mz_compute_types/plan/
lowering.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Lowering [`DataflowDescription`]s from MIR ([`MirRelationExpr`]) to LIR ([`Plan`]).

use std::collections::BTreeMap;

use mz_expr::JoinImplementation::{DeltaQuery, Differential, IndexedFilter, Unimplemented};
use mz_expr::{
    permutation_for_arrangement, AggregateExpr, Id, JoinInputMapper, MapFilterProject,
    MirRelationExpr, MirScalarExpr, OptimizedMirRelationExpr, TableFunc,
};
use mz_ore::{assert_none, soft_assert_eq_or_log, soft_panic_or_log};
use mz_repr::optimize::OptimizerFeatures;
use mz_repr::GlobalId;
use timely::progress::Timestamp;

use crate::dataflows::{BuildDesc, DataflowDescription, IndexImport};
use crate::plan::join::{DeltaJoinPlan, JoinPlan, LinearJoinPlan};
use crate::plan::reduce::{KeyValPlan, ReducePlan};
use crate::plan::threshold::ThresholdPlan;
use crate::plan::top_k::TopKPlan;
use crate::plan::{AvailableCollections, GetPlan, LirId, Plan, PlanNode};

pub(super) struct Context {
    /// Known bindings to (possibly arranged) collections.
    arrangements: BTreeMap<Id, AvailableCollections>,
    /// Tracks the next available `LirId`.
    next_lir_id: LirId,
    /// Information to print along with error messages.
    debug_info: LirDebugInfo,
    /// Whether to enable fusion of MFPs in reductions.
    enable_reduce_mfp_fusion: bool,
}

impl Context {
    pub fn new(debug_name: String, features: &OptimizerFeatures) -> Self {
        Self {
            arrangements: Default::default(),
            next_lir_id: LirId(std::num::NonZero::<u64>::MIN),
            debug_info: LirDebugInfo {
                debug_name,
                id: GlobalId::Transient(0),
            },
            enable_reduce_mfp_fusion: features.enable_reduce_mfp_fusion,
        }
    }

    fn allocate_lir_id(&mut self) -> LirId {
        let id = self.next_lir_id;
        self.next_lir_id = LirId(
            self.next_lir_id
                .0
                .checked_add(1)
                .expect("No LirId overflow"),
        );
        id
    }

    pub fn lower<T: Timestamp>(
        mut self,
        desc: DataflowDescription<OptimizedMirRelationExpr>,
    ) -> Result<DataflowDescription<Plan<T>>, String> {
        // Sources might provide arranged forms of their data, in the future.
        // Indexes provide arranged forms of their data.
        for IndexImport {
            desc: index_desc,
            typ,
            ..
        } in desc.index_imports.values()
        {
            let key = index_desc.key.clone();
            // TODO[btv] - We should be told the permutation by
            // `index_desc`, and it should have been generated
            // at the same point the thinning logic was.
            //
            // We should for sure do that soon, but it requires
            // a bit of a refactor, so for now we just
            // _assume_ that they were both generated by `permutation_for_arrangement`,
            // and recover it here.
            let (permutation, thinning) = permutation_for_arrangement(&key, typ.arity());
            let index_keys = self
                .arrangements
                .entry(Id::Global(index_desc.on_id))
                .or_insert_with(AvailableCollections::default);
            index_keys.arranged.push((key, permutation, thinning));
            index_keys.types = Some(typ.column_types.clone());
        }
        for id in desc.source_imports.keys() {
            self.arrangements
                .entry(Id::Global(*id))
                .or_insert_with(AvailableCollections::new_raw);
        }

        // Build each object in order, registering the arrangements it forms.
        let mut objects_to_build = Vec::with_capacity(desc.objects_to_build.len());
        for build in desc.objects_to_build {
            self.debug_info.id = build.id;
            let (plan, keys) = self.lower_mir_expr(&build.plan)?;

            self.arrangements.insert(Id::Global(build.id), keys);
            objects_to_build.push(BuildDesc { id: build.id, plan });
        }

        Ok(DataflowDescription {
            source_imports: desc.source_imports,
            index_imports: desc.index_imports,
            objects_to_build,
            index_exports: desc.index_exports,
            sink_exports: desc.sink_exports,
            as_of: desc.as_of,
            until: desc.until,
            initial_storage_as_of: desc.initial_storage_as_of,
            refresh_schedule: desc.refresh_schedule,
            debug_name: desc.debug_name,
            time_dependence: desc.time_dependence,
        })
    }

