openssl/
cipher_ctx.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
//! The symmetric encryption context.
//!
//! # Examples
//!
//! Encrypt data with AES128 CBC
//!
//! ```
//! use openssl::cipher::Cipher;
//! use openssl::cipher_ctx::CipherCtx;
//!
//! let cipher = Cipher::aes_128_cbc();
//! let data = b"Some Crypto Text";
//! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
//! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
//!
//! let mut ctx = CipherCtx::new().unwrap();
//! ctx.encrypt_init(Some(cipher), Some(key), Some(iv)).unwrap();
//!
//! let mut ciphertext = vec![];
//! ctx.cipher_update_vec(data, &mut ciphertext).unwrap();
//! ctx.cipher_final_vec(&mut ciphertext).unwrap();
//!
//! assert_eq!(
//!     b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\
//!       \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1",
//!     &ciphertext[..],
//! );
//! ```
//!
//! Decrypt data with AES128 CBC
//!
//! ```
//! use openssl::cipher::Cipher;
//! use openssl::cipher_ctx::CipherCtx;
//!
//! let cipher = Cipher::aes_128_cbc();
//! let data = b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\
//!              \x87\x4D\xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1";
//! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
//! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
//!
//! let mut ctx = CipherCtx::new().unwrap();
//! ctx.decrypt_init(Some(cipher), Some(key), Some(iv)).unwrap();
//!
//! let mut plaintext = vec![];
//! ctx.cipher_update_vec(data, &mut plaintext).unwrap();
//! ctx.cipher_final_vec(&mut plaintext).unwrap();
//!
//! assert_eq!(b"Some Crypto Text", &plaintext[..]);
//! ```
#![warn(missing_docs)]

use crate::cipher::CipherRef;
use crate::error::ErrorStack;
#[cfg(not(boringssl))]
use crate::pkey::{HasPrivate, HasPublic, PKey, PKeyRef};
use crate::{cvt, cvt_p};
#[cfg(ossl102)]
use bitflags::bitflags;
use cfg_if::cfg_if;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::{c_int, c_uchar};
use openssl_macros::corresponds;
use std::convert::{TryFrom, TryInto};
use std::ptr;

cfg_if! {
    if #[cfg(ossl300)] {
        use ffi::EVP_CIPHER_CTX_get0_cipher;
    } else {
        use ffi::EVP_CIPHER_CTX_cipher as EVP_CIPHER_CTX_get0_cipher;
    }
}

foreign_type_and_impl_send_sync! {
    type CType = ffi::EVP_CIPHER_CTX;
    fn drop = ffi::EVP_CIPHER_CTX_free;

    /// A context object used to perform symmetric encryption operations.
    pub struct CipherCtx;
    /// A reference to a [`CipherCtx`].
    pub struct CipherCtxRef;
}

#[cfg(ossl102)]
bitflags! {
    /// Flags for `EVP_CIPHER_CTX`.
    pub struct CipherCtxFlags : c_int {
        /// The flag used to opt into AES key wrap ciphers.
        const FLAG_WRAP_ALLOW = ffi::EVP_CIPHER_CTX_FLAG_WRAP_ALLOW;
    }
}

impl CipherCtx {
    /// Creates a new context.
    #[corresponds(EVP_CIPHER_CTX_new)]
    pub fn new() -> Result<Self, ErrorStack> {
        ffi::init();

        unsafe {
            let ptr = cvt_p(ffi::EVP_CIPHER_CTX_new())?;
            Ok(CipherCtx::from_ptr(ptr))
        }
    }
}

impl CipherCtxRef {
    #[corresponds(EVP_CIPHER_CTX_copy)]
    pub fn copy(&mut self, src: &CipherCtxRef) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_CIPHER_CTX_copy(self.as_ptr(), src.as_ptr()))?;
            Ok(())
        }
    }

    /// Initializes the context for encryption.
    ///
    /// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up
    /// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used
    /// to, for example, use a nonstandard IV size.
    ///
    /// # Panics
    ///
    /// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size
    /// of the cipher, or if a key or IV is provided before a cipher.
    #[corresponds(EVP_EncryptInit_ex)]
    pub fn encrypt_init(
        &mut self,
        type_: Option<&CipherRef>,
        key: Option<&[u8]>,
        iv: Option<&[u8]>,
    ) -> Result<(), ErrorStack> {
        self.cipher_init(type_, key, iv, ffi::EVP_EncryptInit_ex)
    }

