
431 /// Push the updates produced by a cursor onto the chain.
432 ///
433 /// All updates produced by the cursor must sort after all updates already in the chain, in
434 /// (time, data)-order, to ensure the chain remains sorted.
435 fn push_cursor(&mut self, cursor: Cursor<D>) {
436 let mut rest = Some(cursor);
437 while let Some(cursor) = rest.take() {
438 let update = cursor.get();
439 self.push(update);
440 rest = cursor.step();
441 }
442 }
443
444 /// Return whether the chain can accept the given update.
445 ///
446 /// A chain can accept an update if pushing it at the end upholds the (time, data)-order.
447 fn can_accept(&self, update: (&D, Timestamp, Diff)) -> bool {
448 self.last().is_none_or(|(dc, tc, _)| {
449 let (d, t, _) = update;
450 (tc, dc) < (t, d)
451 })
452 }
453
454 /// Return the first update in the chain, if any.
455 fn first(&self) -> Option<(&D, Timestamp, Diff)> {
456 self.chunks.first().map(|c| c.first())
457 }
458
459 /// Return the last update in the chain, if any.
460 fn last(&self) -> Option<(&D, Timestamp, Diff)> {
461 self.chunks.last().map(|c| c.last())
462 }
463
464 /// Convert the chain into a cursor over the contained updates.
465 fn into_cursor(self) -> Option<Cursor<D>> {
466 let chunks = self.chunks.into_iter().map(Rc::new).collect();
467 Cursor::new(chunks)
468 }
469
470 /// Return an iterator over the contained updates.
471 fn iter(&self) -> impl Iterator<Item = (D, Timestamp, Diff)> + '_ {
472 self.chunks
473 .iter()
474 .flat_map(|c| c.data.iter().map(|(d, t, r)| (d.clone(), *t, *r)))
475 }
476
477 /// Return the size of the chain, for use in metrics.
478 fn get_size(&mut self) -> LengthAndCapacity {
479 // This operation can be expensive as it requires inspecting the individual chunks and
480 // their backing regions. We thus cache the result to hopefully avoid the cost most of the
481 // time.
482 if self.cached_size.is_none() {
483 let mut size = LengthAndCapacity::default();
484 for chunk in &mut self.chunks {
485 size += chunk.get_size();
486 }
487 self.cached_size = Some(size);
488 }
489
490 self.cached_size.unwrap()
491 }
492
493 /// Invalidate the cached chain size.
494 ///
495 /// This method must be called every time the size of the chain changed.
496 fn invalidate_cached_size(&mut self) {
497 self.cached_size = None;
498 }
499}
500
501impl<D: Data> Extend<(D, Timestamp, Diff)> for Chain<D> {
502 fn extend<I: IntoIterator<Item = (D, Timestamp, Diff)>>(&mut self, iter: I) {
503 for update in iter {
504 self.push(update);
505 }
506 }
507}
508
509/// A cursor over updates in a chain.
510///
511/// A cursor provides two guarantees:
512/// * Produced updates are ordered and consolidated.
513/// * A cursor always yields at least one update.
514///
515/// The second guarantee is enforced through the type system: Every method that steps a cursor
516/// forward consumes `self` and returns an `Option<Cursor>` that's `None` if the operation stepped
517/// over the last update.
518///
519/// A cursor holds on to `Rc<Chunk>`s, allowing multiple cursors to produce updates from the same
520/// chunks concurrently. As soon as a cursor is done producing updates from a [`Chunk`] it drops
521/// its reference. Once the last cursor is done with a [`Chunk`] its memory can be reclaimed.
522#[derive(Clone, Debug)]
523struct Cursor<D: Data> {
524 /// The chunks from which updates can still be produced.
525 chunks: VecDeque<Rc<Chunk<D>>>,
526 /// The current offset into `chunks.front()`.
527 chunk_offset: usize,
528 /// An optional limit for the number of updates the cursor will produce.
529 limit: Option<usize>,
530 /// An optional overwrite for the timestamp of produced updates.
531 overwrite_ts: Option<Timestamp>,
532}
533
534impl<D: Data> Cursor<D> {
535 /// Construct a cursor over a list of chunks.
