flatbuffers/
builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/*
 * Copyright 2018 Google Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#[cfg(not(feature = "std"))]
use alloc::{vec, vec::Vec};
use core::cmp::max;
use core::convert::Infallible;
use core::fmt::{Debug, Display};
use core::iter::{DoubleEndedIterator, ExactSizeIterator};
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Sub, SubAssign};
use core::ptr::write_bytes;

use crate::endian_scalar::emplace_scalar;
use crate::primitives::*;
use crate::push::{Push, PushAlignment};
use crate::read_scalar;
use crate::table::Table;
use crate::vector::Vector;
use crate::vtable::{field_index_to_field_offset, VTable};
use crate::vtable_writer::VTableWriter;

/// Trait to implement custom allocation strategies for [`FlatBufferBuilder`].
///
/// An implementation can be used with [`FlatBufferBuilder::new_in`], enabling a custom allocation
/// strategy for the [`FlatBufferBuilder`].
///
/// # Safety
///
/// The implementation of the allocator must match the defined behavior as described by the
/// comments.
pub unsafe trait Allocator: DerefMut<Target = [u8]> {
    /// A type describing allocation failures
    type Error: Display + Debug;
    /// Grows the buffer, with the old contents being moved to the end.
    ///
    /// NOTE: While not unsound, an implementation that doesn't grow the
    /// internal buffer will get stuck in an infinite loop.
    fn grow_downwards(&mut self) -> Result<(), Self::Error>;

    /// Returns the size of the internal buffer in bytes.
    fn len(&self) -> usize;
}

/// Default [`FlatBufferBuilder`] allocator backed by a [`Vec<u8>`].
#[derive(Default)]
pub struct DefaultAllocator(Vec<u8>);

impl DefaultAllocator {
    /// Builds the allocator from an existing buffer.
    pub fn from_vec(buffer: Vec<u8>) -> Self {
        Self(buffer)
    }
}

impl Deref for DefaultAllocator {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl DerefMut for DefaultAllocator {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

// SAFETY: The methods are implemented as described by the documentation.
unsafe impl Allocator for DefaultAllocator {
    type Error = Infallible;
    fn grow_downwards(&mut self) -> Result<(), Self::Error> {
        let old_len = self.0.len();
        let new_len = max(1, old_len * 2);

        self.0.resize(new_len, 0);

        if new_len == 1 {
            return Ok(());
        }

        // calculate the midpoint, and safely copy the old end data to the new
        // end position:
        let middle = new_len / 2;
        {
            let (left, right) = &mut self.0[..].split_at_mut(middle);
            right.copy_from_slice(left);
        }
        // finally, zero out the old end data.
        {
            let ptr = self.0[..middle].as_mut_ptr();
            // Safety:
            // ptr is byte aligned and of length middle
            unsafe {
                write_bytes(ptr, 0, middle);
            }
        }
        Ok(())
    }

    fn len(&self) -> usize {
        self.0.len()
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct FieldLoc {
    off: UOffsetT,
    id: VOffsetT,
}

/// FlatBufferBuilder builds a FlatBuffer through manipulating its internal
/// state. It has an owned `Vec<u8>` that grows as needed (up to the hardcoded
/// limit of 2GiB, which is set by the FlatBuffers format).
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct FlatBufferBuilder<'fbb, A: Allocator = DefaultAllocator> {
    allocator: A,
    head: ReverseIndex,

    field_locs: Vec<FieldLoc>,
    written_vtable_revpos: Vec<UOffsetT>,

    nested: bool,
    finished: bool,

    min_align: usize,
    force_defaults: bool,
    strings_pool: Vec<WIPOffset<&'fbb str>>,