    /// Initializes the context for decryption.
    ///
    /// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up
    /// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used
    /// to, for example, use a nonstandard IV size.
    ///
    /// # Panics
    ///
    /// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size
    /// of the cipher, or if a key or IV is provided before a cipher.
    #[corresponds(EVP_DecryptInit_ex)]
    pub fn decrypt_init(
        &mut self,
        type_: Option<&CipherRef>,
        key: Option<&[u8]>,
        iv: Option<&[u8]>,
    ) -> Result<(), ErrorStack> {
        self.cipher_init(type_, key, iv, ffi::EVP_DecryptInit_ex)
    }

    fn cipher_init(
        &mut self,
        type_: Option<&CipherRef>,
        key: Option<&[u8]>,
        iv: Option<&[u8]>,
        f: unsafe extern "C" fn(
            *mut ffi::EVP_CIPHER_CTX,
            *const ffi::EVP_CIPHER,
            *mut ffi::ENGINE,
            *const c_uchar,
            *const c_uchar,
        ) -> c_int,
    ) -> Result<(), ErrorStack> {
        if let Some(key) = key {
            let key_len = type_.map_or_else(|| self.key_length(), |c| c.key_length());
            assert!(key_len <= key.len());
        }

        if let Some(iv) = iv {
            let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length());
            assert!(iv_len <= iv.len());
        }

        unsafe {
            cvt(f(
                self.as_ptr(),
                type_.map_or(ptr::null(), |p| p.as_ptr()),
                ptr::null_mut(),
                key.map_or(ptr::null(), |k| k.as_ptr()),
                iv.map_or(ptr::null(), |iv| iv.as_ptr()),
            ))?;
        }

        Ok(())
    }

    /// Initializes the context to perform envelope encryption.
    ///
    /// Normally this is called once to set both the cipher and public keys. However, this process may be split up by
    /// first providing the cipher with no public keys and then setting the public keys with no cipher.
    ///
    /// `encrypted_keys` will contain the generated symmetric key encrypted with each corresponding asymmetric private
    /// key. The generated IV will be written to `iv`.
    ///
    /// # Panics
    ///
    /// Panics if `pub_keys` is not the same size as `encrypted_keys`, the IV buffer is smaller than the cipher's IV
    /// size, or if an IV is provided before the cipher.
    #[corresponds(EVP_SealInit)]
    #[cfg(not(boringssl))]
    pub fn seal_init<T>(
        &mut self,
        type_: Option<&CipherRef>,
        pub_keys: &[PKey<T>],
        encrypted_keys: &mut [Vec<u8>],
        iv: Option<&mut [u8]>,
    ) -> Result<(), ErrorStack>
    where
        T: HasPublic,
    {
        assert_eq!(pub_keys.len(), encrypted_keys.len());
        if !pub_keys.is_empty() {
            let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length());
            assert!(iv.as_ref().map_or(0, |b| b.len()) >= iv_len);
        }

        for (pub_key, buf) in pub_keys.iter().zip(&mut *encrypted_keys) {
            buf.resize(pub_key.size(), 0);
        }

        let mut keys = encrypted_keys
            .iter_mut()
            .map(|b| b.as_mut_ptr())
            .collect::<Vec<_>>();
        let mut key_lengths = vec![0; pub_keys.len()];
        let pub_keys_len = i32::try_from(pub_keys.len()).unwrap();

        unsafe {
            cvt(ffi::EVP_SealInit(
                self.as_ptr(),
                type_.map_or(ptr::null(), |p| p.as_ptr()),
                keys.as_mut_ptr(),
                key_lengths.as_mut_ptr(),
                iv.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
                pub_keys.as_ptr() as *mut _,
                pub_keys_len,
            ))?;
        }

        for (buf, len) in encrypted_keys.iter_mut().zip(key_lengths) {
            buf.truncate(len as usize);
        }

        Ok(())
    }

    /// Initializes the context to perform envelope decryption.
    ///
    /// Normally this is called once with all of the arguments present. However, this process may be split up by first
    /// providing the cipher alone and then after providing the rest of the arguments in a second call.
    ///
    /// # Panics
    ///
    /// Panics if the IV buffer is smaller than the cipher's required IV size or if the IV is provided before the
    /// cipher.
    #[corresponds(EVP_OpenInit)]
    #[cfg(not(boringssl))]
    pub fn open_init<T>(
        &mut self,
        type_: Option<&CipherRef>,
        encrypted_key: &[u8],
        iv: Option<&[u8]>,
        priv_key: Option<&PKeyRef<T>>,
    ) -> Result<(), ErrorStack>
    where
        T: HasPrivate,
    {
        if priv_key.is_some() {
            let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length());
            assert!(iv.map_or(0, |b| b.len()) >= iv_len);
        }

        let len = c_int::try_from(encrypted_key.len()).unwrap();
        unsafe {
            cvt(ffi::EVP_OpenInit(
                self.as_ptr(),
                type_.map_or(ptr::null(), |p| p.as_ptr()),
                encrypted_key.as_ptr(),
                len,
                iv.map_or(ptr::null(), |b| b.as_ptr()),
                priv_key.map_or(ptr::null_mut(), ForeignTypeRef::as_ptr),
            ))?;
        }

