convert_case/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
//! Converts to and from various cases.
//!
//! # Command Line Utility `ccase`
//!
//! This library was developed for the purposes of a command line utility for converting
//! the case of strings and filenames.  You can check out 
//! [`ccase` on Github](https://github.com/rutrum/convert-case/tree/master/ccase).
//!
//! # Rust Library
//!
//! Provides a [`Case`](enum.Case.html) enum which defines a variety of cases to convert into.
//! Strings have implemented the [`Casing`](trait.Casing.html) trait, which adds methods for 
//! case conversion.
//!
//! You can convert strings into a case using the [`to_case`](Casing::to_case) method.
//! ```
//! use convert_case::{Case, Casing};
//!
//! assert_eq!("Ronnie James Dio", "ronnie james dio".to_case(Case::Title));
//! assert_eq!("ronnieJamesDio", "Ronnie_James_dio".to_case(Case::Camel));
//! assert_eq!("Ronnie-James-Dio", "RONNIE_JAMES_DIO".to_case(Case::Train));
//! ```
//!
//! By default, `to_case` will split along a set of default word boundaries, that is
//! * space characters ` `,
//! * underscores `_`,
//! * hyphens `-`,
//! * changes in capitalization from lowercase to uppercase `aA`,
//! * adjacent digits and letters `a1`, `1a`, `A1`, `1A`,
//! * and acroynms `AAa` (as in `HTTPRequest`).
//!
//! For more accuracy, the `from_case` method splits based on the word boundaries
//! of a particular case.  For example, splitting from snake case will only use
//! underscores as word boundaries.
//! ```
//! use convert_case::{Case, Casing};
//!
//! assert_eq!(
//!     "2020 04 16 My Cat Cali",
//!     "2020-04-16_my_cat_cali".to_case(Case::Title)
//! );
//! assert_eq!(
//!     "2020-04-16 My Cat Cali",
//!     "2020-04-16_my_cat_cali".from_case(Case::Snake).to_case(Case::Title)
//! );
//! ```
//!
//! Case conversion can detect acronyms for camel-like strings.  It also ignores any leading, 
//! trailing, or duplicate delimiters.
//! ```
//! use convert_case::{Case, Casing};
//!
//! assert_eq!("io_stream", "IOStream".to_case(Case::Snake));
//! assert_eq!("my_json_parser", "myJSONParser".to_case(Case::Snake));
//!
//! assert_eq!("weird_var_name", "__weird--var _name-".to_case(Case::Snake));
//! ```
//!
//! It also works non-ascii characters.  However, no inferences on the language itself is made.
//! For instance, the digraph `ij` in Dutch will not be capitalized, because it is represented
//! as two distinct Unicode characters.  However, `æ` would be capitalized.  Accuracy with unicode
//! characters is done using the `unicode-segmentation` crate, the sole dependency of this crate.
//! ```
//! use convert_case::{Case, Casing};
//!
//! assert_eq!("granat-äpfel", "GranatÄpfel".to_case(Case::Kebab));
//! assert_eq!("Перспектива 24", "ПЕРСПЕКТИВА24".to_case(Case::Title));
//!
//! // The example from str::to_lowercase documentation
//! let odysseus = "ὈΔΥΣΣΕΎΣ";
//! assert_eq!("ὀδυσσεύς", odysseus.to_case(Case::Lower));
//! ```
//!
//! By default, characters followed by digits and vice-versa are
//! considered word boundaries.  In addition, any special ASCII characters (besides `_` and `-`)
//! are ignored.
//! ```
//! use convert_case::{Case, Casing};
//!
//! assert_eq!("e_5150", "E5150".to_case(Case::Snake));
//! assert_eq!("10,000_days", "10,000Days".to_case(Case::Snake));
//! assert_eq!("HELLO, WORLD!", "Hello, world!".to_case(Case::Upper));
//! assert_eq!("One\ntwo\nthree", "ONE\nTWO\nTHREE".to_case(Case::Title));
//! ```
//!
//! You can also test what case a string is in.
//! ```
//! use convert_case::{Case, Casing};
//!
//! assert!( "css-class-name".is_case(Case::Kebab));
//! assert!(!"css-class-name".is_case(Case::Snake));
//! assert!(!"UPPER_CASE_VAR".is_case(Case::Snake));
//! ```
//!
//! # Note on Accuracy
//!
//! The `Casing` methods `from_case` and `to_case` do not fail.  Conversion to a case will always