    _phantom: PhantomData<&'fbb ()>,
}

impl<'fbb> FlatBufferBuilder<'fbb, DefaultAllocator> {
    /// Create a FlatBufferBuilder that is ready for writing.
    pub fn new() -> Self {
        Self::with_capacity(0)
    }
    #[deprecated(note = "replaced with `with_capacity`", since = "0.8.5")]
    pub fn new_with_capacity(size: usize) -> Self {
        Self::with_capacity(size)
    }
    /// Create a FlatBufferBuilder that is ready for writing, with a
    /// ready-to-use capacity of the provided size.
    ///
    /// The maximum valid value is `FLATBUFFERS_MAX_BUFFER_SIZE`.
    pub fn with_capacity(size: usize) -> Self {
        Self::from_vec(vec![0; size])
    }
    /// Create a FlatBufferBuilder that is ready for writing, reusing
    /// an existing vector.
    pub fn from_vec(buffer: Vec<u8>) -> Self {
        // we need to check the size here because we create the backing buffer
        // directly, bypassing the typical way of using grow_allocator:
        assert!(
            buffer.len() <= FLATBUFFERS_MAX_BUFFER_SIZE,
            "cannot initialize buffer bigger than 2 gigabytes"
        );
        let allocator = DefaultAllocator::from_vec(buffer);
        Self::new_in(allocator)
    }

    /// Destroy the FlatBufferBuilder, returning its internal byte vector
    /// and the index into it that represents the start of valid data.
    pub fn collapse(self) -> (Vec<u8>, usize) {
        let index = self.head.to_forward_index(&self.allocator);
        (self.allocator.0, index)
    }
}

impl<'fbb, A: Allocator> FlatBufferBuilder<'fbb, A> {
    /// Create a [`FlatBufferBuilder`] that is ready for writing with a custom [`Allocator`].
    pub fn new_in(allocator: A) -> Self {
        let head = ReverseIndex::end();
        FlatBufferBuilder {
            allocator,
            head,

            field_locs: Vec::new(),
            written_vtable_revpos: Vec::new(),

            nested: false,
            finished: false,

            min_align: 0,
            force_defaults: false,
            strings_pool: Vec::new(),

            _phantom: PhantomData,
        }
    }

    /// Destroy the [`FlatBufferBuilder`], returning its [`Allocator`] and the index
    /// into it that represents the start of valid data.
    pub fn collapse_in(self) -> (A, usize) {
        let index = self.head.to_forward_index(&self.allocator);
        (self.allocator, index)
    }

    /// Reset the FlatBufferBuilder internal state. Use this method after a
    /// call to a `finish` function in order to re-use a FlatBufferBuilder.
    ///
    /// This function is the only way to reset the `finished` state and start
    /// again.
    ///
    /// If you are using a FlatBufferBuilder repeatedly, make sure to use this
    /// function, because it re-uses the FlatBufferBuilder's existing
    /// heap-allocated `Vec<u8>` internal buffer. This offers significant speed
    /// improvements as compared to creating a new FlatBufferBuilder for every
    /// new object.
    pub fn reset(&mut self) {
        // memset only the part of the buffer that could be dirty:
        self.allocator[self.head.range_to_end()]
            .iter_mut()
            .for_each(|x| *x = 0);

        self.head = ReverseIndex::end();
        self.written_vtable_revpos.clear();

        self.nested = false;
        self.finished = false;

        self.min_align = 0;
        self.strings_pool.clear();
    }

    /// Push a Push'able value onto the front of the in-progress data.
    ///
    /// This function uses traits to provide a unified API for writing
    /// scalars, tables, vectors, and WIPOffsets.
    #[inline]
    pub fn push<P: Push>(&mut self, x: P) -> WIPOffset<P::Output> {
        let sz = P::size();
        self.align(sz, P::alignment());
        self.make_space(sz);
        {
            let (dst, rest) = self.allocator[self.head.range_to_end()].split_at_mut(sz);
            // Safety:
            // Called make_space above
            unsafe { x.push(dst, rest.len()) };
        }
        WIPOffset::new(self.used_space() as UOffsetT)
    }

    /// Push a Push'able value onto the front of the in-progress data, and
    /// store a reference to it in the in-progress vtable. If the value matches
    /// the default, then this is a no-op.
    #[inline]
    pub fn push_slot<X: Push + PartialEq>(&mut self, slotoff: VOffsetT, x: X, default: X) {
        self.assert_nested("push_slot");
        if x != default || self.force_defaults {
            self.push_slot_always(slotoff, x);
        }
    }