        Ok(())
    }

    fn assert_cipher(&self) {
        unsafe {
            assert!(!EVP_CIPHER_CTX_get0_cipher(self.as_ptr()).is_null());
        }
    }

    /// Returns the block size of the context's cipher.
    ///
    /// Stream ciphers will report a block size of 1.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher.
    #[corresponds(EVP_CIPHER_CTX_block_size)]
    pub fn block_size(&self) -> usize {
        self.assert_cipher();

        unsafe { ffi::EVP_CIPHER_CTX_block_size(self.as_ptr()) as usize }
    }

    /// Returns the key length of the context's cipher.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher.
    #[corresponds(EVP_CIPHER_CTX_key_length)]
    pub fn key_length(&self) -> usize {
        self.assert_cipher();

        unsafe { ffi::EVP_CIPHER_CTX_key_length(self.as_ptr()) as usize }
    }

    /// Generates a random key based on the configured cipher.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher or if the buffer is smaller than the cipher's key
    /// length.
    ///
    /// This corresponds to [`EVP_CIPHER_CTX_rand_key`].
    ///
    /// [`EVP_CIPHER_CTX_rand_key`]: https://www.openssl.org/docs/manmaster/man3/EVP_CIPHER_CTX_rand_key.html
    #[corresponds(EVP_CIPHER_CTX_rand_key)]
    #[cfg(not(boringssl))]
    pub fn rand_key(&self, buf: &mut [u8]) -> Result<(), ErrorStack> {
        assert!(buf.len() >= self.key_length());

        unsafe {
            cvt(ffi::EVP_CIPHER_CTX_rand_key(
                self.as_ptr(),
                buf.as_mut_ptr(),
            ))?;
        }

        Ok(())
    }

    /// Sets the length of the key expected by the context.
    ///
    /// Only some ciphers support configurable key lengths.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher.
    #[corresponds(EVP_CIPHER_CTX_set_key_length)]
    pub fn set_key_length(&mut self, len: usize) -> Result<(), ErrorStack> {
        self.assert_cipher();

        unsafe {
            cvt(ffi::EVP_CIPHER_CTX_set_key_length(
                self.as_ptr(),
                len.try_into().unwrap(),
            ))?;
        }

        Ok(())
    }

    /// Returns the length of the IV expected by this context.
    ///
    /// Returns 0 if the cipher does not use an IV.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher.
    #[corresponds(EVP_CIPHER_CTX_iv_length)]
    pub fn iv_length(&self) -> usize {
        self.assert_cipher();

        unsafe { ffi::EVP_CIPHER_CTX_iv_length(self.as_ptr()) as usize }
    }

    /// Returns the `num` parameter of the cipher.
    ///
    /// Built-in ciphers typically use this to track how much of the
    /// current underlying block has been "used" already.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher.
    #[corresponds(EVP_CIPHER_CTX_num)]
    #[cfg(ossl110)]
    pub fn num(&self) -> usize {
        self.assert_cipher();

        unsafe { ffi::EVP_CIPHER_CTX_num(self.as_ptr()) as usize }
    }

    /// Sets the length of the IV expected by this context.
    ///
    /// Only some ciphers support configurable IV lengths.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher.
    #[corresponds(EVP_CIPHER_CTX_ctrl)]
    pub fn set_iv_length(&mut self, len: usize) -> Result<(), ErrorStack> {
        self.assert_cipher();

        let len = c_int::try_from(len).unwrap();

        unsafe {
            cvt(ffi::EVP_CIPHER_CTX_ctrl(
                self.as_ptr(),
                ffi::EVP_CTRL_GCM_SET_IVLEN,
                len,
                ptr::null_mut(),
            ))?;
        }