    /// This method converts a MirRelationExpr into a plan that can be directly rendered.
    ///
    /// The rough structure is that we repeatedly extract map/filter/project operators
    /// from each expression we see, bundle them up as a `MapFilterProject` object, and
    /// then produce a plan for the combination of that with the next operator.
    ///
    /// The method accesses `self.arrangements`, which it will locally add to and remove from for
    /// `Let` bindings (by the end of the call it should contain the same bindings as when it
    /// started).
    ///
    /// The result of the method is both a `Plan`, but also a list of arrangements that
    /// are certain to be produced, which can be relied on by the next steps in the plan.
    /// Each of the arrangement keys is associated with an MFP that must be applied if that
    /// arrangement is used, to back out the permutation associated with that arrangement.
    ///
    /// An empty list of arrangement keys indicates that only a `Collection` stream can
    /// be assumed to exist.
    fn lower_mir_expr<T: Timestamp>(
        &mut self,
        expr: &MirRelationExpr,
    ) -> Result<(Plan<T>, AvailableCollections), String> {
        // This function is recursive and can overflow its stack, so grow it if
        // needed. The growth here is unbounded. Our general solution for this problem
        // is to use [`ore::stack::RecursionGuard`] to additionally limit the stack
        // depth. That however requires upstream error handling. This function is
        // currently called by the Coordinator after calls to `catalog_transact`,
        // and thus are not allowed to fail. Until that allows errors, we choose
        // to allow the unbounded growth here. We are though somewhat protected by
        // higher levels enforcing their own limits on stack depth (in the parser,
        // transformer/desugarer, and planner).
        mz_ore::stack::maybe_grow(|| self.lower_mir_expr_stack_safe(expr))
    }

    fn lower_mir_expr_stack_safe<T>(
        &mut self,
        expr: &MirRelationExpr,
    ) -> Result<(Plan<T>, AvailableCollections), String>
    where
        T: Timestamp,
    {
        // Extract a maximally large MapFilterProject from `expr`.
        // We will then try and push this in to the resulting expression.
        //
        // Importantly, `mfp` may contain temporal operators and not be a "safe" MFP.
        // While we would eventually like all plan stages to be able to absorb such
        // general operators, not all of them can.
        let (mut mfp, expr) = MapFilterProject::extract_from_expression(expr);
        // We attempt to plan what we have remaining, in the context of `mfp`.
        // We may not be able to do this, and must wrap some operators with a `Mfp` stage.
        let (mut plan, mut keys) = match expr {
            // These operators should have been extracted from the expression.
            MirRelationExpr::Map { .. } => {
                panic!("This operator should have been extracted");
            }
            MirRelationExpr::Filter { .. } => {
                panic!("This operator should have been extracted");
            }
            MirRelationExpr::Project { .. } => {
                panic!("This operator should have been extracted");
            }
            // These operators may not have been extracted, and need to result in a `Plan`.
            MirRelationExpr::Constant { rows, typ: _ } => {
                let lir_id = self.allocate_lir_id();
                let node = PlanNode::Constant {
                    rows: rows.clone().map(|rows| {
                        rows.into_iter()
                            .map(|(row, diff)| (row, T::minimum(), diff))
                            .collect()
                    }),
                };
                // The plan, not arranged in any way.
                (node.as_plan(lir_id), AvailableCollections::new_raw())
            }
            MirRelationExpr::Get { id, typ: _, .. } => {
                // This stage can absorb arbitrary MFP operators.
                let mut mfp = mfp.take();
                // If `mfp` is the identity, we can surface all imported arrangements.
                // Otherwise, we apply `mfp` and promise no arrangements.
                let mut in_keys = self
                    .arrangements
                    .get(id)
                    .cloned()
                    .unwrap_or_else(AvailableCollections::new_raw);

                // Seek out an arrangement key that might be constrained to a literal.
                // Note: this code has very little use nowadays, as its job was mostly taken over
                // by `LiteralConstraints` (see in the below longer comment).
                let key_val = in_keys
                    .arranged
                    .iter()
                    .filter_map(|key| {
                        mfp.literal_constraints(&key.0)
                            .map(|val| (key.clone(), val))
                    })
                    .max_by_key(|(key, _val)| key.0.len());