    /// Push a Push'able value onto the front of the in-progress data, and
    /// store a reference to it in the in-progress vtable.
    #[inline]
    pub fn push_slot_always<X: Push>(&mut self, slotoff: VOffsetT, x: X) {
        self.assert_nested("push_slot_always");
        let off = self.push(x);
        self.track_field(slotoff, off.value());
    }

    /// Retrieve the number of vtables that have been serialized into the
    /// FlatBuffer. This is primarily used to check vtable deduplication.
    #[inline]
    pub fn num_written_vtables(&self) -> usize {
        self.written_vtable_revpos.len()
    }

    /// Start a Table write.
    ///
    /// Asserts that the builder is not in a nested state.
    ///
    /// Users probably want to use `push_slot` to add values after calling this.
    #[inline]
    pub fn start_table(&mut self) -> WIPOffset<TableUnfinishedWIPOffset> {
        self.assert_not_nested(
            "start_table can not be called when a table or vector is under construction",
        );
        self.nested = true;

        WIPOffset::new(self.used_space() as UOffsetT)
    }

    /// End a Table write.
    ///
    /// Asserts that the builder is in a nested state.
    #[inline]
    pub fn end_table(
        &mut self,
        off: WIPOffset<TableUnfinishedWIPOffset>,
    ) -> WIPOffset<TableFinishedWIPOffset> {
        self.assert_nested("end_table");

        let o = self.write_vtable(off);

        self.nested = false;
        self.field_locs.clear();

        WIPOffset::new(o.value())
    }

    /// Start a Vector write.
    ///
    /// Asserts that the builder is not in a nested state.
    ///
    /// Most users will prefer to call `create_vector`.
    /// Speed optimizing users who choose to create vectors manually using this
    /// function will want to use `push` to add values.
    #[inline]
    pub fn start_vector<T: Push>(&mut self, num_items: usize) {
        self.assert_not_nested(
            "start_vector can not be called when a table or vector is under construction",
        );
        self.nested = true;
        self.align(num_items * T::size(), T::alignment().max_of(SIZE_UOFFSET));
    }

    /// End a Vector write.
    ///
    /// Note that the `num_elems` parameter is the number of written items, not
    /// the byte count.
    ///
    /// Asserts that the builder is in a nested state.
    #[inline]
    pub fn end_vector<T: Push>(&mut self, num_elems: usize) -> WIPOffset<Vector<'fbb, T>> {
        self.assert_nested("end_vector");
        self.nested = false;
        let o = self.push::<UOffsetT>(num_elems as UOffsetT);
        WIPOffset::new(o.value())
    }

    #[inline]
    pub fn create_shared_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
        self.assert_not_nested(
            "create_shared_string can not be called when a table or vector is under construction",
        );

        // Saves a ref to allocator since rust doesnt like us refrencing it
        // in the binary_search_by code.
        let buf = &self.allocator;

        let found = self.strings_pool.binary_search_by(|offset| {
            let ptr = offset.value() as usize;
            // Gets The pointer to the size of the string
            let str_memory = &buf[buf.len() - ptr..];
            // Gets the size of the written string from buffer
            let size =
                u32::from_le_bytes([str_memory[0], str_memory[1], str_memory[2], str_memory[3]])
                    as usize;
            // Size of the string size
            let string_size: usize = 4;
            // Fetches actual string bytes from index of string after string size
            // to the size of string plus string size
            let iter = str_memory[string_size..size + string_size].iter();
            // Compares bytes of fetched string and current writable string
            iter.cloned().cmp(s.bytes())
        });

        match found {
            Ok(index) => self.strings_pool[index],
            Err(index) => {
                let address = WIPOffset::new(self.create_byte_string(s.as_bytes()).value());
                self.strings_pool.insert(index, address);
                address
            }
        }
    }

