flatbuffers/builder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/*
* Copyright 2018 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#[cfg(not(feature = "std"))]
use alloc::{vec, vec::Vec};
use core::cmp::max;
use core::convert::Infallible;
use core::fmt::{Debug, Display};
use core::iter::{DoubleEndedIterator, ExactSizeIterator};
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Sub, SubAssign};
use core::ptr::write_bytes;
use crate::endian_scalar::emplace_scalar;
use crate::primitives::*;
use crate::push::{Push, PushAlignment};
use crate::read_scalar;
use crate::table::Table;
use crate::vector::Vector;
use crate::vtable::{field_index_to_field_offset, VTable};
use crate::vtable_writer::VTableWriter;
/// Trait to implement custom allocation strategies for [`FlatBufferBuilder`].
///
/// An implementation can be used with [`FlatBufferBuilder::new_in`], enabling a custom allocation
/// strategy for the [`FlatBufferBuilder`].
///
/// # Safety
///
/// The implementation of the allocator must match the defined behavior as described by the
/// comments.
pub unsafe trait Allocator: DerefMut<Target = [u8]> {
/// A type describing allocation failures
type Error: Display + Debug;
/// Grows the buffer, with the old contents being moved to the end.
///
/// NOTE: While not unsound, an implementation that doesn't grow the
/// internal buffer will get stuck in an infinite loop.
fn grow_downwards(&mut self) -> Result<(), Self::Error>;
/// Returns the size of the internal buffer in bytes.
fn len(&self) -> usize;
}
/// Default [`FlatBufferBuilder`] allocator backed by a [`Vec<u8>`].
#[derive(Default)]
pub struct DefaultAllocator(Vec<u8>);
impl DefaultAllocator {
/// Builds the allocator from an existing buffer.
pub fn from_vec(buffer: Vec<u8>) -> Self {
Self(buffer)
}
}
impl Deref for DefaultAllocator {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for DefaultAllocator {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
// SAFETY: The methods are implemented as described by the documentation.
unsafe impl Allocator for DefaultAllocator {
type Error = Infallible;
fn grow_downwards(&mut self) -> Result<(), Self::Error> {
let old_len = self.0.len();
let new_len = max(1, old_len * 2);
self.0.resize(new_len, 0);
if new_len == 1 {
return Ok(());
}
// calculate the midpoint, and safely copy the old end data to the new
// end position:
let middle = new_len / 2;
{
let (left, right) = &mut self.0[..].split_at_mut(middle);
right.copy_from_slice(left);
}
// finally, zero out the old end data.
{
let ptr = self.0[..middle].as_mut_ptr();
// Safety:
// ptr is byte aligned and of length middle
unsafe {
write_bytes(ptr, 0, middle);
}
}
Ok(())
}
fn len(&self) -> usize {
self.0.len()
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct FieldLoc {
off: UOffsetT,
id: VOffsetT,
}
/// FlatBufferBuilder builds a FlatBuffer through manipulating its internal
/// state. It has an owned `Vec<u8>` that grows as needed (up to the hardcoded
/// limit of 2GiB, which is set by the FlatBuffers format).
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct FlatBufferBuilder<'fbb, A: Allocator = DefaultAllocator> {
allocator: A,
head: ReverseIndex,
field_locs: Vec<FieldLoc>,
written_vtable_revpos: Vec<UOffsetT>,
nested: bool,
finished: bool,
min_align: usize,
force_defaults: bool,
strings_pool: Vec<WIPOffset<&'fbb str>>,
_phantom: PhantomData<&'fbb ()>,
}
impl<'fbb> FlatBufferBuilder<'fbb, DefaultAllocator> {
/// Create a FlatBufferBuilder that is ready for writing.
pub fn new() -> Self {
Self::with_capacity(0)
}
#[deprecated(note = "replaced with `with_capacity`", since = "0.8.5")]
pub fn new_with_capacity(size: usize) -> Self {
Self::with_capacity(size)
}
/// Create a FlatBufferBuilder that is ready for writing, with a
/// ready-to-use capacity of the provided size.