                // Determine the plan of action for the `Get` stage.
                let plan = if let Some(((key, permutation, thinning), val)) = &key_val {
                    // This code path used to handle looking up literals from indexes, but it's
                    // mostly deprecated, as this is nowadays performed by the `LiteralConstraints`
                    // MIR transform instead. However, it's still called in a couple of tricky
                    // special cases:
                    // - `LiteralConstraints` handles only Gets of global ids, so this code still
                    //   gets to handle Filters on top of Gets of local ids.
                    // - Lowering does a `MapFilterProject::extract_from_expression`, while
                    //   `LiteralConstraints` does
                    //   `MapFilterProject::extract_non_errors_from_expr_mut`.
                    // - It might happen that new literal constraint optimization opportunities
                    //   appear somewhere near the end of the MIR optimizer after
                    //   `LiteralConstraints` has already run.
                    // (Also note that a similar literal constraint handling machinery is also
                    // present when handling the leftover MFP after this big match.)
                    mfp.permute_fn(|c| permutation[c], thinning.len() + key.len());
                    in_keys.arranged = vec![(key.clone(), permutation.clone(), thinning.clone())];
                    GetPlan::Arrangement(key.clone(), Some(val.clone()), mfp)
                } else if !mfp.is_identity() {
                    // We need to ensure a collection exists, which means we must form it.
                    if let Some((key, permutation, thinning)) =
                        in_keys.arbitrary_arrangement().cloned()
                    {
                        mfp.permute_fn(|c| permutation[c], thinning.len() + key.len());
                        in_keys.arranged = vec![(key.clone(), permutation, thinning)];
                        GetPlan::Arrangement(key, None, mfp)
                    } else {
                        GetPlan::Collection(mfp)
                    }
                } else {
                    // By default, just pass input arrangements through.
                    GetPlan::PassArrangements
                };

                let out_keys = if let GetPlan::PassArrangements = plan {
                    in_keys.clone()
                } else {
                    AvailableCollections::new_raw()
                };

                let lir_id = self.allocate_lir_id();
                let node = PlanNode::Get {
                    id: id.clone(),
                    keys: in_keys,
                    plan,
                };
                // Return the plan, and any keys if an identity `mfp`.
                (node.as_plan(lir_id), out_keys)
            }
            MirRelationExpr::Let { id, value, body } => {
                // It would be unfortunate to have a non-trivial `mfp` here, as we hope
                // that they would be pushed down. I am not sure if we should take the
                // initiative to push down the `mfp` ourselves.

                // Plan the value using only the initial arrangements, but
                // introduce any resulting arrangements bound to `id`.
                let (value, v_keys) = self.lower_mir_expr(value)?;
                let pre_existing = self.arrangements.insert(Id::Local(*id), v_keys);
                assert_none!(pre_existing);
                // Plan the body using initial and `value` arrangements,
                // and then remove reference to the value arrangements.
                let (body, b_keys) = self.lower_mir_expr(body)?;
                self.arrangements.remove(&Id::Local(*id));
                // Return the plan, and any `body` arrangements.
                let lir_id = self.allocate_lir_id();
                (
                    PlanNode::Let {
                        id: id.clone(),
                        value: Box::new(value),
                        body: Box::new(body),
                    }
                    .as_plan(lir_id),
                    b_keys,
                )
            }
            MirRelationExpr::LetRec {
                ids,
                values,
                limits,
                body,
            } => {
                assert_eq!(ids.len(), values.len());
                assert_eq!(ids.len(), limits.len());
                // Plan the values using only the available arrangements, but
                // introduce any resulting arrangements bound to each `id`.
                // Arrangements made available cannot be used by prior bindings,
                // as we cannot circulate an arrangement through a `Variable` yet.
                let mut lir_values = Vec::with_capacity(values.len());
                for (id, value) in ids.iter().zip(values) {
                    let (mut lir_value, mut v_keys) = self.lower_mir_expr(value)?;
                    // If `v_keys` does not contain an unarranged collection, we must form it.
                    if !v_keys.raw {
                        // Choose an "arbitrary" arrangement; TODO: prefer a specific one.
                        let (input_key, permutation, thinning) =
                            v_keys.arbitrary_arrangement().unwrap();
                        let mut input_mfp = MapFilterProject::new(value.arity());
                        input_mfp.permute_fn(|c| permutation[c], thinning.len() + input_key.len());
                        let input_key = Some(input_key.clone());

                        let forms = AvailableCollections::new_raw();