536 ///
537 /// Returns `None` if `chunks` is empty.
538 fn new(chunks: VecDeque<Rc<Chunk<D>>>) -> Option<Self> {
539 if chunks.is_empty() {
540 return None;
541 }
542
543 Some(Self {
544 chunks,
545 chunk_offset: 0,
546 limit: None,
547 overwrite_ts: None,
548 })
549 }
550
551 /// Set a limit for the number of updates this cursor will produce.
552 ///
553 /// # Panics
554 ///
555 /// Panics if there is already a limit lower than the new one.
556 fn set_limit(mut self, limit: usize) -> Option<Self> {
557 assert!(self.limit.is_none_or(|l| l >= limit));
558
559 if limit == 0 {
560 return None;
561 }
562
563 // Release chunks made unreachable by the limit.
564 let mut count = 0;
565 let mut idx = 0;
566 let mut offset = self.chunk_offset;
567 while idx < self.chunks.len() && count < limit {
568 let chunk = &self.chunks[idx];
569 count += chunk.len() - offset;
570 idx += 1;
571 offset = 0;
572 }
573 self.chunks.truncate(idx);
574
575 if count > limit {
576 self.limit = Some(limit);
577 }
578
579 Some(self)
580 }
581
582 /// Get a reference to the current update.
583 fn get(&self) -> (&D, Timestamp, Diff) {
584 let chunk = self.get_chunk();
585 let (d, t, r) = chunk.index(self.chunk_offset);
586 let t = self.overwrite_ts.unwrap_or(t);
587 (d, t, r)
588 }
589
590 /// Get a reference to the current chunk.
591 fn get_chunk(&self) -> &Chunk<D> {
592 &self.chunks[0]
593 }
594
595 /// Step to the next update.
596 ///
597 /// Returns the stepped cursor, or `None` if the step was over the last update.
598 fn step(mut self) -> Option<Self> {
599 if self.chunk_offset == self.get_chunk().len() - 1 {
600 return self.skip_chunk().map(|(c, _)| c);
601 }
602
603 self.chunk_offset += 1;
604
605 if let Some(limit) = &mut self.limit {
606 *limit -= 1;
607 if *limit == 0 {
608 return None;
609 }
610 }
611
612 Some(self)
613 }
614
615 /// Skip the remainder of the current chunk.
616 ///
617 /// Returns the forwarded cursor and the number of updates skipped, or `None` if no chunks are
618 /// left after the skip.
619 fn skip_chunk(mut self) -> Option<(Self, usize)> {
620 let chunk = self.chunks.pop_front().expect("cursor invariant");
621
622 if self.chunks.is_empty() {
623 return None;
624 }
625
626 let skipped = chunk.len() - self.chunk_offset;
627 self.chunk_offset = 0;
628
629 if let Some(limit) = &mut self.limit {
630 if skipped >= *limit {
631 return None;
632 }
633 *limit -= skipped;
634 }
635
636 Some((self, skipped))
637 }
638
639 /// Skip all updates with times <= the given time.
640 ///
641 /// Returns the forwarded cursor and the number of updates skipped, or `None` if no updates are
642 /// left after the skip.
643 fn skip_time(mut self, time: Timestamp) -> Option<(Self, usize)> {
644 if self.overwrite_ts.is_some_and(|ts| ts <= time) {
645 return None;
646 } else if self.get().1 > time {
647 return Some((self, 0));
648 }
649
650 let mut skipped = 0;
651
652 let new_offset = loop {
653 let chunk = self.get_chunk();
654 if let Some(index) = chunk.find_time_greater_than(time) {
655 break index;
656 }
657
658 let (cursor, count) = self.skip_chunk()?;
659 self = cursor;
660 skipped += count;
661 };
662
663 skipped += new_offset - self.chunk_offset;
664 self.chunk_offset = new_offset;
665
666 Some((self, skipped))
667 }
668
669 /// Advance all updates in this cursor by the given `since_ts`.
670 ///
671 /// Returns a list of cursors, each of which yields ordered and consolidated updates that have
672 /// been advanced by `since_ts`.