//! succeed.  However, the results can still be unexpected.  Failure to detect any word boundaries
//! for a particular case means the entire string will be considered a single word.
//! ```
//! use convert_case::{Case, Casing};
//!
//! // Mistakenly parsing using Case::Snake
//! assert_eq!("My-kebab-var", "my-kebab-var".from_case(Case::Snake).to_case(Case::Title));
//!
//! // Converts using an unexpected method
//! assert_eq!("my_kebab_like_variable", "myKebab-like-variable".to_case(Case::Snake));
//! ```
//!
//! # Boundary Specificity
//!
//! It can be difficult to determine how to split a string into words.  That is why this case
//! provides the [`from_case`](Casing::from_case) functionality, but sometimes that isn't enough
//! to meet a specific use case.
//!
//! Take an identifier has the word `2D`, such as `scale2D`.  No exclusive usage of `from_case` will
//! be enough to solve the problem.  In this case we can further specify which boundaries to split
//! the string on.  `convert_case` provides some patterns for achieving this specificity.
//! We can specify what boundaries we want to split on using the [`Boundary` enum](Boundary).
//! ```
//! use convert_case::{Boundary, Case, Casing};
//!
//! // Not quite what we want
//! assert_eq!(
//!     "scale_2_d",
//!     "scale2D"
//!         .from_case(Case::Camel)
//!         .to_case(Case::Snake)
//! );
//!
//! // Remove boundary from Case::Camel
//! assert_eq!(
//!     "scale_2d",
//!     "scale2D"
//!         .from_case(Case::Camel)
//!         .without_boundaries(&[Boundary::DigitUpper, Boundary::DigitLower])
//!         .to_case(Case::Snake)
//! );
//!
//! // Write boundaries explicitly
//! assert_eq!(
//!     "scale_2d",
//!     "scale2D"
//!         .with_boundaries(&[Boundary::LowerDigit])
//!         .to_case(Case::Snake)
//! );
//! ```
//!
//! The `Casing` trait provides initial methods, but any subsequent methods that do not resolve
//! the conversion return a [`StateConverter`] struct.  It contains similar methods as `Casing`.
//!
//! # Custom Cases
//!
//! Because `Case` is an enum, you can't create your own variant for your use case.  However
//! the parameters for case conversion have been encapsulated into the [`Converter`] struct
//! which can be used for specific use cases.
//!
//! Suppose you wanted to format a word like camel case, where the first word is lower case and the
//! rest are capitalized.  But you want to include a delimeter like underscore.  This case isn't
//! available as a `Case` variant, but you can create it by constructing the parameters of the
//! `Converter`.
//! ```
//! use convert_case::{Case, Casing, Converter, Pattern};
//!
//! let conv = Converter::new()
//!     .set_pattern(Pattern::Camel)
//!     .set_delim("_");
//!
//! assert_eq!(
//!     "my_Special_Case",
//!     conv.convert("My Special Case")
//! )
//! ```
//! Just as with the `Casing` trait, you can also manually set the boundaries strings are split 
//! on.  You can use any of the [`Pattern`] variants available.  This even includes [`Pattern::Sentence`]
//! which isn't used in any `Case` variant.  You can also set no pattern at all, which will
//! maintain the casing of each letter in the input string.  You can also, of course, set any string as your
//! delimeter.
//!
//! For more details on how strings are converted, see the docs for [`Converter`].
//!
//! # Random Feature
//!
//! To ensure this library had zero dependencies, randomness was moved to the _random_ feature,
//! which requires the `rand` crate. You can enable this feature by including the
//! following in your `Cargo.toml`.
//! ```{toml}
//! [dependencies]
//! convert_case = { version = "^0.3.0", features = ["random"] }
//! ```
//! This will add two additional cases: Random and PseudoRandom.  You can read about their
//! construction in the [Case enum](enum.Case.html).