                        // We just want to insert an `ArrangeBy` to form an unarranged collection,
                        // but there is a complication: We shouldn't break the invariant (created by
                        // `NormalizeLets`, and relied upon by the rendering) that there isn't
                        // anything between two `LetRec`s. So if `lir_value` is itself a `LetRec`,
                        // then we insert the `ArrangeBy` on the `body` of the inner `LetRec`,
                        // instead of on top of the inner `LetRec`.
                        lir_value = match lir_value {
                            Plan {
                                node:
                                    PlanNode::LetRec {
                                        ids,
                                        values,
                                        limits,
                                        body,
                                    },
                                lir_id,
                            } => {
                                let inner_lir_id = self.allocate_lir_id();
                                PlanNode::LetRec {
                                    ids,
                                    values,
                                    limits,
                                    body: Box::new(
                                        PlanNode::ArrangeBy {
                                            input: body,
                                            forms,
                                            input_key,
                                            input_mfp,
                                        }
                                        .as_plan(inner_lir_id),
                                    ),
                                }
                                .as_plan(lir_id)
                            }
                            lir_value => {
                                let lir_id = self.allocate_lir_id();
                                PlanNode::ArrangeBy {
                                    input: Box::new(lir_value),
                                    forms,
                                    input_key,
                                    input_mfp,
                                }
                                .as_plan(lir_id)
                            }
                        };
                        v_keys.raw = true;
                    }
                    let pre_existing = self.arrangements.insert(Id::Local(*id), v_keys);
                    assert_none!(pre_existing);
                    lir_values.push(lir_value);
                }
                // As we exit the iterative scope, we must leave all arrangements behind,
                // as they reference a timestamp coordinate that must be stripped off.
                for id in ids.iter() {
                    self.arrangements
                        .insert(Id::Local(*id), AvailableCollections::new_raw());
                }
                // Plan the body using initial and `value` arrangements,
                // and then remove reference to the value arrangements.
                let (body, b_keys) = self.lower_mir_expr(body)?;
                for id in ids.iter() {
                    self.arrangements.remove(&Id::Local(*id));
                }
                // Return the plan, and any `body` arrangements.
                let lir_id = self.allocate_lir_id();
                (
                    PlanNode::LetRec {
                        ids: ids.clone(),
                        values: lir_values,
                        limits: limits.clone(),
                        body: Box::new(body),
                    }
                    .as_plan(lir_id),
                    b_keys,
                )
            }
            MirRelationExpr::FlatMap {
                input: flat_map_input,
                func,
                exprs,
            } => {
                // A `FlatMap UnnestList` that comes after the `Reduce` of a window function can be
                // fused into the lowered `Reduce`.
                //
                // In theory, we could have implemented this also as an MIR transform. However, this
                // is more of a physical optimization, which are sometimes unpleasant to make a part
                // of the MIR pipeline. The specific problem here with putting this into the MIR
                // pipeline would be that we'd need to modify MIR's semantics: MIR's Reduce
                // currently always emits exactly 1 row per group, but the fused Reduce-FlatMap can
                // emit multiple rows per group. Such semantic changes of MIR are very scary, since
                // various parts of the optimizer assume that Reduce emits only 1 row per group, and
                // it would be very hard to hunt down all these parts. (For example, key inference
                // infers the group key as a unique key.)
                let fused_with_reduce = 'fusion: {
                    if !matches!(func, TableFunc::UnnestList { .. }) {
                        break 'fusion None;
                    }
                    // We might have a Project of a single col between the FlatMap and the
                    // Reduce. (It projects away the grouping keys of the Reduce, and keeps the
                    // result of the window function.)
                    let (maybe_reduce, num_grouping_keys) = if let MirRelationExpr::Project {
                        input: project_input,
                        outputs: projection,
                    } = &**flat_map_input
                    {
