petgraph/scored.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
use std::cmp::Ordering;
/// `MinScored<K, T>` holds a score `K` and a scored object `T` in
/// a pair for use with a `BinaryHeap`.
///
/// `MinScored` compares in reverse order by the score, so that we can
/// use `BinaryHeap` as a min-heap to extract the score-value pair with the
/// least score.
///
/// **Note:** `MinScored` implements a total order (`Ord`), so that it is
/// possible to use float types as scores.
#[derive(Copy, Clone, Debug)]
pub struct MinScored<K, T>(pub K, pub T);
impl<K: PartialOrd, T> PartialEq for MinScored<K, T> {
#[inline]
fn eq(&self, other: &MinScored<K, T>) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl<K: PartialOrd, T> Eq for MinScored<K, T> {}
impl<K: PartialOrd, T> PartialOrd for MinScored<K, T> {
#[inline]
fn partial_cmp(&self, other: &MinScored<K, T>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<K: PartialOrd, T> Ord for MinScored<K, T> {
#[inline]
fn cmp(&self, other: &MinScored<K, T>) -> Ordering {
let a = &self.0;
let b = &other.0;
if a == b {
Ordering::Equal
} else if a < b {
Ordering::Greater
} else if a > b {
Ordering::Less
} else if a.ne(a) && b.ne(b) {
// these are the NaN cases
Ordering::Equal
} else if a.ne(a) {
// Order NaN less, so that it is last in the MinScore order
Ordering::Less
} else {
Ordering::Greater
}
}
}