mod case;
mod converter;
mod pattern;
mod segmentation;

pub use case::Case;
pub use converter::Converter;
pub use pattern::Pattern;
pub use segmentation::Boundary;

/// Describes items that can be converted into a case.  This trait is used
/// in conjunction with the [`StateConverter`] struct which is returned from a couple
/// methods on `Casing`.
///
/// Implemented for strings `&str`, `String`, and `&String`.
pub trait Casing<T: AsRef<str>> {

    /// Convert the string into the given case.  It will reference `self` and create a new
    /// `String` with the same pattern and delimeter as `case`.  It will split on boundaries
    /// defined at [`Boundary::defaults()`].
    /// ```
    /// use convert_case::{Case, Casing};
    ///
    /// assert_eq!(
    ///     "tetronimo-piece-border",
    ///     "Tetronimo piece border".to_case(Case::Kebab)
    /// );
    /// ```
    fn to_case(&self, case: Case) -> String;

    /// Start the case conversion by storing the boundaries associated with the given case.
    /// ```
    /// use convert_case::{Case, Casing};
    ///
    /// assert_eq!(
    ///     "2020-08-10_dannie_birthday",
    ///     "2020-08-10 Dannie Birthday"
    ///         .from_case(Case::Title)
    ///         .to_case(Case::Snake)
    /// );
    /// ```
    #[allow(clippy::wrong_self_convention)]
    fn from_case(&self, case: Case) -> StateConverter<T>;

    /// Creates a `StateConverter` struct initialized with the boundaries
    /// provided.
    /// ```
    /// use convert_case::{Boundary, Case, Casing};
    ///
    /// assert_eq!(
    ///     "e1_m1_hangar",
    ///     "E1M1 Hangar"
    ///         .with_boundaries(&[Boundary::DigitUpper, Boundary::Space])
    ///         .to_case(Case::Snake)
    /// );
    /// ```
    fn with_boundaries(&self, bs: &[Boundary]) -> StateConverter<T>;

    /// Determines if `self` is of the given case.  This is done simply by applying
    /// the conversion and seeing if the result is the same.
    /// ```
    /// use convert_case::{Case, Casing};
    /// 
    /// assert!( "kebab-case-string".is_case(Case::Kebab));
    /// assert!( "Train-Case-String".is_case(Case::Train));
    ///
    /// assert!(!"kebab-case-string".is_case(Case::Snake));
    /// assert!(!"kebab-case-string".is_case(Case::Train));
    /// ```
    fn is_case(&self, case: Case) -> bool;
}

impl<T: AsRef<str>> Casing<T> for T
where
    String: PartialEq<T>,
{
    fn to_case(&self, case: Case) -> String {
        StateConverter::new(self).to_case(case)
    }

    fn with_boundaries(&self, bs: &[Boundary]) -> StateConverter<T> {
        StateConverter::new(self).with_boundaries(bs)
    }

    fn from_case(&self, case: Case) -> StateConverter<T> {
        StateConverter::new_from_case(self, case)
    }

    fn is_case(&self, case: Case) -> bool {
        &self.to_case(case) == self
    }
}

/// Holds information about parsing before converting into a case.
///
/// This struct is used when invoking the `from_case` and `with_boundaries` methods on
/// `Casing`.  For a more fine grained approach to case conversion, consider using the [`Converter`]
/// struct.
/// ```
/// use convert_case::{Case, Casing};
///
/// let title = "ninety-nine_problems".from_case(Case::Snake).to_case(Case::Title);
/// assert_eq!("Ninety-nine Problems", title);
/// ```
pub struct StateConverter<'a, T: AsRef<str>> {
    s: &'a T,
    conv: Converter,
}

impl<'a, T: AsRef<str>> StateConverter<'a, T> {
    /// Only called by Casing function to_case()
    fn new(s: &'a T) -> Self {
        Self {
            s,
            conv: Converter::new(),
        }
    }

    /// Only called by Casing function from_case()
    fn new_from_case(s: &'a T, case: Case) -> Self {
        Self {
            s,
            conv: Converter::new().from_case(case),
        }
    }

    /// Uses the boundaries associated with `case` for word segmentation.  This
    /// will overwrite any boundary information initialized before.  This method is
    /// likely not useful, but provided anyway.
    /// ```
    /// use convert_case::{Case, Casing};
    ///
    /// let name = "Chuck Schuldiner"
    ///     .from_case(Case::Snake) // from Casing trait
    ///     .from_case(Case::Title) // from StateConverter, overwrites previous
    ///     .to_case(Case::Kebab);
    /// assert_eq!("chuck-schuldiner", name);
    /// ```
    pub fn from_case(self, case: Case) -> Self {
        Self {
            conv: self.conv.from_case(case),
            ..self
        }
    }

    /// Overwrites boundaries for word segmentation with those provided.  This will overwrite
    /// any boundary information initialized before.  This method is likely not useful, but
    /// provided anyway.
    /// ```
    /// use convert_case::{Boundary, Case, Casing};
    ///
    /// let song = "theHumbling river-puscifer"
    ///     .from_case(Case::Kebab) // from Casing trait
    ///     .with_boundaries(&[Boundary::Space, Boundary::LowerUpper]) // overwrites `from_case`
    ///     .to_case(Case::Pascal);
    /// assert_eq!("TheHumblingRiver-puscifer", song);  // doesn't split on hyphen `-`
    /// ```
    pub fn with_boundaries(self, bs: &[Boundary]) -> Self {
        Self {
            s: self.s,
            conv: self.conv.set_boundaries(bs),
        }
    }