                        // We want this to be a single column, because we'll want to deal with only
                        // one aggregation in the `Reduce`. (The aggregation of a window function
                        // always stands alone currently: we plan them separately from other
                        // aggregations, and Reduces are never fused. When window functions are
                        // fused with each other, they end up in one aggregation. When there are
                        // multiple window functions in the same SELECT, but can't be fused, they
                        // end up in different Reduces.)
                        if let &[single_col] = &**projection {
                            (project_input, single_col)
                        } else {
                            break 'fusion None;
                        }
                    } else {
                        (flat_map_input, 0)
                    };
                    if let MirRelationExpr::Reduce {
                        input,
                        group_key,
                        aggregates,
                        monotonic,
                        expected_group_size,
                    } = &**maybe_reduce
                    {
                        if group_key.len() != num_grouping_keys
                            || aggregates.len() != 1
                            || !aggregates[0].func.can_fuse_with_unnest_list()
                        {
                            break 'fusion None;
                        }
                        // At the beginning, `non_fused_mfp_above_flat_map` will be the original MFP
                        // above the FlatMap. Later, we'll mutate this to be the residual MFP that
                        // didn't get fused into the `Reduce`.
                        let non_fused_mfp_above_flat_map = &mut mfp;
                        let reduce_output_arity = num_grouping_keys + 1;
                        // We are fusing away the list that the FlatMap would have been unnesting,
                        // so the column that had that list disappears, so we have to permute the
                        // MFP above the FlatMap with this column disappearance.
                        let tweaked_mfp = {
                            let mut mfp = non_fused_mfp_above_flat_map.clone();
                            if mfp.demand().contains(&0) {
                                // I don't think this can happen currently that this MFP would
                                // refer to the list column, because both the list column and the
                                // MFP were constructed by the HIR-to-MIR lowering, so it's not just
                                // some random MFP that we are seeing here. But anyhow, it's better
                                // to check this here for robustness against future code changes.
                                break 'fusion None;
                            }
                            let permutation: BTreeMap<_, _> =
                                (1..mfp.input_arity).map(|col| (col, col - 1)).collect();
                            mfp.permute_fn(|c| permutation[&c], mfp.input_arity - 1);
                            mfp
                        };
                        // We now put together the project that was before the FlatMap, and the
                        // tweaked version of the MFP that was after the FlatMap.
                        // (Part of this MFP might be fused into the Reduce.)
                        let mut project_and_tweaked_mfp = {
                            let mut mfp = MapFilterProject::new(reduce_output_arity);
                            mfp = mfp.project(vec![num_grouping_keys]);
                            mfp = MapFilterProject::compose(mfp, tweaked_mfp);
                            mfp
                        };
                        let fused = self.lower_reduce(
                            input,
                            group_key,
                            aggregates,
                            monotonic,
                            expected_group_size,
                            &mut project_and_tweaked_mfp,
                            true,
                        )?;
                        // Update the residual MFP.
                        *non_fused_mfp_above_flat_map = project_and_tweaked_mfp;
                        Some(fused)
                    } else {
                        break 'fusion None;
                    }
                };
                if let Some(fused_with_reduce) = fused_with_reduce {
                    fused_with_reduce
                } else {
                    // Couldn't fuse it with a `Reduce`, so lower as a normal `FlatMap`.
                    let (input, keys) = self.lower_mir_expr(flat_map_input)?;
                    // This stage can absorb arbitrary MFP instances.
                    let mfp = mfp.take();
                    let mut exprs = exprs.clone();
                    let input_key = if let Some((k, permutation, _)) = keys.arbitrary_arrangement()
                    {
                        // We don't permute the MFP here, because it runs _after_ the table function,
                        // whose output is in a fixed order.
                        //
                        // We _do_, however, need to permute the `expr`s that provide input to the
                        // `func`.
                        let permutation = permutation.iter().cloned().enumerate().collect();
                        for expr in &mut exprs {
                            expr.permute_map(&permutation);
                        }