    /// Create a utf8 string.
    ///
    /// The wire format represents this as a zero-terminated byte vector.
    #[inline]
    pub fn create_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
        self.assert_not_nested(
            "create_string can not be called when a table or vector is under construction",
        );
        WIPOffset::new(self.create_byte_string(s.as_bytes()).value())
    }

    /// Create a zero-terminated byte vector.
    #[inline]
    pub fn create_byte_string(&mut self, data: &[u8]) -> WIPOffset<&'fbb [u8]> {
        self.assert_not_nested(
            "create_byte_string can not be called when a table or vector is under construction",
        );
        self.align(data.len() + 1, PushAlignment::new(SIZE_UOFFSET));
        self.push(0u8);
        self.push_bytes_unprefixed(data);
        self.push(data.len() as UOffsetT);
        WIPOffset::new(self.used_space() as UOffsetT)
    }

    /// Create a vector of Push-able objects.
    ///
    /// Speed-sensitive users may wish to reduce memory usage by creating the
    /// vector manually: use `start_vector`, `push`, and `end_vector`.
    #[inline]
    pub fn create_vector<'a: 'b, 'b, T: Push + 'b>(
        &'a mut self,
        items: &'b [T],
    ) -> WIPOffset<Vector<'fbb, T::Output>> {
        let elem_size = T::size();
        let slice_size = items.len() * elem_size;
        self.align(slice_size, T::alignment().max_of(SIZE_UOFFSET));
        self.ensure_capacity(slice_size + UOffsetT::size());

        self.head -= slice_size;
        let mut written_len = self.head.distance_to_end();

        let buf = &mut self.allocator[self.head.range_to(self.head + slice_size)];
        for (item, out) in items.iter().zip(buf.chunks_exact_mut(elem_size)) {
            written_len -= elem_size;

            // Safety:
            // Called ensure_capacity and aligned to T above
            unsafe { item.push(out, written_len) };
        }

        WIPOffset::new(self.push::<UOffsetT>(items.len() as UOffsetT).value())
    }

    /// Create a vector of Push-able objects.
    ///
    /// Speed-sensitive users may wish to reduce memory usage by creating the
    /// vector manually: use `start_vector`, `push`, and `end_vector`.
    #[inline]
    pub fn create_vector_from_iter<T: Push>(
        &mut self,
        items: impl ExactSizeIterator<Item = T> + DoubleEndedIterator,
    ) -> WIPOffset<Vector<'fbb, T::Output>> {
        let elem_size = T::size();
        self.align(items.len() * elem_size, T::alignment().max_of(SIZE_UOFFSET));
        let mut actual = 0;
        for item in items.rev() {
            self.push(item);
            actual += 1;
        }
        WIPOffset::new(self.push::<UOffsetT>(actual).value())
    }

    /// Set whether default values are stored.
    ///
    /// In order to save space, fields that are set to their default value
    /// aren't stored in the buffer. Setting `force_defaults` to `true`
    /// disables this optimization.
    ///
    /// By default, `force_defaults` is `false`.
    #[inline]
    pub fn force_defaults(&mut self, force_defaults: bool) {
        self.force_defaults = force_defaults;
    }

    /// Get the byte slice for the data that has been written, regardless of
    /// whether it has been finished.
    #[inline]
    pub fn unfinished_data(&self) -> &[u8] {
        &self.allocator[self.head.range_to_end()]
    }
    /// Get the byte slice for the data that has been written after a call to
    /// one of the `finish` functions.
    /// # Panics
    /// Panics if the buffer is not finished.
    #[inline]
    pub fn finished_data(&self) -> &[u8] {
        self.assert_finished("finished_bytes cannot be called when the buffer is not yet finished");
        &self.allocator[self.head.range_to_end()]
    }
    /// Returns a mutable view of a finished buffer and location of where the flatbuffer starts.
    /// Note that modifying the flatbuffer data may corrupt it.
    /// # Panics
    /// Panics if the flatbuffer is not finished.
    #[inline]
    pub fn mut_finished_buffer(&mut self) -> (&mut [u8], usize) {
        let index = self.head.to_forward_index(&self.allocator);
        (&mut self.allocator[..], index)
    }
    /// Assert that a field is present in the just-finished Table.
    ///
    /// This is somewhat low-level and is mostly used by the generated code.
    #[inline]
    pub fn required(
        &self,
        tab_revloc: WIPOffset<TableFinishedWIPOffset>,
        slot_byte_loc: VOffsetT,
        assert_msg_name: &'static str,
    ) {
        let idx = self.used_space() - tab_revloc.value() as usize;