///
/// The maximum valid value is `FLATBUFFERS_MAX_BUFFER_SIZE`.
pub fn with_capacity(size: usize) -> Self {
Self::from_vec(vec![0; size])
}
/// Create a FlatBufferBuilder that is ready for writing, reusing
/// an existing vector.
pub fn from_vec(buffer: Vec<u8>) -> Self {
// we need to check the size here because we create the backing buffer
// directly, bypassing the typical way of using grow_allocator:
assert!(
buffer.len() <= FLATBUFFERS_MAX_BUFFER_SIZE,
"cannot initialize buffer bigger than 2 gigabytes"
);
let allocator = DefaultAllocator::from_vec(buffer);
Self::new_in(allocator)
}
/// Destroy the FlatBufferBuilder, returning its internal byte vector
/// and the index into it that represents the start of valid data.
pub fn collapse(self) -> (Vec<u8>, usize) {
let index = self.head.to_forward_index(&self.allocator);
(self.allocator.0, index)
}
}
impl<'fbb, A: Allocator> FlatBufferBuilder<'fbb, A> {
/// Create a [`FlatBufferBuilder`] that is ready for writing with a custom [`Allocator`].
pub fn new_in(allocator: A) -> Self {
let head = ReverseIndex::end();
FlatBufferBuilder {
allocator,
head,
field_locs: Vec::new(),
written_vtable_revpos: Vec::new(),
nested: false,
finished: false,
min_align: 0,
force_defaults: false,
strings_pool: Vec::new(),
_phantom: PhantomData,
}
}
/// Destroy the [`FlatBufferBuilder`], returning its [`Allocator`] and the index
/// into it that represents the start of valid data.
pub fn collapse_in(self) -> (A, usize) {
let index = self.head.to_forward_index(&self.allocator);
(self.allocator, index)
}
/// Reset the FlatBufferBuilder internal state. Use this method after a
/// call to a `finish` function in order to re-use a FlatBufferBuilder.
///
/// This function is the only way to reset the `finished` state and start
/// again.
///
/// If you are using a FlatBufferBuilder repeatedly, make sure to use this
/// function, because it re-uses the FlatBufferBuilder's existing
/// heap-allocated `Vec<u8>` internal buffer. This offers significant speed
/// improvements as compared to creating a new FlatBufferBuilder for every
/// new object.
pub fn reset(&mut self) {
// memset only the part of the buffer that could be dirty:
self.allocator[self.head.range_to_end()]
.iter_mut()
.for_each(|x| *x = 0);
self.head = ReverseIndex::end();
self.written_vtable_revpos.clear();
self.nested = false;
self.finished = false;
self.min_align = 0;
self.strings_pool.clear();
}
/// Push a Push'able value onto the front of the in-progress data.
///
/// This function uses traits to provide a unified API for writing
/// scalars, tables, vectors, and WIPOffsets.
#[inline]
pub fn push<P: Push>(&mut self, x: P) -> WIPOffset<P::Output> {
let sz = P::size();
self.align(sz, P::alignment());
self.make_space(sz);
{
let (dst, rest) = self.allocator[self.head.range_to_end()].split_at_mut(sz);
// Safety:
// Called make_space above
unsafe { x.push(dst, rest.len()) };
}
WIPOffset::new(self.used_space() as UOffsetT)
}
/// Push a Push'able value onto the front of the in-progress data, and
/// store a reference to it in the in-progress vtable. If the value matches
/// the default, then this is a no-op.
#[inline]
pub fn push_slot<X: Push + PartialEq>(&mut self, slotoff: VOffsetT, x: X, default: X) {
self.assert_nested("push_slot");
if x != default || self.force_defaults {
self.push_slot_always(slotoff, x);
}
}
/// Push a Push'able value onto the front of the in-progress data, and
/// store a reference to it in the in-progress vtable.
#[inline]
pub fn push_slot_always<X: Push>(&mut self, slotoff: VOffsetT, x: X) {
self.assert_nested("push_slot_always");
let off = self.push(x);
self.track_field(slotoff, off.value());
}
/// Retrieve the number of vtables that have been serialized into the
/// FlatBuffer. This is primarily used to check vtable deduplication.
#[inline]
pub fn num_written_vtables(&self) -> usize {
self.written_vtable_revpos.len()
}
/// Start a Table write.
///
/// Asserts that the builder is not in a nested state.
///
/// Users probably want to use `push_slot` to add values after calling this.
#[inline]
pub fn start_table(&mut self) -> WIPOffset<TableUnfinishedWIPOffset> {
self.assert_not_nested(
"start_table can not be called when a table or vector is under construction",
);
self.nested = true;
WIPOffset::new(self.used_space() as UOffsetT)
}
/// End a Table write.