        Ok(())
    }

    /// Returns the length of the authentication tag expected by this context.
    ///
    /// Returns 0 if the cipher is not authenticated.
    ///
    /// # Panics
    ///
    /// Panics if the context has not been initialized with a cipher.
    ///
    /// Requires OpenSSL 3.0.0 or newer.
    #[corresponds(EVP_CIPHER_CTX_get_tag_length)]
    #[cfg(ossl300)]
    pub fn tag_length(&self) -> usize {
        self.assert_cipher();

        unsafe { ffi::EVP_CIPHER_CTX_get_tag_length(self.as_ptr()) as usize }
    }

    /// Retrieves the calculated authentication tag from the context.
    ///
    /// This should be called after [`Self::cipher_final`], and is only supported by authenticated ciphers.
    ///
    /// The size of the buffer indicates the size of the tag. While some ciphers support a range of tag sizes, it is
    /// recommended to pick the maximum size.
    #[corresponds(EVP_CIPHER_CTX_ctrl)]
    pub fn tag(&self, tag: &mut [u8]) -> Result<(), ErrorStack> {
        let len = c_int::try_from(tag.len()).unwrap();

        unsafe {
            cvt(ffi::EVP_CIPHER_CTX_ctrl(
                self.as_ptr(),
                ffi::EVP_CTRL_GCM_GET_TAG,
                len,
                tag.as_mut_ptr() as *mut _,
            ))?;
        }

        Ok(())
    }

    /// Sets the length of the generated authentication tag.
    ///
    /// This must be called when encrypting with a cipher in CCM mode to use a tag size other than the default.
    #[corresponds(EVP_CIPHER_CTX_ctrl)]
    pub fn set_tag_length(&mut self, len: usize) -> Result<(), ErrorStack> {
        let len = c_int::try_from(len).unwrap();

        unsafe {
            cvt(ffi::EVP_CIPHER_CTX_ctrl(
                self.as_ptr(),
                ffi::EVP_CTRL_GCM_SET_TAG,
                len,
                ptr::null_mut(),
            ))?;
        }

        Ok(())
    }

    /// Sets the authentication tag for verification during decryption.
    #[corresponds(EVP_CIPHER_CTX_ctrl)]
    pub fn set_tag(&mut self, tag: &[u8]) -> Result<(), ErrorStack> {
        let len = c_int::try_from(tag.len()).unwrap();

        unsafe {
            cvt(ffi::EVP_CIPHER_CTX_ctrl(
                self.as_ptr(),
                ffi::EVP_CTRL_GCM_SET_TAG,
                len,
                tag.as_ptr() as *mut _,
            ))?;
        }

        Ok(())
    }

    /// Enables or disables padding.
    ///
    /// If padding is disabled, the plaintext must be an exact multiple of the cipher's block size.
    #[corresponds(EVP_CIPHER_CTX_set_padding)]
    pub fn set_padding(&mut self, padding: bool) {
        unsafe {
            ffi::EVP_CIPHER_CTX_set_padding(self.as_ptr(), padding as c_int);
        }
    }

    /// Sets the total length of plaintext data.
    ///
    /// This is required for ciphers operating in CCM mode.
    #[corresponds(EVP_CipherUpdate)]
    pub fn set_data_len(&mut self, len: usize) -> Result<(), ErrorStack> {
        let len = c_int::try_from(len).unwrap();

        unsafe {
            cvt(ffi::EVP_CipherUpdate(
                self.as_ptr(),
                ptr::null_mut(),
                &mut 0,
                ptr::null(),
                len,
            ))?;
        }

        Ok(())
    }

    /// Set ctx flags.
    ///
    /// This function is currently used to enable AES key wrap feature supported by OpenSSL 1.0.2 or newer.
    #[corresponds(EVP_CIPHER_CTX_set_flags)]
    #[cfg(ossl102)]
    pub fn set_flags(&mut self, flags: CipherCtxFlags) {
        unsafe {
            ffi::EVP_CIPHER_CTX_set_flags(self.as_ptr(), flags.bits());
        }
    }