        // Safety:
        // The value of TableFinishedWIPOffset is the offset from the end of the allocator
        // to an SOffsetT pointing to a valid VTable
        //
        // `self.allocator.len() = self.used_space() + self.head`
        // `self.allocator.len() - tab_revloc = self.used_space() - tab_revloc + self.head`
        // `self.allocator.len() - tab_revloc = idx + self.head`
        let tab = unsafe { Table::new(&self.allocator[self.head.range_to_end()], idx) };
        let o = tab.vtable().get(slot_byte_loc) as usize;
        assert!(o != 0, "missing required field {}", assert_msg_name);
    }

    /// Finalize the FlatBuffer by: aligning it, pushing an optional file
    /// identifier on to it, pushing a size prefix on to it, and marking the
    /// internal state of the FlatBufferBuilder as `finished`. Afterwards,
    /// users can call `finished_data` to get the resulting data.
    #[inline]
    pub fn finish_size_prefixed<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
        self.finish_with_opts(root, file_identifier, true);
    }

    /// Finalize the FlatBuffer by: aligning it, pushing an optional file
    /// identifier on to it, and marking the internal state of the
    /// FlatBufferBuilder as `finished`. Afterwards, users can call
    /// `finished_data` to get the resulting data.
    #[inline]
    pub fn finish<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
        self.finish_with_opts(root, file_identifier, false);
    }

    /// Finalize the FlatBuffer by: aligning it and marking the internal state
    /// of the FlatBufferBuilder as `finished`. Afterwards, users can call
    /// `finished_data` to get the resulting data.
    #[inline]
    pub fn finish_minimal<T>(&mut self, root: WIPOffset<T>) {
        self.finish_with_opts(root, None, false);
    }

    #[inline]
    fn used_space(&self) -> usize {
        self.head.distance_to_end()
    }

    #[inline]
    fn track_field(&mut self, slot_off: VOffsetT, off: UOffsetT) {
        let fl = FieldLoc { id: slot_off, off };
        self.field_locs.push(fl);
    }

    /// Write the VTable, if it is new.
    fn write_vtable(
        &mut self,
        table_tail_revloc: WIPOffset<TableUnfinishedWIPOffset>,
    ) -> WIPOffset<VTableWIPOffset> {
        self.assert_nested("write_vtable");

        // Write the vtable offset, which is the start of any Table.
        // We fill its value later.
        let object_revloc_to_vtable: WIPOffset<VTableWIPOffset> =
            WIPOffset::new(self.push::<UOffsetT>(0xF0F0_F0F0).value());

        // Layout of the data this function will create when a new vtable is
        // needed.
        // --------------------------------------------------------------------
        // vtable starts here
        // | x, x -- vtable len (bytes) [u16]
        // | x, x -- object inline len (bytes) [u16]
        // | x, x -- zero, or num bytes from start of object to field #0   [u16]
        // | ...
        // | x, x -- zero, or num bytes from start of object to field #n-1 [u16]
        // vtable ends here
        // table starts here
        // | x, x, x, x -- offset (negative direction) to the vtable [i32]
        // |               aka "vtableoffset"
        // | -- table inline data begins here, we don't touch it --
        // table ends here -- aka "table_start"
        // --------------------------------------------------------------------
        //
        // Layout of the data this function will create when we re-use an
        // existing vtable.
        //
        // We always serialize this particular vtable, then compare it to the
        // other vtables we know about to see if there is a duplicate. If there
        // is, then we erase the serialized vtable we just made.
        // We serialize it first so that we are able to do byte-by-byte
        // comparisons with already-serialized vtables. This 1) saves
        // bookkeeping space (we only keep revlocs to existing vtables), 2)
        // allows us to convert to little-endian once, then do
        // fast memcmp comparisons, and 3) by ensuring we are comparing real
        // serialized vtables, we can be more assured that we are doing the
        // comparisons correctly.
        //
        // --------------------------------------------------------------------
        // table starts here
        // | x, x, x, x -- offset (negative direction) to an existing vtable [i32]
        // |               aka "vtableoffset"
        // | -- table inline data begins here, we don't touch it --
        // table starts here: aka "table_start"
        // --------------------------------------------------------------------