///
/// Asserts that the builder is in a nested state.
#[inline]
pub fn end_table(
&mut self,
off: WIPOffset<TableUnfinishedWIPOffset>,
) -> WIPOffset<TableFinishedWIPOffset> {
self.assert_nested("end_table");
let o = self.write_vtable(off);
self.nested = false;
self.field_locs.clear();
WIPOffset::new(o.value())
}
/// Start a Vector write.
///
/// Asserts that the builder is not in a nested state.
///
/// Most users will prefer to call `create_vector`.
/// Speed optimizing users who choose to create vectors manually using this
/// function will want to use `push` to add values.
#[inline]
pub fn start_vector<T: Push>(&mut self, num_items: usize) {
self.assert_not_nested(
"start_vector can not be called when a table or vector is under construction",
);
self.nested = true;
self.align(num_items * T::size(), T::alignment().max_of(SIZE_UOFFSET));
}
/// End a Vector write.
///
/// Note that the `num_elems` parameter is the number of written items, not
/// the byte count.
///
/// Asserts that the builder is in a nested state.
#[inline]
pub fn end_vector<T: Push>(&mut self, num_elems: usize) -> WIPOffset<Vector<'fbb, T>> {
self.assert_nested("end_vector");
self.nested = false;
let o = self.push::<UOffsetT>(num_elems as UOffsetT);
WIPOffset::new(o.value())
}
#[inline]
pub fn create_shared_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
self.assert_not_nested(
"create_shared_string can not be called when a table or vector is under construction",
);
// Saves a ref to allocator since rust doesnt like us refrencing it
// in the binary_search_by code.
let buf = &self.allocator;
let found = self.strings_pool.binary_search_by(|offset| {
let ptr = offset.value() as usize;
// Gets The pointer to the size of the string
let str_memory = &buf[buf.len() - ptr..];
// Gets the size of the written string from buffer
let size =
u32::from_le_bytes([str_memory[0], str_memory[1], str_memory[2], str_memory[3]])
as usize;
// Size of the string size
let string_size: usize = 4;
// Fetches actual string bytes from index of string after string size
// to the size of string plus string size
let iter = str_memory[string_size..size + string_size].iter();
// Compares bytes of fetched string and current writable string
iter.cloned().cmp(s.bytes())
});
match found {
Ok(index) => self.strings_pool[index],
Err(index) => {
let address = WIPOffset::new(self.create_byte_string(s.as_bytes()).value());
self.strings_pool.insert(index, address);
address
}
}
}
/// Create a utf8 string.
///
/// The wire format represents this as a zero-terminated byte vector.
#[inline]
pub fn create_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
self.assert_not_nested(
"create_string can not be called when a table or vector is under construction",
);
WIPOffset::new(self.create_byte_string(s.as_bytes()).value())
}
/// Create a zero-terminated byte vector.
#[inline]
pub fn create_byte_string(&mut self, data: &[u8]) -> WIPOffset<&'fbb [u8]> {
self.assert_not_nested(
"create_byte_string can not be called when a table or vector is under construction",
);
self.align(data.len() + 1, PushAlignment::new(SIZE_UOFFSET));
self.push(0u8);
self.push_bytes_unprefixed(data);
self.push(data.len() as UOffsetT);
WIPOffset::new(self.used_space() as UOffsetT)
}
/// Create a vector of Push-able objects.
///
/// Speed-sensitive users may wish to reduce memory usage by creating the
/// vector manually: use `start_vector`, `push`, and `end_vector`.
#[inline]
pub fn create_vector<'a: 'b, 'b, T: Push + 'b>(
&'a mut self,
items: &'b [T],
) -> WIPOffset<Vector<'fbb, T::Output>> {
let elem_size = T::size();
let slice_size = items.len() * elem_size;
self.align(slice_size, T::alignment().max_of(SIZE_UOFFSET));
self.ensure_capacity(slice_size + UOffsetT::size());
self.head -= slice_size;
let mut written_len = self.head.distance_to_end();
let buf = &mut self.allocator[self.head.range_to(self.head + slice_size)];
for (item, out) in items.iter().zip(buf.chunks_exact_mut(elem_size)) {
written_len -= elem_size;
// Safety:
// Called ensure_capacity and aligned to T above
unsafe { item.push(out, written_len) };
}
WIPOffset::new(self.push::<UOffsetT>(items.len() as UOffsetT).value())
}
/// Create a vector of Push-able objects.