                        Some(k.clone())
                    } else {
                        None
                    };

                    let lir_id = self.allocate_lir_id();
                    // Return the plan, and no arrangements.
                    (
                        PlanNode::FlatMap {
                            input: Box::new(input),
                            func: func.clone(),
                            exprs: exprs.clone(),
                            mfp_after: mfp,
                            input_key,
                        }
                        .as_plan(lir_id),
                        AvailableCollections::new_raw(),
                    )
                }
            }
            MirRelationExpr::Join {
                inputs,
                equivalences,
                implementation,
            } => {
                let input_mapper = JoinInputMapper::new(inputs);

                // Plan each of the join inputs independently.
                // The `plans` get surfaced upwards, and the `input_keys` should
                // be used as part of join planning / to validate the existing
                // plans / to aid in indexed seeding of update streams.
                let mut plans = Vec::new();
                let mut input_keys = Vec::new();
                let mut input_arities = Vec::new();
                for input in inputs.iter() {
                    let (plan, keys) = self.lower_mir_expr(input)?;
                    input_arities.push(input.arity());
                    plans.push(plan);
                    input_keys.push(keys);
                }

                // Extract temporal predicates as joins cannot currently absorb them.
                let (plan, missing) = match implementation {
                    IndexedFilter(_coll_id, _idx_id, key, _val) => {
                        // Start with the constant input. (This used to be important before database-issues#4016
                        // was fixed.)
                        let start: usize = 1;
                        let order = vec![(0usize, key.clone(), None)];
                        // All columns of the constant input will be part of the arrangement key.
                        let source_arrangement = (
                            (0..key.len())
                                .map(MirScalarExpr::Column)
                                .collect::<Vec<_>>(),
                            (0..key.len()).collect::<Vec<_>>(),
                            Vec::<usize>::new(),
                        );
                        let (ljp, missing) = LinearJoinPlan::create_from(
                            start,
                            Some(&source_arrangement),
                            equivalences,
                            &order,
                            input_mapper,
                            &mut mfp,
                            &input_keys,
                        );
                        (JoinPlan::Linear(ljp), missing)
                    }
                    Differential((start, start_arr, _start_characteristic), order) => {
                        let source_arrangement = start_arr.as_ref().and_then(|key| {
                            input_keys[*start]
                                .arranged
                                .iter()
                                .find(|(k, _, _)| k == key)
                                .clone()
                        });
                        let (ljp, missing) = LinearJoinPlan::create_from(
                            *start,
                            source_arrangement,
                            equivalences,
                            order,
                            input_mapper,
                            &mut mfp,
                            &input_keys,
                        );
                        (JoinPlan::Linear(ljp), missing)
                    }
                    DeltaQuery(orders) => {
                        let (djp, missing) = DeltaJoinPlan::create_from(
                            equivalences,
                            orders,
                            input_mapper,
                            &mut mfp,
                            &input_keys,
                        );
                        (JoinPlan::Delta(djp), missing)
                    }
                    // Other plans are errors, and should be reported as such.
                    Unimplemented => return Err("unimplemented join".to_string()),
                };
                // The renderer will expect certain arrangements to exist; if any of those are not available, the join planning functions above should have returned them in
                // `missing`. We thus need to plan them here so they'll exist.
                let is_delta = matches!(plan, JoinPlan::Delta(_));
                for (((input_plan, input_keys), missing), arity) in plans
                    .iter_mut()
                    .zip(input_keys.iter())
                    .zip(missing.into_iter())
                    .zip(input_arities.iter().cloned())
                {
                    if missing != Default::default() {
                        if is_delta {
                            // join_implementation.rs produced a sub-optimal plan here;
                            // we shouldn't plan delta joins at all if not all of the required
                            // arrangements are available. Soft panic in CI and log an error in
                            // production to increase the chances that we will catch all situations
                            // that violate this constraint.
                            soft_panic_or_log!("Arrangements depended on by delta join alarmingly absent: {:?}
Dataflow info: {}
This is not expected to cause incorrect results, but could indicate a performance issue in Materialize.", missing, self.debug_info);
                        } else {
                            soft_panic_or_log!("Arrangements depended on by a non-delta join are absent: {:?}
Dataflow info: {}
This is not expected to cause incorrect results, but could indicate a performance issue in Materialize.", missing, self.debug_info);
                            // Nowadays MIR transforms take care to insert MIR ArrangeBys for each
                            // Join input. (Earlier, they were missing in the following cases:
                            //  - They were const-folded away for constant inputs. This is not
                            //    happening since
                            //    https://github.com/MaterializeInc/materialize/pull/16351
                            //  - They were not being inserted for the constant input of
                            //    `IndexedFilter`s. This was fixed in
                            //    https://github.com/MaterializeInc/materialize/pull/20920
                            //  - They were not being inserted for the first input of Differential
                            //    joins. This was fixed in
                            //    https://github.com/MaterializeInc/materialize/pull/16099)
                        }
                        let lir_id = self.allocate_lir_id();
                        let raw_plan = std::mem::replace(
                            input_plan,
                            PlanNode::Constant {
                                rows: Ok(Vec::new()),
                            }
                            .as_plan(lir_id),
                        );
                        *input_plan = self.arrange_by(raw_plan, missing, input_keys, arity);
                    }
                }
                // Return the plan, and no arrangements.
                let lir_id = self.allocate_lir_id();
                (
                    PlanNode::Join {
                        inputs: plans,
                        plan,
                    }
                    .as_plan(lir_id),
                    AvailableCollections::new_raw(),
                )
            }
            MirRelationExpr::Reduce {
                input,
                group_key,
                aggregates,
                monotonic,
                expected_group_size,
            } => {
                if aggregates
                    .iter()
                    .any(|agg| agg.func.can_fuse_with_unnest_list())
                {
                    // This case should have been handled at the `MirRelationExpr::FlatMap` case
                    // above. But that has a pretty complicated pattern matching, so it's not
                    // unthinkable that it fails.
                    soft_panic_or_log!(
                        "Window function performance issue: `reduce_unnest_list_fusion` failed"
                    );
                }
                self.lower_reduce(
                    input,
                    group_key,
                    aggregates,
                    monotonic,
                    expected_group_size,
                    &mut mfp,
                    false,
                )?
            }
            MirRelationExpr::TopK {
                input,
                group_key,
                order_key,
                limit,
                offset,
                monotonic,
                expected_group_size,
            } => {
                let arity = input.arity();
                let (input, keys) = self.lower_mir_expr(input)?;

                let top_k_plan = TopKPlan::create_from(
                    group_key.clone(),
                    order_key.clone(),
                    *offset,
                    limit.clone(),
                    arity,
                    *monotonic,
                    *expected_group_size,
                );