673 fn advance_by(mut self, since_ts: Timestamp) -> Vec<Self> {
674 // If the cursor has an `overwrite_ts`, all its updates are at the same time already. We
675 // only need to advance the `overwrite_ts` by the `since_ts`.
676 if let Some(ts) = self.overwrite_ts {
677 if ts < since_ts {
678 self.overwrite_ts = Some(since_ts);
679 }
680 return vec![self];
681 }
682
683 // Otherwise we need to split the cursor so that each new cursor only yields runs of
684 // updates that are correctly (time, data)-ordered when advanced by `since_ts`. We achieve
685 // this by splitting the cursor at each time <= `since_ts`.
686 let mut splits = Vec::new();
687 let mut remaining = Some(self);
688
689 while let Some(cursor) = remaining.take() {
690 let (_, time, _) = cursor.get();
691 if time >= since_ts {
692 splits.push(cursor);
693 break;
694 }
695
696 let mut current = cursor.clone();
697 if let Some((cursor, skipped)) = cursor.skip_time(time) {
698 remaining = Some(cursor);
699 current = current.set_limit(skipped).expect("skipped at least 1");
700 }
701 current.overwrite_ts = Some(since_ts);
702 splits.push(current);
703 }
704
705 splits
706 }
707
708 /// Split the cursor at the given time.
709 ///
710 /// Returns two cursors, the first yielding all updates at times < `time`, the second yielding
711 /// all updates at times >= `time`. Both can be `None` if they would be empty.
712 fn split_at_time(self, time: Timestamp) -> (Option<Self>, Option<Self>) {
713 let Some(skip_ts) = time.step_back() else {
714 return (None, Some(self));
715 };
716
717 let before = self.clone();
718 match self.skip_time(skip_ts) {
719 Some((beyond, skipped)) => (before.set_limit(skipped), Some(beyond)),
720 None => (Some(before), None),
721 }
722 }
723
724 /// Attempt to unwrap the cursor into a [`Chain`].
725 ///
726 /// This operation efficiently reuses chunks by directly inserting them into the output chain
727 /// where possible.
728 ///
729 /// An unwrap is only successful if the cursor's `limit` and `overwrite_ts` are both `None` and
730 /// the cursor has unique references to its chunks. If the unwrap fails, this method returns an
731 /// `Err` containing the cursor in an unchanged state, allowing the caller to convert it into a
732 /// chain by copying chunks rather than reusing them.
733 fn try_unwrap(self) -> Result<Chain<D>, (&'static str, Self)> {
734 if self.limit.is_some() {
735 return Err(("cursor with limit", self));
736 }
737 if self.overwrite_ts.is_some() {
738 return Err(("cursor with overwrite_ts", self));
739 }
740 if self.chunks.iter().any(|c| Rc::strong_count(c) != 1) {
741 return Err(("cursor on shared chunks", self));
742 }
743
744 let mut chain = Chain::default();
745 let mut remaining = Some(self);
746
747 // We might be partway through the first chunk, in which case we can't reuse it but need to
748 // allocate a new one to contain only the updates the cursor can still yield.
749 while let Some(cursor) = remaining.take() {
750 if cursor.chunk_offset == 0 {
751 remaining = Some(cursor);
752 break;
753 }
754 let update = cursor.get();
755 chain.push(update);
756 remaining = cursor.step();
757 }
758
759 if let Some(cursor) = remaining {
760 for chunk in cursor.chunks {
761 let chunk = Rc::into_inner(chunk).expect("checked above");
762 chain.push_chunk(chunk);
763 }
764 }
765
766 Ok(chain)
767 }
768}
769
770impl<D: Data> From<Cursor<D>> for Chain<D> {
771 fn from(cursor: Cursor<D>) -> Self {
772 match cursor.try_unwrap() {
773 Ok(chain) => chain,
774 Err((_, cursor)) => {
775 let mut chain = Chain::default();
776 chain.push_cursor(cursor);
777 chain
778 }
779 }
780 }
781}
782
783/// A non-empty chunk of updates, backed by a columnation region.