///
/// Speed-sensitive users may wish to reduce memory usage by creating the
/// vector manually: use `start_vector`, `push`, and `end_vector`.
#[inline]
pub fn create_vector_from_iter<T: Push>(
&mut self,
items: impl ExactSizeIterator<Item = T> + DoubleEndedIterator,
) -> WIPOffset<Vector<'fbb, T::Output>> {
let elem_size = T::size();
self.align(items.len() * elem_size, T::alignment().max_of(SIZE_UOFFSET));
let mut actual = 0;
for item in items.rev() {
self.push(item);
actual += 1;
}
WIPOffset::new(self.push::<UOffsetT>(actual).value())
}
/// Set whether default values are stored.
///
/// In order to save space, fields that are set to their default value
/// aren't stored in the buffer. Setting `force_defaults` to `true`
/// disables this optimization.
///
/// By default, `force_defaults` is `false`.
#[inline]
pub fn force_defaults(&mut self, force_defaults: bool) {
self.force_defaults = force_defaults;
}
/// Get the byte slice for the data that has been written, regardless of
/// whether it has been finished.
#[inline]
pub fn unfinished_data(&self) -> &[u8] {
&self.allocator[self.head.range_to_end()]
}
/// Get the byte slice for the data that has been written after a call to
/// one of the `finish` functions.
/// # Panics
/// Panics if the buffer is not finished.
#[inline]
pub fn finished_data(&self) -> &[u8] {
self.assert_finished("finished_bytes cannot be called when the buffer is not yet finished");
&self.allocator[self.head.range_to_end()]
}
/// Returns a mutable view of a finished buffer and location of where the flatbuffer starts.
/// Note that modifying the flatbuffer data may corrupt it.
/// # Panics
/// Panics if the flatbuffer is not finished.
#[inline]
pub fn mut_finished_buffer(&mut self) -> (&mut [u8], usize) {
let index = self.head.to_forward_index(&self.allocator);
(&mut self.allocator[..], index)
}
/// Assert that a field is present in the just-finished Table.
///
/// This is somewhat low-level and is mostly used by the generated code.
#[inline]
pub fn required(
&self,
tab_revloc: WIPOffset<TableFinishedWIPOffset>,
slot_byte_loc: VOffsetT,
assert_msg_name: &'static str,
) {
let idx = self.used_space() - tab_revloc.value() as usize;
// Safety:
// The value of TableFinishedWIPOffset is the offset from the end of the allocator
// to an SOffsetT pointing to a valid VTable
//
// `self.allocator.len() = self.used_space() + self.head`
// `self.allocator.len() - tab_revloc = self.used_space() - tab_revloc + self.head`
// `self.allocator.len() - tab_revloc = idx + self.head`
let tab = unsafe { Table::new(&self.allocator[self.head.range_to_end()], idx) };
let o = tab.vtable().get(slot_byte_loc) as usize;
assert!(o != 0, "missing required field {}", assert_msg_name);
}
/// Finalize the FlatBuffer by: aligning it, pushing an optional file
/// identifier on to it, pushing a size prefix on to it, and marking the
/// internal state of the FlatBufferBuilder as `finished`. Afterwards,
/// users can call `finished_data` to get the resulting data.
#[inline]
pub fn finish_size_prefixed<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
self.finish_with_opts(root, file_identifier, true);
}
/// Finalize the FlatBuffer by: aligning it, pushing an optional file
/// identifier on to it, and marking the internal state of the
/// FlatBufferBuilder as `finished`. Afterwards, users can call
/// `finished_data` to get the resulting data.
#[inline]
pub fn finish<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
self.finish_with_opts(root, file_identifier, false);
}
/// Finalize the FlatBuffer by: aligning it and marking the internal state
/// of the FlatBufferBuilder as `finished`. Afterwards, users can call
/// `finished_data` to get the resulting data.