                // We don't have an MFP here -- install an operator to permute the
                // input, if necessary.
                let input = if !keys.raw {
                    self.arrange_by(input, AvailableCollections::new_raw(), &keys, arity)
                } else {
                    input
                };
                // Return the plan, and no arrangements.
                let lir_id = self.allocate_lir_id();
                (
                    PlanNode::TopK {
                        input: Box::new(input),
                        top_k_plan,
                    }
                    .as_plan(lir_id),
                    AvailableCollections::new_raw(),
                )
            }
            MirRelationExpr::Negate { input } => {
                let arity = input.arity();
                let (input, keys) = self.lower_mir_expr(input)?;

                // We don't have an MFP here -- install an operator to permute the
                // input, if necessary.
                let input = if !keys.raw {
                    self.arrange_by(input, AvailableCollections::new_raw(), &keys, arity)
                } else {
                    input
                };
                // Return the plan, and no arrangements.
                let lir_id = self.allocate_lir_id();
                (
                    PlanNode::Negate {
                        input: Box::new(input),
                    }
                    .as_plan(lir_id),
                    AvailableCollections::new_raw(),
                )
            }
            MirRelationExpr::Threshold { input } => {
                let (plan, keys) = self.lower_mir_expr(input)?;
                let arity = keys
                    .types
                    .as_ref()
                    .map(|types| types.len())
                    .unwrap_or_else(|| input.arity());
                let (threshold_plan, required_arrangement) = ThresholdPlan::create_from(arity);
                let mut types = keys.types.clone();
                let plan = if !keys
                    .arranged
                    .iter()
                    .any(|(key, _, _)| key == &required_arrangement.0)
                {
                    types = Some(types.unwrap_or_else(|| input.typ().column_types));
                    self.arrange_by(
                        plan,
                        AvailableCollections::new_arranged(
                            vec![required_arrangement],
                            types.clone(),
                        ),
                        &keys,
                        arity,
                    )
                } else {
                    plan
                };

                let output_keys = threshold_plan.keys(types);
                // Return the plan, and any produced keys.
                let lir_id = self.allocate_lir_id();
                (
                    PlanNode::Threshold {
                        input: Box::new(plan),
                        threshold_plan,
                    }
                    .as_plan(lir_id),
                    output_keys,
                )
            }
            MirRelationExpr::Union { base, inputs } => {
                let arity = base.arity();
                let mut plans_keys = Vec::with_capacity(1 + inputs.len());
                let (plan, keys) = self.lower_mir_expr(base)?;
                plans_keys.push((plan, keys));
                for input in inputs.iter() {
                    let (plan, keys) = self.lower_mir_expr(input)?;
                    plans_keys.push((plan, keys));
                }
                let plans = plans_keys
                    .into_iter()
                    .map(|(plan, keys)| {
                        // We don't have an MFP here -- install an operator to permute the
                        // input, if necessary.
                        if !keys.raw {
                            self.arrange_by(plan, AvailableCollections::new_raw(), &keys, arity)
                        } else {
                            plan
                        }
                    })
                    .collect();
                // Return the plan and no arrangements.
                let lir_id = self.allocate_lir_id();
                (
                    PlanNode::Union {
                        inputs: plans,
                        consolidate_output: false,
                    }
                    .as_plan(lir_id),
                    AvailableCollections::new_raw(),
                )
            }
            MirRelationExpr::ArrangeBy { input, keys } => {
                let input_mir = input;
                let (input, mut input_keys) = self.lower_mir_expr(input)?;
                // Fill the `types` in `input_keys` if not already present.
                let input_types = input_keys
                    .types
                    .get_or_insert_with(|| input_mir.typ().column_types);
                let arity = input_types.len();