784///
785/// All updates in a chunk are sorted by (time, data) and consolidated.
786///
787/// We would like all chunks to have the same fixed size, to make it easy for the allocator to
788/// re-use chunk allocations. Unfortunately, the current `TimelyStack`/`ChunkedStack` API doesn't
789/// provide a convenient way to pre-size regions, so chunks are currently only fixed-size in
790/// spirit.
791struct Chunk<D: Data> {
792 /// The contained updates.
793 data: TimelyStack<(D, Timestamp, Diff)>,
794 /// Cached value of the current chunk size, for efficient updating of metrics.
795 cached_size: Option<LengthAndCapacity>,
796}
797
798impl<D: Data> Default for Chunk<D> {
799 fn default() -> Self {
800 let mut data = TimelyStack::default();
801 data.ensure_capacity(&mut None);
802
803 Self {
804 data,
805 cached_size: None,
806 }
807 }
808}
809
810impl<D: Data> fmt::Debug for Chunk<D> {
811 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
812 write!(f, "Chunk(<{}>)", self.len())
813 }
814}
815
816impl<D: Data> Chunk<D> {
817 /// Create a new chunk containing a single update.
818 fn from_update<DT: Borrow<D>>(update: (DT, Timestamp, Diff)) -> Self {
819 let (d, t, r) = update;
820
821 let mut chunk = Self::default();
822 chunk.data.copy_destructured(d.borrow(), &t, &r);
823
824 chunk
825 }
826
827 /// Return the number of updates in the chunk.
828 fn len(&self) -> usize {
829 Container::len(&self.data)
830 }
831
832 /// Return the (local) capacity of the chunk.
833 fn capacity(&self) -> usize {
834 self.data.capacity()
835 }
836
837 /// Return whether the chunk is at capacity.
838 fn at_capacity(&self) -> bool {
839 self.data.at_capacity()
840 }
841
842 /// Return the update at the given index.
843 ///
844 /// # Panics
845 ///
846 /// Panics if the given index is not populated.
847 fn index(&self, idx: usize) -> (&D, Timestamp, Diff) {
848 let (d, t, r) = self.data.index(idx);
849 (d, *t, *r)
850 }
851
852 /// Return the first update in the chunk.
853 fn first(&self) -> (&D, Timestamp, Diff) {
854 self.index(0)
855 }
856
857 /// Return the last update in the chunk.
858 fn last(&self) -> (&D, Timestamp, Diff) {
859 self.index(self.len() - 1)
860 }
861
862 /// Push an update onto the chunk.
863 fn push<DT: Borrow<D>>(&mut self, update: (DT, Timestamp, Diff)) {
864 let (d, t, r) = update;
865 self.data.copy_destructured(d.borrow(), &t, &r);
866
867 self.invalidate_cached_size();
868 }
869
870 /// Return the index of the first update at a time greater than `time`, or `None` if no such
871 /// update exists.
872 fn find_time_greater_than(&self, time: Timestamp) -> Option<usize> {
873 if self.last().1 <= time {
874 return None;
875 }
876
877 let mut lower = 0;
878 let mut upper = self.len();
879 while lower < upper {
880 let idx = (lower + upper) / 2;
881 if self.index(idx).1 > time {
882 upper = idx;
883 } else {
884 lower = idx + 1;
885 }
886 }
887
888 Some(lower)
889 }
890
891 /// Return the size of the chunk, for use in metrics.
892 fn get_size(&mut self) -> LengthAndCapacity {
893 if self.cached_size.is_none() {
894 let length = Container::len(&self.data);
895 let mut capacity = 0;
896 self.data.heap_size(|_, cap| capacity += cap);
897 self.cached_size = Some(LengthAndCapacity { length, capacity });
898 }
899
900 self.cached_size.unwrap()
901 }
902
903 /// Invalidate the cached chunk size.
904 ///
905 /// This method must be called every time the size of the chunk changed.
906 fn invalidate_cached_size(&mut self) {
907 self.cached_size = None;
908 }
909}
910
911/// A buffer for staging updates before they are inserted into the sorted chains.
912#[derive(Debug)]
913struct Stage<D> {
914 /// The contained updates.