    /// Removes any boundaries that were already initialized.  This is particularly useful when a
    /// case like `Case::Camel` has a lot of associated word boundaries, but you want to exclude
    /// some.
    /// ```
    /// use convert_case::{Boundary, Case, Casing};
    ///
    /// assert_eq!(
    ///     "2d_transformation",
    ///     "2dTransformation"
    ///         .from_case(Case::Camel)
    ///         .without_boundaries(&Boundary::digits())
    ///         .to_case(Case::Snake)
    /// );
    /// ```
    pub fn without_boundaries(self, bs: &[Boundary]) -> Self {
        Self {
            s: self.s,
            conv: self.conv.remove_boundaries(bs),
        }
    }

    /// Consumes the `StateConverter` and returns the converted string.
    /// ```
    /// use convert_case::{Boundary, Case, Casing};
    ///
    /// assert_eq!(
    ///     "ice-cream social",
    ///     "Ice-Cream Social".from_case(Case::Title).to_case(Case::Lower)
    /// );
    /// ```
    pub fn to_case(self, case: Case) -> String {
        self.conv.to_case(case).convert(self.s)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use strum::IntoEnumIterator;

    fn possible_cases(s: &str) -> Vec<Case> {
        Case::deterministic_cases()
            .into_iter()
            .filter(|case| s.from_case(*case).to_case(*case) == s)
            .collect()
    }

    #[test]
    fn lossless_against_lossless() {
        let examples = vec![
            (Case::Lower, "my variable 22 name"),
            (Case::Upper, "MY VARIABLE 22 NAME"),
            (Case::Title, "My Variable 22 Name"),
            (Case::Camel, "myVariable22Name"),
            (Case::Pascal, "MyVariable22Name"),
            (Case::Snake, "my_variable_22_name"),
            (Case::UpperSnake, "MY_VARIABLE_22_NAME"),
            (Case::Kebab, "my-variable-22-name"),
            (Case::Cobol, "MY-VARIABLE-22-NAME"),
            (Case::Toggle, "mY vARIABLE 22 nAME"),
            (Case::Train, "My-Variable-22-Name"),
            (Case::Alternating, "mY vArIaBlE 22 nAmE"),
        ];

        for (case_a, str_a) in examples.iter() {
            for (case_b, str_b) in examples.iter() {
                assert_eq!(*str_a, str_b.from_case(*case_b).to_case(*case_a))
            }
        }
    }

    #[test]
    fn obvious_default_parsing() {
        let examples = vec![
            "SuperMario64Game",
            "super-mario64-game",
            "superMario64 game",
            "Super Mario 64_game",
            "SUPERMario 64-game",
            "super_mario-64 game",
        ];

        for example in examples {
            assert_eq!("super_mario_64_game", example.to_case(Case::Snake));
        }
    }

    #[test]
    fn multiline_strings() {
        assert_eq!("One\ntwo\nthree", "one\ntwo\nthree".to_case(Case::Title));
    }

    #[test]
    fn camel_case_acroynms() {
        assert_eq!(
            "xml_http_request",
            "XMLHttpRequest".from_case(Case::Camel).to_case(Case::Snake)
        );
        assert_eq!(
            "xml_http_request",
            "XMLHttpRequest"
                .from_case(Case::UpperCamel)
                .to_case(Case::Snake)
        );
        assert_eq!(
            "xml_http_request",
            "XMLHttpRequest"
                .from_case(Case::Pascal)
                .to_case(Case::Snake)
        );
    }

    #[test]
    fn leading_tailing_delimeters() {
        assert_eq!(
            "leading_underscore",
            "_leading_underscore"
                .from_case(Case::Snake)
                .to_case(Case::Snake)
        );
        assert_eq!(
            "tailing_underscore",
            "tailing_underscore_"
                .from_case(Case::Snake)
                .to_case(Case::Snake)
        );
        assert_eq!(
            "leading_hyphen",
            "-leading-hyphen"
                .from_case(Case::Kebab)
                .to_case(Case::Snake)
        );
        assert_eq!(
            "tailing_hyphen",
            "tailing-hyphen-"
                .from_case(Case::Kebab)
                .to_case(Case::Snake)
        );
    }