    /// Writes data into the context.
    ///
    /// Providing no output buffer will cause the input to be considered additional authenticated data (AAD).
    ///
    /// Returns the number of bytes written to `output`.
    ///
    /// # Panics
    ///
    /// Panics if `output` doesn't contain enough space for data to be
    /// written.
    #[corresponds(EVP_CipherUpdate)]
    pub fn cipher_update(
        &mut self,
        input: &[u8],
        output: Option<&mut [u8]>,
    ) -> Result<usize, ErrorStack> {
        if let Some(output) = &output {
            let mut block_size = self.block_size();
            if block_size == 1 {
                block_size = 0;
            }
            let min_output_size = input.len() + block_size;
            assert!(
                output.len() >= min_output_size,
                "Output buffer size should be at least {} bytes.",
                min_output_size
            );
        }

        unsafe { self.cipher_update_unchecked(input, output) }
    }

    /// Writes data into the context.
    ///
    /// Providing no output buffer will cause the input to be considered additional authenticated data (AAD).
    ///
    /// Returns the number of bytes written to `output`.
    ///
    /// This function is the same as [`Self::cipher_update`] but with the
    /// output size check removed. It can be used when the exact
    /// buffer size control is maintained by the caller.
    ///
    /// # Safety
    ///
    /// The caller is expected to provide `output` buffer
    /// large enough to contain correct number of bytes. For streaming
    /// ciphers the output buffer size should be at least as big as
    /// the input buffer. For block ciphers the size of the output
    /// buffer depends on the state of partially updated blocks.
    #[corresponds(EVP_CipherUpdate)]
    pub unsafe fn cipher_update_unchecked(
        &mut self,
        input: &[u8],
        output: Option<&mut [u8]>,
    ) -> Result<usize, ErrorStack> {
        let inlen = c_int::try_from(input.len()).unwrap();

        let mut outlen = 0;

        cvt(ffi::EVP_CipherUpdate(
            self.as_ptr(),
            output.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
            &mut outlen,
            input.as_ptr(),
            inlen,
        ))?;

        Ok(outlen as usize)
    }

    /// Like [`Self::cipher_update`] except that it appends output to a [`Vec`].
    pub fn cipher_update_vec(
        &mut self,
        input: &[u8],
        output: &mut Vec<u8>,
    ) -> Result<usize, ErrorStack> {
        let base = output.len();
        output.resize(base + input.len() + self.block_size(), 0);
        let len = self.cipher_update(input, Some(&mut output[base..]))?;
        output.truncate(base + len);

        Ok(len)
    }

    /// Like [`Self::cipher_update`] except that it writes output into the
    /// `data` buffer. The `inlen` parameter specifies the number of bytes in
    /// `data` that are considered the input. For streaming ciphers, the size of
    /// `data` must be at least the input size. Otherwise, it must be at least
    /// an additional block size larger.
    ///
    /// Note: Use [`Self::cipher_update`] with no output argument to write AAD.
    ///
    /// # Panics
    ///
    /// This function panics if the input size cannot be represented as `int` or
    /// exceeds the buffer size, or if the output buffer does not contain enough
    /// additional space.
    #[corresponds(EVP_CipherUpdate)]
    pub fn cipher_update_inplace(
        &mut self,
        data: &mut [u8],
        inlen: usize,
    ) -> Result<usize, ErrorStack> {
        assert!(inlen <= data.len(), "Input size may not exceed buffer size");
        let block_size = self.block_size();
        if block_size != 1 {
            assert!(
                data.len() >= inlen + block_size,
                "Output buffer size must be at least {} bytes.",
                inlen + block_size
            );
        }

        let inlen = c_int::try_from(inlen).unwrap();
        let mut outlen = 0;
        unsafe {
            cvt(ffi::EVP_CipherUpdate(
                self.as_ptr(),
                data.as_mut_ptr(),
                &mut outlen,
                data.as_ptr(),
                inlen,
            ))
        }?;

        Ok(outlen as usize)
    }

    /// Finalizes the encryption or decryption process.
    ///
    /// Any remaining data will be written to the output buffer.
    ///
    /// Returns the number of bytes written to `output`.
    ///
    /// # Panics
    ///
    /// Panics if `output` is smaller than the cipher's block size.
    #[corresponds(EVP_CipherFinal)]
    pub fn cipher_final(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
        let block_size = self.block_size();
        if block_size > 1 {
            assert!(output.len() >= block_size);
        }

        unsafe { self.cipher_final_unchecked(output) }
    }

    /// Finalizes the encryption or decryption process.
    ///
    /// Any remaining data will be written to the output buffer.
    ///
    /// Returns the number of bytes written to `output`.
    ///
    /// This function is the same as [`Self::cipher_final`] but with
    /// the output buffer size check removed.
    ///
    /// # Safety
    ///
    /// The caller is expected to provide `output` buffer
    /// large enough to contain correct number of bytes. For streaming
    /// ciphers the output buffer can be empty, for block ciphers the
    /// output buffer should be at least as big as the block.
    #[corresponds(EVP_CipherFinal)]
    pub unsafe fn cipher_final_unchecked(
        &mut self,
        output: &mut [u8],
    ) -> Result<usize, ErrorStack> {
        let mut outl = 0;

        cvt(ffi::EVP_CipherFinal(
            self.as_ptr(),
            output.as_mut_ptr(),
            &mut outl,
        ))?;