915 ///
916 /// This vector has a fixed capacity equal to the [`Chunk`] capacity.
917 data: Vec<(D, Timestamp, Diff)>,
918}
919
920impl<D: Data> Default for Stage<D> {
921 fn default() -> Self {
922 // Make sure that the `Stage` has the same capacity as a `Chunk`.
923 let chunk = Chunk::<D>::default();
924 let data = Vec::with_capacity(chunk.capacity());
925 Self { data }
926 }
927}
928
929impl<D: Data> Stage<D> {
930 fn is_empty(&self) -> bool {
931 self.data.is_empty()
932 }
933
934 /// Insert a batch of updates, possibly producing a ready [`Chain`].
935 fn insert(&mut self, updates: &mut Vec<(D, Timestamp, Diff)>) -> Option<Chain<D>> {
936 if updates.is_empty() {
937 return None;
938 }
939
940 // Determine how many chunks we can fill with the available updates.
941 let update_count = self.data.len() + updates.len();
942 let chunk_size = self.data.capacity();
943 let chunk_count = update_count / chunk_size;
944
945 let mut new_updates = updates.drain(..);
946
947 // If we have enough shipable updates, collect them, consolidate, and build a chain.
948 let maybe_chain = if chunk_count > 0 {
949 let ship_count = chunk_count * chunk_size;
950 let mut buffer = Vec::with_capacity(ship_count);
951
952 buffer.append(&mut self.data);
953 while buffer.len() < ship_count {
954 let update = new_updates.next().unwrap();
955 buffer.push(update);
956 }
957
958 consolidate(&mut buffer);
959
960 let mut chain = Chain::default();
961 chain.extend(buffer);
962 Some(chain)
963 } else {
964 None
965 };
966
967 // Stage the remaining updates.
968 self.data.extend(new_updates);
969
970 maybe_chain
971 }
972
973 /// Flush all currently staged updates into a chain.
974 fn flush(&mut self) -> Option<Chain<D>> {
975 consolidate(&mut self.data);
976
977 if self.data.is_empty() {
978 return None;
979 }
980
981 let mut chain = Chain::default();
982 chain.extend(self.data.drain(..));
983 Some(chain)
984 }
985
986 /// Advance the times of staged updates by the given `since`.
987 fn advance_times(&mut self, since: &Antichain<Timestamp>) {
988 let Some(since_ts) = since.as_option() else {
989 // If the since is the empty frontier, discard all updates.
990 self.data.clear();
991 return;
992 };
993
994 for (_, time, _) in &mut self.data {
995 *time = std::cmp::max(*time, *since_ts);
996 }
997 }
998
999 /// Return the size of the stage, for use in metrics.
1000 fn get_size(&self) -> LengthAndCapacity {
1001 LengthAndCapacity {
1002 length: self.data.len(),
1003 capacity: self.data.capacity(),
1004 }
1005 }
1006}
1007
1008/// Sort and consolidate the given list of updates.
1009///
1010/// This function is the same as [`differential_dataflow::consolidation::consolidate_updates`],
1011/// except that it sorts updates by (time, data) instead of (data, time).
1012fn consolidate<D: Data>(updates: &mut Vec<(D, Timestamp, Diff)>) {
1013 if updates.len() <= 1 {
1014 return;
1015 }
1016
1017 let diff = |update: &(_, _, Diff)| update.2;
1018
1019 updates.sort_unstable_by(|(d1, t1, _), (d2, t2, _)| (t1, d1).cmp(&(t2, d2)));
1020
1021 let mut offset = 0;
1022 let mut accum = diff(&updates[0]);
1023
1024 for idx in 1..updates.len() {
1025 let this = &updates[idx];
1026 let prev = &updates[idx - 1];
1027 if this.0 == prev.0 && this.1 == prev.1 {
1028 accum += diff(&updates[idx]);
1029 } else {
1030 if accum != Diff::ZERO {
1031 updates.swap(offset, idx - 1);
1032 updates[offset].2 = accum;
1033 offset += 1;
1034 }
1035 accum = diff(&updates[idx]);
1036 }
1037 }
1038
1039 if accum != Diff::ZERO {
1040 let len = updates.len();
1041 updates.swap(offset, len - 1);
1042 updates[offset].2 = accum;
1043 offset += 1;
1044 }
1045
1046 updates.truncate(offset);
1047}
1048
1049/// Merge the given chains, advancing times by the given `since` in the process.