        // fill the WIP vtable with zeros:
        let vtable_byte_len = get_vtable_byte_len(&self.field_locs);
        self.make_space(vtable_byte_len);

        // compute the length of the table (not vtable!) in bytes:
        let table_object_size = object_revloc_to_vtable.value() - table_tail_revloc.value();
        debug_assert!(table_object_size < 0x10000); // vTable use 16bit offsets.

        // Write the VTable (we may delete it afterwards, if it is a duplicate):
        let vt_start_pos = self.head;
        let vt_end_pos = self.head + vtable_byte_len;
        {
            // write the vtable header:
            let vtfw =
                &mut VTableWriter::init(&mut self.allocator[vt_start_pos.range_to(vt_end_pos)]);
            vtfw.write_vtable_byte_length(vtable_byte_len as VOffsetT);
            vtfw.write_object_inline_size(table_object_size as VOffsetT);

            // serialize every FieldLoc to the vtable:
            for &fl in self.field_locs.iter() {
                let pos: VOffsetT = (object_revloc_to_vtable.value() - fl.off) as VOffsetT;
                vtfw.write_field_offset(fl.id, pos);
            }
        }
        let new_vt_bytes = &self.allocator[vt_start_pos.range_to(vt_end_pos)];
        let found = self
            .written_vtable_revpos
            .binary_search_by(|old_vtable_revpos: &UOffsetT| {
                let old_vtable_pos = self.allocator.len() - *old_vtable_revpos as usize;
                // Safety:
                // Already written vtables are valid by construction
                let old_vtable = unsafe { VTable::init(&self.allocator, old_vtable_pos) };
                new_vt_bytes.cmp(old_vtable.as_bytes())
            });
        let final_vtable_revpos = match found {
            Ok(i) => {
                // The new vtable is a duplicate so clear it.
                VTableWriter::init(&mut self.allocator[vt_start_pos.range_to(vt_end_pos)]).clear();
                self.head += vtable_byte_len;
                self.written_vtable_revpos[i]
            }
            Err(i) => {
                // This is a new vtable. Add it to the cache.
                let new_vt_revpos = self.used_space() as UOffsetT;
                self.written_vtable_revpos.insert(i, new_vt_revpos);
                new_vt_revpos
            }
        };
        // Write signed offset from table to its vtable.
        let table_pos = self.allocator.len() - object_revloc_to_vtable.value() as usize;
        if cfg!(debug_assertions) {
            // Safety:
            // Verified slice length
            let tmp_soffset_to_vt = unsafe {
                read_scalar::<UOffsetT>(&self.allocator[table_pos..table_pos + SIZE_UOFFSET])
            };
            assert_eq!(tmp_soffset_to_vt, 0xF0F0_F0F0);
        }

        let buf = &mut self.allocator[table_pos..table_pos + SIZE_SOFFSET];
        // Safety:
        // Verified length of buf above
        unsafe {
            emplace_scalar::<SOffsetT>(
                buf,
                final_vtable_revpos as SOffsetT - object_revloc_to_vtable.value() as SOffsetT,
            );
        }

        self.field_locs.clear();

        object_revloc_to_vtable
    }

    // Only call this when you know it is safe to double the size of the buffer.
    #[inline]
    fn grow_allocator(&mut self) {
        let starting_active_size = self.used_space();
        self.allocator
            .grow_downwards()
            .expect("Flatbuffer allocation failure");

        let ending_active_size = self.used_space();
        debug_assert_eq!(starting_active_size, ending_active_size);
    }