        Ok(outl as usize)
    }

    /// Like [`Self::cipher_final`] except that it appends output to a [`Vec`].
    pub fn cipher_final_vec(&mut self, output: &mut Vec<u8>) -> Result<usize, ErrorStack> {
        let base = output.len();
        output.resize(base + self.block_size(), 0);
        let len = self.cipher_final(&mut output[base..])?;
        output.truncate(base + len);

        Ok(len)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{cipher::Cipher, rand::rand_bytes};
    #[cfg(not(boringssl))]
    use std::slice;

    #[test]
    #[cfg(not(boringssl))]
    fn seal_open() {
        let private_pem = include_bytes!("../test/rsa.pem");
        let public_pem = include_bytes!("../test/rsa.pem.pub");
        let private_key = PKey::private_key_from_pem(private_pem).unwrap();
        let public_key = PKey::public_key_from_pem(public_pem).unwrap();
        let cipher = Cipher::aes_256_cbc();
        let secret = b"My secret message";

        let mut ctx = CipherCtx::new().unwrap();
        let mut encrypted_key = vec![];
        let mut iv = vec![0; cipher.iv_length()];
        let mut encrypted = vec![];
        ctx.seal_init(
            Some(cipher),
            &[public_key],
            slice::from_mut(&mut encrypted_key),
            Some(&mut iv),
        )
        .unwrap();
        ctx.cipher_update_vec(secret, &mut encrypted).unwrap();
        ctx.cipher_final_vec(&mut encrypted).unwrap();

        let mut decrypted = vec![];
        ctx.open_init(Some(cipher), &encrypted_key, Some(&iv), Some(&private_key))
            .unwrap();
        ctx.cipher_update_vec(&encrypted, &mut decrypted).unwrap();
        ctx.cipher_final_vec(&mut decrypted).unwrap();

        assert_eq!(secret, &decrypted[..]);
    }

    fn aes_128_cbc(cipher: &CipherRef) {
        // from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
        let key = hex::decode("2b7e151628aed2a6abf7158809cf4f3c").unwrap();
        let iv = hex::decode("000102030405060708090a0b0c0d0e0f").unwrap();
        let pt = hex::decode("6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51")
            .unwrap();
        let ct = hex::decode("7649abac8119b246cee98e9b12e9197d5086cb9b507219ee95db113a917678b2")
            .unwrap();

        let mut ctx = CipherCtx::new().unwrap();

        ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv))
            .unwrap();
        ctx.set_padding(false);

        let mut buf = vec![];
        ctx.cipher_update_vec(&pt, &mut buf).unwrap();
        ctx.cipher_final_vec(&mut buf).unwrap();

        assert_eq!(buf, ct);

        ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv))
            .unwrap();
        ctx.set_padding(false);

        let mut buf = vec![];
        ctx.cipher_update_vec(&ct, &mut buf).unwrap();
        ctx.cipher_final_vec(&mut buf).unwrap();

        assert_eq!(buf, pt);
    }

    #[test]
    #[cfg(ossl300)]
    fn fetched_aes_128_cbc() {
        let cipher = Cipher::fetch(None, "AES-128-CBC", None).unwrap();
        aes_128_cbc(&cipher);
    }

    #[test]
    fn default_aes_128_cbc() {
        let cipher = Cipher::aes_128_cbc();
        aes_128_cbc(cipher);
    }

    #[test]
    fn test_stream_ciphers() {
        test_stream_cipher(Cipher::aes_192_ctr());
        test_stream_cipher(Cipher::aes_256_ctr());
    }

    fn test_stream_cipher(cipher: &'static CipherRef) {
        let mut key = vec![0; cipher.key_length()];
        rand_bytes(&mut key).unwrap();
        let mut iv = vec![0; cipher.iv_length()];
        rand_bytes(&mut iv).unwrap();

        let mut ctx = CipherCtx::new().unwrap();

        ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv))
            .unwrap();
        ctx.set_padding(false);

        assert_eq!(
            1,
            cipher.block_size(),
            "Need a stream cipher, not a block cipher"
        );

        // update cipher with non-full block
        // this is a streaming cipher so the number of output bytes
        // will be the same as the number of input bytes
        let mut output = vec![0; 32];
        let outlen = ctx
            .cipher_update(&[1; 15], Some(&mut output[0..15]))
            .unwrap();
        assert_eq!(15, outlen);