#[inline]
pub fn finish_minimal<T>(&mut self, root: WIPOffset<T>) {
self.finish_with_opts(root, None, false);
}
#[inline]
fn used_space(&self) -> usize {
self.head.distance_to_end()
}
#[inline]
fn track_field(&mut self, slot_off: VOffsetT, off: UOffsetT) {
let fl = FieldLoc { id: slot_off, off };
self.field_locs.push(fl);
}
/// Write the VTable, if it is new.
fn write_vtable(
&mut self,
table_tail_revloc: WIPOffset<TableUnfinishedWIPOffset>,
) -> WIPOffset<VTableWIPOffset> {
self.assert_nested("write_vtable");
// Write the vtable offset, which is the start of any Table.
// We fill its value later.
let object_revloc_to_vtable: WIPOffset<VTableWIPOffset> =
WIPOffset::new(self.push::<UOffsetT>(0xF0F0_F0F0).value());
// Layout of the data this function will create when a new vtable is
// needed.
// --------------------------------------------------------------------
// vtable starts here
// | x, x -- vtable len (bytes) [u16]
// | x, x -- object inline len (bytes) [u16]
// | x, x -- zero, or num bytes from start of object to field #0 [u16]
// | ...
// | x, x -- zero, or num bytes from start of object to field #n-1 [u16]
// vtable ends here
// table starts here
// | x, x, x, x -- offset (negative direction) to the vtable [i32]
// | aka "vtableoffset"
// | -- table inline data begins here, we don't touch it --
// table ends here -- aka "table_start"
// --------------------------------------------------------------------
//
// Layout of the data this function will create when we re-use an
// existing vtable.
//
// We always serialize this particular vtable, then compare it to the
// other vtables we know about to see if there is a duplicate. If there
// is, then we erase the serialized vtable we just made.
// We serialize it first so that we are able to do byte-by-byte
// comparisons with already-serialized vtables. This 1) saves
// bookkeeping space (we only keep revlocs to existing vtables), 2)
// allows us to convert to little-endian once, then do
// fast memcmp comparisons, and 3) by ensuring we are comparing real
// serialized vtables, we can be more assured that we are doing the
// comparisons correctly.
//
// --------------------------------------------------------------------
// table starts here
// | x, x, x, x -- offset (negative direction) to an existing vtable [i32]
// | aka "vtableoffset"
// | -- table inline data begins here, we don't touch it --
// table starts here: aka "table_start"
// --------------------------------------------------------------------
// fill the WIP vtable with zeros:
let vtable_byte_len = get_vtable_byte_len(&self.field_locs);
self.make_space(vtable_byte_len);
// compute the length of the table (not vtable!) in bytes:
let table_object_size = object_revloc_to_vtable.value() - table_tail_revloc.value();
debug_assert!(table_object_size < 0x10000); // vTable use 16bit offsets.
// Write the VTable (we may delete it afterwards, if it is a duplicate):
let vt_start_pos = self.head;
let vt_end_pos = self.head + vtable_byte_len;
{
// write the vtable header:
let vtfw =
&mut VTableWriter::init(&mut self.allocator[vt_start_pos.range_to(vt_end_pos)]);
vtfw.write_vtable_byte_length(vtable_byte_len as VOffsetT);
vtfw.write_object_inline_size(table_object_size as VOffsetT);
// serialize every FieldLoc to the vtable:
for &fl in self.field_locs.iter() {
let pos: VOffsetT = (object_revloc_to_vtable.value() - fl.off) as VOffsetT;
vtfw.write_field_offset(fl.id, pos);
}
}
let new_vt_bytes = &self.allocator[vt_start_pos.range_to(vt_end_pos)];
let found = self
.written_vtable_revpos
.binary_search_by(|old_vtable_revpos: &UOffsetT| {
let old_vtable_pos = self.allocator.len() - *old_vtable_revpos as usize;
// Safety:
// Already written vtables are valid by construction
let old_vtable = unsafe { VTable::init(&self.allocator, old_vtable_pos) };
new_vt_bytes.cmp(old_vtable.as_bytes())
});
let final_vtable_revpos = match found {
Ok(i) => {
// The new vtable is a duplicate so clear it.