1050fn merge_chains<D: Data>(
1051 chains: impl IntoIterator<Item = Chain<D>>,
1052 since: &Antichain<Timestamp>,
1053) -> Chain<D> {
1054 let Some(&since_ts) = since.as_option() else {
1055 return Chain::default();
1056 };
1057
1058 let mut to_merge = Vec::new();
1059 for chain in chains {
1060 if let Some(cursor) = chain.into_cursor() {
1061 let mut runs = cursor.advance_by(since_ts);
1062 to_merge.append(&mut runs);
1063 }
1064 }
1065
1066 merge_cursors(to_merge)
1067}
1068
1069/// Merge the given chains, advancing times by the given `since` in the process, but only up to the
1070/// given `upper`.
1071///
1072/// Returns the merged chain and a list of non-empty remainders of the input chains.
1073fn merge_chains_up_to<D: Data>(
1074 chains: Vec<Chain<D>>,
1075 since: &Antichain<Timestamp>,
1076 upper: &Antichain<Timestamp>,
1077) -> (Chain<D>, Vec<Chain<D>>) {
1078 let Some(&since_ts) = since.as_option() else {
1079 return (Chain::default(), Vec::new());
1080 };
1081 let Some(&upper_ts) = upper.as_option() else {
1082 let merged = merge_chains(chains, since);
1083 return (merged, Vec::new());
1084 };
1085
1086 if since_ts >= upper_ts {
1087 // After advancing by `since` there will be no updates before `upper`.
1088 return (Chain::default(), chains);
1089 }
1090
1091 let mut to_merge = Vec::new();
1092 let mut to_keep = Vec::new();
1093 for chain in chains {
1094 if let Some(cursor) = chain.into_cursor() {
1095 let mut runs = cursor.advance_by(since_ts);
1096 if let Some(last) = runs.pop() {
1097 let (before, beyond) = last.split_at_time(upper_ts);
1098 before.map(|c| runs.push(c));
1099 beyond.map(|c| to_keep.push(c));
1100 }
1101 to_merge.append(&mut runs);
1102 }
1103 }
1104
1105 let merged = merge_cursors(to_merge);
1106 let remains = to_keep
1107 .into_iter()
1108 .map(|c| c.try_unwrap().expect("unwrapable"))
1109 .collect();
1110
1111 (merged, remains)
1112}
1113
1114/// Merge the given cursors into one chain.
1115fn merge_cursors<D: Data>(cursors: Vec<Cursor<D>>) -> Chain<D> {
1116 match cursors.len() {
1117 0 => Chain::default(),
1118 1 => {
1119 let [cur] = cursors.try_into().unwrap();
1120 Chain::from(cur)
1121 }
1122 2 => {
1123 let [a, b] = cursors.try_into().unwrap();
1124 merge_2(a, b)
1125 }
1126 _ => merge_many(cursors),
1127 }
1128}
1129
1130/// Merge the given two cursors using a 2-way merge.
1131///
1132/// This function is a specialization of `merge_many` that avoids the overhead of a binary heap.
1133fn merge_2<D: Data>(cursor1: Cursor<D>, cursor2: Cursor<D>) -> Chain<D> {
1134 let mut rest1 = Some(cursor1);
1135 let mut rest2 = Some(cursor2);
1136 let mut merged = Chain::default();
1137
1138 loop {
1139 match (rest1, rest2) {
1140 (Some(c1), Some(c2)) => {
1141 let (d1, t1, r1) = c1.get();
1142 let (d2, t2, r2) = c2.get();
1143
1144 match (t1, d1).cmp(&(t2, d2)) {
1145 Ordering::Less => {
1146 merged.push((d1, t1, r1));
1147 rest1 = c1.step();
1148 rest2 = Some(c2);
1149 }
1150 Ordering::Greater => {
1151 merged.push((d2, t2, r2));
1152 rest1 = Some(c1);
1153 rest2 = c2.step();
1154 }
1155 Ordering::Equal => {
1156 let r = r1 + r2;
1157 if r != Diff::ZERO {
1158 merged.push((d1, t1, r));
1159 }
1160 rest1 = c1.step();
1161 rest2 = c2.step();
1162 }
1163 }
1164 }
1165 (Some(c), None) | (None, Some(c)) => {
1166 merged.push_cursor(c);
1167 break;
1168 }
1169 (None, None) => break,
1170 }
1171 }
1172
1173 merged
1174}
1175
1176/// Merge the given cursors using a k-way merge with a binary heap.