        // update cipher with missing bytes from the previous block
        // as previously it will output the same number of bytes as
        // the input
        let outlen = ctx
            .cipher_update(&[1; 17], Some(&mut output[15..]))
            .unwrap();
        assert_eq!(17, outlen);

        ctx.cipher_final_vec(&mut vec![0; 0]).unwrap();

        // encrypt again, but use in-place encryption this time
        // First reset the IV
        ctx.encrypt_init(None, None, Some(&iv)).unwrap();
        ctx.set_padding(false);
        let mut data_inplace: [u8; 32] = [1; 32];
        let outlen = ctx
            .cipher_update_inplace(&mut data_inplace[0..15], 15)
            .unwrap();
        assert_eq!(15, outlen);

        let outlen = ctx
            .cipher_update_inplace(&mut data_inplace[15..32], 17)
            .unwrap();
        assert_eq!(17, outlen);

        ctx.cipher_final(&mut [0u8; 0]).unwrap();

        // Check that the resulting data is encrypted in the same manner
        assert_eq!(data_inplace.as_slice(), output.as_slice());

        // try to decrypt
        ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv))
            .unwrap();
        ctx.set_padding(false);

        // update cipher with non-full block
        // expect that the output for stream cipher will contain
        // the same number of bytes as the input
        let mut output_decrypted = vec![0; 32];
        let outlen = ctx
            .cipher_update(&output[0..15], Some(&mut output_decrypted[0..15]))
            .unwrap();
        assert_eq!(15, outlen);

        let outlen = ctx
            .cipher_update(&output[15..], Some(&mut output_decrypted[15..]))
            .unwrap();
        assert_eq!(17, outlen);

        ctx.cipher_final_vec(&mut vec![0; 0]).unwrap();
        // check if the decrypted blocks are the same as input (all ones)
        assert_eq!(output_decrypted, vec![1; 32]);

        // decrypt again, but now the output in-place
        ctx.decrypt_init(None, None, Some(&iv)).unwrap();
        ctx.set_padding(false);

        let outlen = ctx.cipher_update_inplace(&mut output[0..15], 15).unwrap();
        assert_eq!(15, outlen);

        let outlen = ctx.cipher_update_inplace(&mut output[15..], 17).unwrap();
        assert_eq!(17, outlen);

        ctx.cipher_final_vec(&mut vec![0; 0]).unwrap();
        assert_eq!(output_decrypted, output);
    }

    #[test]
    #[should_panic(expected = "Output buffer size should be at least 33 bytes.")]
    fn full_block_updates_aes_128() {
        output_buffer_too_small(Cipher::aes_128_cbc());
    }

    #[test]
    #[should_panic(expected = "Output buffer size should be at least 33 bytes.")]
    fn full_block_updates_aes_256() {
        output_buffer_too_small(Cipher::aes_256_cbc());
    }

    #[test]
    #[should_panic(expected = "Output buffer size should be at least 17 bytes.")]
    fn full_block_updates_3des() {
        output_buffer_too_small(Cipher::des_ede3_cbc());
    }

    fn output_buffer_too_small(cipher: &'static CipherRef) {
        let mut key = vec![0; cipher.key_length()];
        rand_bytes(&mut key).unwrap();
        let mut iv = vec![0; cipher.iv_length()];
        rand_bytes(&mut iv).unwrap();

        let mut ctx = CipherCtx::new().unwrap();

        ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv))
            .unwrap();
        ctx.set_padding(false);

        let block_size = cipher.block_size();
        assert!(block_size > 1, "Need a block cipher, not a stream cipher");

        ctx.cipher_update(&vec![0; block_size + 1], Some(&mut vec![0; block_size - 1]))
            .unwrap();
    }

    #[cfg(ossl102)]
    fn cipher_wrap_test(cipher: &CipherRef, pt: &str, ct: &str, key: &str, iv: Option<&str>) {
        let pt = hex::decode(pt).unwrap();
        let key = hex::decode(key).unwrap();
        let expected = hex::decode(ct).unwrap();
        let iv = iv.map(|v| hex::decode(v).unwrap());
        let padding = 8 - pt.len() % 8;
        let mut computed = vec![0; pt.len() + padding + cipher.block_size() * 2];
        let mut ctx = CipherCtx::new().unwrap();

        ctx.set_flags(CipherCtxFlags::FLAG_WRAP_ALLOW);
        ctx.encrypt_init(Some(cipher), Some(&key), iv.as_deref())
            .unwrap();

        let count = ctx.cipher_update(&pt, Some(&mut computed)).unwrap();
        let rest = ctx.cipher_final(&mut computed[count..]).unwrap();
        computed.truncate(count + rest);

        if computed != expected {
            println!("Computed: {}", hex::encode(&computed));
            println!("Expected: {}", hex::encode(&expected));
            if computed.len() != expected.len() {
                println!(
                    "Lengths differ: {} in computed vs {} expected",
                    computed.len(),
                    expected.len()
                );
            }
            panic!("test failure");
        }
    }