VTableWriter::init(&mut self.allocator[vt_start_pos.range_to(vt_end_pos)]).clear();
self.head += vtable_byte_len;
self.written_vtable_revpos[i]
}
Err(i) => {
// This is a new vtable. Add it to the cache.
let new_vt_revpos = self.used_space() as UOffsetT;
self.written_vtable_revpos.insert(i, new_vt_revpos);
new_vt_revpos
}
};
// Write signed offset from table to its vtable.
let table_pos = self.allocator.len() - object_revloc_to_vtable.value() as usize;
if cfg!(debug_assertions) {
// Safety:
// Verified slice length
let tmp_soffset_to_vt = unsafe {
read_scalar::<UOffsetT>(&self.allocator[table_pos..table_pos + SIZE_UOFFSET])
};
assert_eq!(tmp_soffset_to_vt, 0xF0F0_F0F0);
}
let buf = &mut self.allocator[table_pos..table_pos + SIZE_SOFFSET];
// Safety:
// Verified length of buf above
unsafe {
emplace_scalar::<SOffsetT>(
buf,
final_vtable_revpos as SOffsetT - object_revloc_to_vtable.value() as SOffsetT,
);
}
self.field_locs.clear();
object_revloc_to_vtable
}
// Only call this when you know it is safe to double the size of the buffer.
#[inline]
fn grow_allocator(&mut self) {
let starting_active_size = self.used_space();
self.allocator
.grow_downwards()
.expect("Flatbuffer allocation failure");
let ending_active_size = self.used_space();
debug_assert_eq!(starting_active_size, ending_active_size);
}
// with or without a size prefix changes how we load the data, so finish*
// functions are split along those lines.
fn finish_with_opts<T>(
&mut self,
root: WIPOffset<T>,
file_identifier: Option<&str>,
size_prefixed: bool,
) {
self.assert_not_finished("buffer cannot be finished when it is already finished");
self.assert_not_nested(
"buffer cannot be finished when a table or vector is under construction",
);
self.written_vtable_revpos.clear();
let to_align = {
// for the root offset:
let a = SIZE_UOFFSET;
// for the size prefix:
let b = if size_prefixed { SIZE_UOFFSET } else { 0 };
// for the file identifier (a string that is not zero-terminated):
let c = if file_identifier.is_some() {
FILE_IDENTIFIER_LENGTH
} else {
0
};
a + b + c
};
{
let ma = PushAlignment::new(self.min_align);
self.align(to_align, ma);
}
if let Some(ident) = file_identifier {
debug_assert_eq!(ident.len(), FILE_IDENTIFIER_LENGTH);
self.push_bytes_unprefixed(ident.as_bytes());
}
self.push(root);
if size_prefixed {
let sz = self.used_space() as UOffsetT;
self.push::<UOffsetT>(sz);
}
self.finished = true;
}
#[inline]
fn align(&mut self, len: usize, alignment: PushAlignment) {
self.track_min_align(alignment.value());
let s = self.used_space() as usize;
self.make_space(padding_bytes(s + len, alignment.value()));
}
#[inline]
fn track_min_align(&mut self, alignment: usize) {
self.min_align = max(self.min_align, alignment);
}
#[inline]
fn push_bytes_unprefixed(&mut self, x: &[u8]) -> UOffsetT {
let n = self.make_space(x.len());
self.allocator[n.range_to(n + x.len())].copy_from_slice(x);
n.to_forward_index(&self.allocator) as UOffsetT
}
#[inline]
fn make_space(&mut self, want: usize) -> ReverseIndex {
self.ensure_capacity(want);
self.head -= want;
self.head
}
#[inline]
fn ensure_capacity(&mut self, want: usize) -> usize {
if self.unused_ready_space() >= want {
return want;
}
assert!(
want <= FLATBUFFERS_MAX_BUFFER_SIZE,
"cannot grow buffer beyond 2 gigabytes"
);
while self.unused_ready_space() < want {
self.grow_allocator();
}
want
}
#[inline]
fn unused_ready_space(&self) -> usize {
self.allocator.len() - self.head.distance_to_end()
}
#[inline]
fn assert_nested(&self, fn_name: &'static str) {
// we don't assert that self.field_locs.len() >0 because the vtable
// could be empty (e.g. for empty tables, or for all-default values).
debug_assert!(
self.nested,
"incorrect FlatBufferBuilder usage: {} must be called while in a nested state",
fn_name
);
}
#[inline]
fn assert_not_nested(&self, msg: &'static str) {
debug_assert!(!self.nested, "{}", msg);
}
#[inline]
fn assert_finished(&self, msg: &'static str) {
debug_assert!(self.finished, "{}", msg);
}
#[inline]
fn assert_not_finished(&self, msg: &'static str) {
debug_assert!(!self.finished, "{}", msg);
}
}
/// Compute the length of the vtable needed to represent the provided FieldLocs.