    #[test]
    fn double_delimeters() {
        assert_eq!(
            "many_underscores",
            "many___underscores"
                .from_case(Case::Snake)
                .to_case(Case::Snake)
        );
        assert_eq!(
            "many-underscores",
            "many---underscores"
                .from_case(Case::Kebab)
                .to_case(Case::Kebab)
        );
    }

    #[test]
    fn early_word_boundaries() {
        assert_eq!(
            "a_bagel",
            "aBagel".from_case(Case::Camel).to_case(Case::Snake)
        );
    }

    #[test]
    fn late_word_boundaries() {
        assert_eq!(
            "team_a",
            "teamA".from_case(Case::Camel).to_case(Case::Snake)
        );
    }

    #[test]
    fn empty_string() {
        for (case_a, case_b) in Case::iter().zip(Case::iter()) {
            assert_eq!("", "".from_case(case_a).to_case(case_b));
        }
    }

    #[test]
    fn owned_string() {
        assert_eq!(
            "test_variable",
            String::from("TestVariable").to_case(Case::Snake)
        )
    }

    #[test]
    fn default_all_boundaries() {
        assert_eq!(
            "abc_abc_abc_abc_abc_abc",
            "ABC-abc_abcAbc ABCAbc".to_case(Case::Snake)
        );
    }

    #[test]
    fn alternating_ignore_symbols() {
        assert_eq!("tHaT's", "that's".to_case(Case::Alternating));
    }

    #[test]
    fn string_is_snake() {
        assert!("im_snake_case".is_case(Case::Snake));
        assert!(!"im_NOTsnake_case".is_case(Case::Snake));
    }

    #[test]
    fn string_is_kebab() {
        assert!("im-kebab-case".is_case(Case::Kebab));
        assert!(!"im_not_kebab".is_case(Case::Kebab));
    }

    #[test]
    fn remove_boundaries() {
        assert_eq!(
            "m02_s05_binary_trees.pdf",
            "M02S05BinaryTrees.pdf"
                .from_case(Case::Pascal)
                .without_boundaries(&[Boundary::UpperDigit])
                .to_case(Case::Snake)
        );
    }

    #[test]
    fn with_boundaries() {
        assert_eq!(
            "my-dumb-file-name",
            "my_dumbFileName"
                .with_boundaries(&[Boundary::Underscore, Boundary::LowerUpper])
                .to_case(Case::Kebab)
        );
    }

    #[cfg(feature = "random")]
    #[test]
    fn random_case_boundaries() {
        for random_case in Case::random_cases() {
            assert_eq!(
                "split_by_spaces",
                "Split By Spaces"
                    .from_case(random_case)
                    .to_case(Case::Snake)
            );
        }
    }

    #[test]
    fn multiple_from_case() {
        assert_eq!(
            "longtime_nosee",
            "LongTime NoSee"
                .from_case(Case::Camel)
                .from_case(Case::Title)
                .to_case(Case::Snake),
        )
    }

    use std::collections::HashSet;
    use std::iter::FromIterator;

    #[test]
    fn detect_many_cases() {
        let lower_cases_vec = possible_cases(&"asef");
        let lower_cases_set = HashSet::from_iter(lower_cases_vec.into_iter());
        let mut actual = HashSet::new();
        actual.insert(Case::Lower);
        actual.insert(Case::Camel);
        actual.insert(Case::Snake);
        actual.insert(Case::Kebab);
        actual.insert(Case::Flat);
        assert_eq!(lower_cases_set, actual);

        let lower_cases_vec = possible_cases(&"asefCase");
        let lower_cases_set = HashSet::from_iter(lower_cases_vec.into_iter());
        let mut actual = HashSet::new();
        actual.insert(Case::Camel);
        assert_eq!(lower_cases_set, actual);
    }

    #[test]
    fn detect_each_case() {
        let s = "My String Identifier".to_string();
        for case in Case::deterministic_cases() {
            let new_s = s.from_case(case).to_case(case);
            let possible = possible_cases(&new_s);
            println!("{} {:?} {:?}", new_s, case, possible);
            assert!(possible.iter().any(|c| c == &case));
        }
    }

    // From issue https://github.com/rutrum/convert-case/issues/8
    #[test]
    fn accent_mark() {
        let s = "música moderna".to_string();
        assert_eq!("MúsicaModerna", s.to_case(Case::Pascal));
    }

    // From issue https://github.com/rutrum/convert-case/issues/4
    #[test]
    fn russian() {
        let s = "ПЕРСПЕКТИВА24".to_string();
        let _n = s.to_case(Case::Title);
    }
}