    #[test]
    #[cfg(ossl102)]
    fn test_aes128_wrap() {
        let pt = "00112233445566778899aabbccddeeff";
        let ct = "7940ff694448b5bb5139c959a4896832e55d69aa04daa27e";
        let key = "2b7e151628aed2a6abf7158809cf4f3c";
        let iv = "0001020304050607";

        cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, Some(iv));
    }

    #[test]
    #[cfg(ossl102)]
    fn test_aes128_wrap_default_iv() {
        let pt = "00112233445566778899aabbccddeeff";
        let ct = "38f1215f0212526f8a70b51955b9fbdc9fe3041d9832306e";
        let key = "2b7e151628aed2a6abf7158809cf4f3c";

        cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, None);
    }

    #[test]
    #[cfg(ossl110)]
    fn test_aes128_wrap_pad() {
        let pt = "00112233445566778899aabbccddee";
        let ct = "f13998f5ab32ef82a1bdbcbe585e1d837385b529572a1e1b";
        let key = "2b7e151628aed2a6abf7158809cf4f3c";
        let iv = "00010203";

        cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, Some(iv));
    }

    #[test]
    #[cfg(ossl110)]
    fn test_aes128_wrap_pad_default_iv() {
        let pt = "00112233445566778899aabbccddee";
        let ct = "3a501085fb8cf66f4186b7df851914d471ed823411598add";
        let key = "2b7e151628aed2a6abf7158809cf4f3c";

        cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, None);
    }

    #[test]
    #[cfg(ossl102)]
    fn test_aes192_wrap() {
        let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b";
        let ct = "83b89142dfeeb4871e078bfb81134d33e23fedc19b03a1cf689973d3831b6813";
        let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
        let iv = "0001020304050607";

        cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, Some(iv));
    }

    #[test]
    #[cfg(ossl102)]
    fn test_aes192_wrap_default_iv() {
        let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b";
        let ct = "c02c2cf11505d3e4851030d5534cbf5a1d7eca7ba8839adbf239756daf1b43e6";
        let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";

        cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, None);
    }

    #[test]
    #[cfg(ossl110)]
    fn test_aes192_wrap_pad() {
        let pt = "00112233445566778899aabbccddee";
        let ct = "b4f6bb167ef7caf061a74da82b36ad038ca057ab51e98d3a";
        let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
        let iv = "00010203";

        cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, Some(iv));
    }

    #[test]
    #[cfg(ossl110)]
    fn test_aes192_wrap_pad_default_iv() {
        let pt = "00112233445566778899aabbccddee";
        let ct = "b2c37a28cc602753a7c944a4c2555a2df9c98b2eded5312e";
        let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";

        cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, None);
    }

    #[test]
    #[cfg(ossl102)]
    fn test_aes256_wrap() {
        let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51";
        let ct = "cc05da2a7f56f7dd0c144231f90bce58648fa20a8278f5a6b7d13bba6aa57a33229d4333866b7fd6";
        let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
        let iv = "0001020304050607";

        cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, Some(iv));
    }

    #[test]
    #[cfg(ossl102)]
    fn test_aes256_wrap_default_iv() {
        let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51";
        let ct = "0b24f068b50e52bc6987868411c36e1b03900866ed12af81eb87cef70a8d1911731c1d7abf789d88";
        let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";

        cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, None);
    }

    #[test]
    #[cfg(ossl110)]
    fn test_aes256_wrap_pad() {
        let pt = "00112233445566778899aabbccddee";
        let ct = "91594e044ccc06130d60e6c84a996aa4f96a9faff8c5f6e7";
        let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
        let iv = "00010203";

        cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, Some(iv));
    }

    #[test]
    #[cfg(ossl110)]
    fn test_aes256_wrap_pad_default_iv() {
        let pt = "00112233445566778899aabbccddee";
        let ct = "dc3c166a854afd68aea624a4272693554bf2e4fcbae602cd";
        let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";

        cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, None);
    }
}