/// If there are no FieldLocs, then provide the minimum number of bytes
/// required: enough to write the VTable header.
#[inline]
fn get_vtable_byte_len(field_locs: &[FieldLoc]) -> usize {
let max_voffset = field_locs.iter().map(|fl| fl.id).max();
match max_voffset {
None => field_index_to_field_offset(0) as usize,
Some(mv) => mv as usize + SIZE_VOFFSET,
}
}
#[inline]
fn padding_bytes(buf_size: usize, scalar_size: usize) -> usize {
// ((!buf_size) + 1) & (scalar_size - 1)
(!buf_size).wrapping_add(1) & (scalar_size.wrapping_sub(1))
}
impl<'fbb> Default for FlatBufferBuilder<'fbb> {
fn default() -> Self {
Self::with_capacity(0)
}
}
/// An index that indexes from the reverse of a slice.
///
/// Note that while the internal representation is an index
/// from the end of a buffer, operations like `Add` and `Sub`
/// behave like a regular index:
///
/// # Examples
///
/// ```ignore
/// let buf = [0, 1, 2, 3, 4, 5];
/// let idx = ReverseIndex::end() - 2;
/// assert_eq!(&buf[idx.range_to_end()], &[4, 5]);
/// assert_eq!(idx.to_forward_index(&buf), 4);
/// ```
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct ReverseIndex(usize);
impl ReverseIndex {
/// Returns an index set to the end.
///
/// Note: Indexing this will result in an out of bounds error.
pub fn end() -> Self {
Self(0)
}
/// Returns a struct equivalent to the range `self..`
pub fn range_to_end(self) -> ReverseIndexRange {
ReverseIndexRange(self, ReverseIndex::end())
}
/// Returns a struct equivalent to the range `self..end`
pub fn range_to(self, end: ReverseIndex) -> ReverseIndexRange {
ReverseIndexRange(self, end)
}
/// Transforms this reverse index into a regular index for the given buffer.
pub fn to_forward_index<T>(self, buf: &[T]) -> usize {
buf.len() - self.0
}
/// Returns the number of elements until the end of the range.
pub fn distance_to_end(&self) -> usize {
self.0
}
}
impl Sub<usize> for ReverseIndex {
type Output = Self;
fn sub(self, rhs: usize) -> Self::Output {
Self(self.0 + rhs)
}
}
impl SubAssign<usize> for ReverseIndex {
fn sub_assign(&mut self, rhs: usize) {
*self = *self - rhs;
}
}
impl Add<usize> for ReverseIndex {
type Output = Self;
fn add(self, rhs: usize) -> Self::Output {
Self(self.0 - rhs)
}
}
impl AddAssign<usize> for ReverseIndex {
fn add_assign(&mut self, rhs: usize) {
*self = *self + rhs;
}
}
impl<T> Index<ReverseIndex> for [T] {
type Output = T;
fn index(&self, index: ReverseIndex) -> &Self::Output {
let index = index.to_forward_index(self);
&self[index]
}
}
impl<T> IndexMut<ReverseIndex> for [T] {
fn index_mut(&mut self, index: ReverseIndex) -> &mut Self::Output {
let index = index.to_forward_index(self);
&mut self[index]
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct ReverseIndexRange(ReverseIndex, ReverseIndex);
impl<T> Index<ReverseIndexRange> for [T] {
type Output = [T];
fn index(&self, index: ReverseIndexRange) -> &Self::Output {
let start = index.0.to_forward_index(self);
let end = index.1.to_forward_index(self);
&self[start..end]
}
}
impl<T> IndexMut<ReverseIndexRange> for [T] {
fn index_mut(&mut self, index: ReverseIndexRange) -> &mut Self::Output {
let start = index.0.to_forward_index(self);
let end = index.1.to_forward_index(self);
&mut self[start..end]
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn reverse_index_test() {
let buf = [0, 1, 2, 3, 4, 5];
let idx = ReverseIndex::end() - 2;
assert_eq!(&buf[idx.range_to_end()], &[4, 5]);
assert_eq!(&buf[idx.range_to(idx + 1)], &[4]);
assert_eq!(idx.to_forward_index(&buf), 4);
}
}