    // with or without a size prefix changes how we load the data, so finish*
    // functions are split along those lines.
    fn finish_with_opts<T>(
        &mut self,
        root: WIPOffset<T>,
        file_identifier: Option<&str>,
        size_prefixed: bool,
    ) {
        self.assert_not_finished("buffer cannot be finished when it is already finished");
        self.assert_not_nested(
            "buffer cannot be finished when a table or vector is under construction",
        );
        self.written_vtable_revpos.clear();

        let to_align = {
            // for the root offset:
            let a = SIZE_UOFFSET;
            // for the size prefix:
            let b = if size_prefixed { SIZE_UOFFSET } else { 0 };
            // for the file identifier (a string that is not zero-terminated):
            let c = if file_identifier.is_some() {
                FILE_IDENTIFIER_LENGTH
            } else {
                0
            };
            a + b + c
        };

        {
            let ma = PushAlignment::new(self.min_align);
            self.align(to_align, ma);
        }

        if let Some(ident) = file_identifier {
            debug_assert_eq!(ident.len(), FILE_IDENTIFIER_LENGTH);
            self.push_bytes_unprefixed(ident.as_bytes());
        }

        self.push(root);

        if size_prefixed {
            let sz = self.used_space() as UOffsetT;
            self.push::<UOffsetT>(sz);
        }
        self.finished = true;
    }

    #[inline]
    fn align(&mut self, len: usize, alignment: PushAlignment) {
        self.track_min_align(alignment.value());
        let s = self.used_space() as usize;
        self.make_space(padding_bytes(s + len, alignment.value()));
    }

    #[inline]
    fn track_min_align(&mut self, alignment: usize) {
        self.min_align = max(self.min_align, alignment);
    }

    #[inline]
    fn push_bytes_unprefixed(&mut self, x: &[u8]) -> UOffsetT {
        let n = self.make_space(x.len());
        self.allocator[n.range_to(n + x.len())].copy_from_slice(x);

        n.to_forward_index(&self.allocator) as UOffsetT
    }

    #[inline]
    fn make_space(&mut self, want: usize) -> ReverseIndex {
        self.ensure_capacity(want);
        self.head -= want;
        self.head
    }

    #[inline]
    fn ensure_capacity(&mut self, want: usize) -> usize {
        if self.unused_ready_space() >= want {
            return want;
        }
        assert!(
            want <= FLATBUFFERS_MAX_BUFFER_SIZE,
            "cannot grow buffer beyond 2 gigabytes"
        );

        while self.unused_ready_space() < want {
            self.grow_allocator();
        }
        want
    }
    #[inline]
    fn unused_ready_space(&self) -> usize {
        self.allocator.len() - self.head.distance_to_end()
    }
    #[inline]
    fn assert_nested(&self, fn_name: &'static str) {
        // we don't assert that self.field_locs.len() >0 because the vtable
        // could be empty (e.g. for empty tables, or for all-default values).
        debug_assert!(
            self.nested,
            "incorrect FlatBufferBuilder usage: {} must be called while in a nested state",
            fn_name
        );
    }
    #[inline]
    fn assert_not_nested(&self, msg: &'static str) {
        debug_assert!(!self.nested, "{}", msg);
    }
    #[inline]
    fn assert_finished(&self, msg: &'static str) {
        debug_assert!(self.finished, "{}", msg);
    }
    #[inline]
    fn assert_not_finished(&self, msg: &'static str) {
        debug_assert!(!self.finished, "{}", msg);
    }
}

/// Compute the length of the vtable needed to represent the provided FieldLocs.
/// If there are no FieldLocs, then provide the minimum number of bytes
/// required: enough to write the VTable header.
#[inline]
fn get_vtable_byte_len(field_locs: &[FieldLoc]) -> usize {
    let max_voffset = field_locs.iter().map(|fl| fl.id).max();
    match max_voffset {
        None => field_index_to_field_offset(0) as usize,
        Some(mv) => mv as usize + SIZE_VOFFSET,
    }
}