1177fn merge_many<D: Data>(cursors: Vec<Cursor<D>>) -> Chain<D> {
1178 let mut heap = MergeHeap::from_iter(cursors);
1179 let mut merged = Chain::default();
1180 while let Some(cursor1) = heap.pop() {
1181 let (data, time, mut diff) = cursor1.get();
1182
1183 while let Some((cursor2, r)) = heap.pop_equal(data, time) {
1184 diff += r;
1185 if let Some(cursor2) = cursor2.step() {
1186 heap.push(cursor2);
1187 }
1188 }
1189
1190 if diff != Diff::ZERO {
1191 merged.push((data, time, diff));
1192 }
1193 if let Some(cursor1) = cursor1.step() {
1194 heap.push(cursor1);
1195 }
1196 }
1197
1198 merged
1199}
1200
1201/// A binary heap specialized for merging [`Cursor`]s.
1202struct MergeHeap<D: Data>(BinaryHeap<MergeCursor<D>>);
1203
1204impl<D: Data> FromIterator<Cursor<D>> for MergeHeap<D> {
1205 fn from_iter<I: IntoIterator<Item = Cursor<D>>>(cursors: I) -> Self {
1206 let inner = cursors.into_iter().map(MergeCursor).collect();
1207 Self(inner)
1208 }
1209}
1210
1211impl<D: Data> MergeHeap<D> {
1212 /// Pop the next cursor (the one yielding the least update) from the heap.
1213 fn pop(&mut self) -> Option<Cursor<D>> {
1214 self.0.pop().map(|MergeCursor(c)| c)
1215 }
1216
1217 /// Pop the next cursor from the heap, provided the data and time of its current update are
1218 /// equal to the given values.
1219 ///
1220 /// Returns both the cursor and the diff corresponding to `data` and `time`.
1221 fn pop_equal(&mut self, data: &D, time: Timestamp) -> Option<(Cursor<D>, Diff)> {
1222 let MergeCursor(cursor) = self.0.peek()?;
1223 let (d, t, r) = cursor.get();
1224 if d == data && t == time {
1225 let cursor = self.pop().expect("checked above");
1226 Some((cursor, r))
1227 } else {
1228 None
1229 }
1230 }
1231
1232 /// Push a cursor onto the heap.
1233 fn push(&mut self, cursor: Cursor<D>) {
1234 self.0.push(MergeCursor(cursor));
1235 }
1236}
1237
1238/// A wrapper for [`Cursor`]s on a [`MergeHeap`].
1239///
1240/// Implements the cursor ordering required for merging cursors.
1241struct MergeCursor<D: Data>(Cursor<D>);
1242
1243impl<D: Data> PartialEq for MergeCursor<D> {
1244 fn eq(&self, other: &Self) -> bool {
1245 self.cmp(other).is_eq()
1246 }
1247}
1248
1249impl<D: Data> Eq for MergeCursor<D> {}
1250
1251impl<D: Data> PartialOrd for MergeCursor<D> {
1252 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1253 Some(self.cmp(other))
1254 }
1255}
1256
1257impl<D: Data> Ord for MergeCursor<D> {
1258 fn cmp(&self, other: &Self) -> Ordering {
1259 let (d1, t1, _) = self.0.get();
1260 let (d2, t2, _) = other.0.get();
1261 (t1, d1).cmp(&(t2, d2)).reverse()
1262 }
1263}