#[inline]
fn padding_bytes(buf_size: usize, scalar_size: usize) -> usize {
    // ((!buf_size) + 1) & (scalar_size - 1)
    (!buf_size).wrapping_add(1) & (scalar_size.wrapping_sub(1))
}

impl<'fbb> Default for FlatBufferBuilder<'fbb> {
    fn default() -> Self {
        Self::with_capacity(0)
    }
}

/// An index that indexes from the reverse of a slice.
///
/// Note that while the internal representation is an index
/// from the end of a buffer, operations like `Add` and `Sub`
/// behave like a regular index:
///
/// # Examples
///
/// ```ignore
/// let buf = [0, 1, 2, 3, 4, 5];
/// let idx = ReverseIndex::end() - 2;
/// assert_eq!(&buf[idx.range_to_end()], &[4, 5]);
/// assert_eq!(idx.to_forward_index(&buf), 4);
/// ```
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct ReverseIndex(usize);

impl ReverseIndex {
    /// Returns an index set to the end.
    ///
    /// Note: Indexing this will result in an out of bounds error.
    pub fn end() -> Self {
        Self(0)
    }

    /// Returns a struct equivalent to the range `self..`
    pub fn range_to_end(self) -> ReverseIndexRange {
        ReverseIndexRange(self, ReverseIndex::end())
    }

    /// Returns a struct equivalent to the range `self..end`
    pub fn range_to(self, end: ReverseIndex) -> ReverseIndexRange {
        ReverseIndexRange(self, end)
    }

    /// Transforms this reverse index into a regular index for the given buffer.
    pub fn to_forward_index<T>(self, buf: &[T]) -> usize {
        buf.len() - self.0
    }

    /// Returns the number of elements until the end of the range.
    pub fn distance_to_end(&self) -> usize {
        self.0
    }
}

impl Sub<usize> for ReverseIndex {
    type Output = Self;

    fn sub(self, rhs: usize) -> Self::Output {
        Self(self.0 + rhs)
    }
}

impl SubAssign<usize> for ReverseIndex {
    fn sub_assign(&mut self, rhs: usize) {
        *self = *self - rhs;
    }
}

impl Add<usize> for ReverseIndex {
    type Output = Self;

    fn add(self, rhs: usize) -> Self::Output {
        Self(self.0 - rhs)
    }
}

impl AddAssign<usize> for ReverseIndex {
    fn add_assign(&mut self, rhs: usize) {
        *self = *self + rhs;
    }
}
impl<T> Index<ReverseIndex> for [T] {
    type Output = T;

    fn index(&self, index: ReverseIndex) -> &Self::Output {
        let index = index.to_forward_index(self);
        &self[index]
    }
}

impl<T> IndexMut<ReverseIndex> for [T] {
    fn index_mut(&mut self, index: ReverseIndex) -> &mut Self::Output {
        let index = index.to_forward_index(self);
        &mut self[index]
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct ReverseIndexRange(ReverseIndex, ReverseIndex);

impl<T> Index<ReverseIndexRange> for [T] {
    type Output = [T];

    fn index(&self, index: ReverseIndexRange) -> &Self::Output {
        let start = index.0.to_forward_index(self);
        let end = index.1.to_forward_index(self);
        &self[start..end]
    }
}

impl<T> IndexMut<ReverseIndexRange> for [T] {
    fn index_mut(&mut self, index: ReverseIndexRange) -> &mut Self::Output {
        let start = index.0.to_forward_index(self);
        let end = index.1.to_forward_index(self);
        &mut self[start..end]
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn reverse_index_test() {
        let buf = [0, 1, 2, 3, 4, 5];
        let idx = ReverseIndex::end() - 2;
        assert_eq!(&buf[idx.range_to_end()], &[4, 5]);
        assert_eq!(&buf[idx.range_to(idx + 1)], &[4]);
        assert_eq!(idx.to_forward_index(&buf), 4);
    }
}