                // Determine keys that are not present in `input_keys`.
                let new_keys = keys
                    .iter()
                    .filter(|k1| !input_keys.arranged.iter().any(|(k2, _, _)| k1 == &k2))
                    .cloned()
                    .collect::<Vec<_>>();
                if new_keys.is_empty() {
                    (input, input_keys)
                } else {
                    let new_keys = new_keys.iter().cloned().map(|k| {
                        let (permutation, thinning) = permutation_for_arrangement(&k, arity);
                        (k, permutation, thinning)
                    });
                    let (input_key, input_mfp) = if let Some((input_key, permutation, thinning)) =
                        input_keys.arbitrary_arrangement()
                    {
                        let mut mfp = MapFilterProject::new(arity);
                        mfp.permute_fn(|c| permutation[c], thinning.len() + input_key.len());
                        (Some(input_key.clone()), mfp)
                    } else {
                        (None, MapFilterProject::new(arity))
                    };
                    input_keys.arranged.extend(new_keys);
                    input_keys.arranged.sort_by(|k1, k2| k1.0.cmp(&k2.0));

                    // Return the plan and extended keys.
                    let lir_id = self.allocate_lir_id();
                    (
                        PlanNode::ArrangeBy {
                            input: Box::new(input),
                            forms: input_keys.clone(),
                            input_key,
                            input_mfp,
                        }
                        .as_plan(lir_id),
                        input_keys,
                    )
                }
            }
        };

        // If the plan stage did not absorb all linear operators, introduce a new stage to implement them.
        if !mfp.is_identity() {
            // Seek out an arrangement key that might be constrained to a literal.
            // TODO: Improve key selection heuristic.
            let key_val = keys
                .arranged
                .iter()
                .filter_map(|(key, permutation, thinning)| {
                    let mut mfp = mfp.clone();
                    mfp.permute_fn(|c| permutation[c], thinning.len() + key.len());
                    mfp.literal_constraints(key)
                        .map(|val| (key.clone(), permutation, thinning, val))
                })
                .max_by_key(|(key, _, _, _)| key.len());

            // Input key selection strategy:
            // (1) If we can read a key at a particular value, do so
            // (2) Otherwise, if there is a key that causes the MFP to be the identity, and
            // therefore allows us to avoid discarding the arrangement, use that.
            // (3) Otherwise, if there is _some_ key, use that,
            // (4) Otherwise just read the raw collection.
            let input_key_val = if let Some((key, permutation, thinning, val)) = key_val {
                mfp.permute_fn(|c| permutation[c], thinning.len() + key.len());

                Some((key, Some(val)))
            } else if let Some((key, permutation, thinning)) =
                keys.arranged.iter().find(|(key, permutation, thinning)| {
                    let mut mfp = mfp.clone();
                    mfp.permute_fn(|c| permutation[c], thinning.len() + key.len());
                    mfp.is_identity()
                })
            {
                mfp.permute_fn(|c| permutation[c], thinning.len() + key.len());
                Some((key.clone(), None))
            } else if let Some((key, permutation, thinning)) = keys.arbitrary_arrangement() {
                mfp.permute_fn(|c| permutation[c], thinning.len() + key.len());
                Some((key.clone(), None))
            } else {
                None
            };

            if mfp.is_identity() {
                // We have discovered a key
                // whose permutation causes the MFP to actually
                // be the identity! We can keep it around,
                // but without its permutation this time,
                // and with a trivial thinning of the right length.
                let (key, val) = input_key_val.unwrap();
                let (_old_key, old_permutation, old_thinning) = keys
                    .arranged
                    .iter_mut()
                    .find(|(key2, _, _)| key2 == &key)
                    .unwrap();
                *old_permutation = (0..mfp.input_arity).collect();
                let old_thinned_arity = old_thinning.len();
                *old_thinning = (0..old_thinned_arity).collect();
                // Get rid of all other forms, as this is now the only one known to be valid.
                // TODO[btv] we can probably save the other arrangements too, if we adjust their permutations.
                // This is not hard to do, but leaving it for a quick follow-up to avoid making the present diff too unwieldy.
                keys.arranged.retain(|(key2, _, _)| key2 == &key);
                keys.raw = false;

                // Creating a Plan::Mfp node is now logically unnecessary, but we
                // should do so anyway when `val` is populated, so that
                // the `key_val` optimization gets applied.
                let lir_id = self.allocate_lir_id();
                if val.is_some() {
                    plan = PlanNode::Mfp {
                        input: Box::new(plan),
                        mfp,
                        input_key_val: Some((key, val)),
                    }
                    .as_plan(lir_id)
                }
            } else {
                let lir_id = self.allocate_lir_id();
                plan = PlanNode::Mfp {
                    input: Box::new(plan),
                    mfp,
                    input_key_val,
                }
                .as_plan(lir_id);
                keys = AvailableCollections::new_raw();
            }
        }

        Ok((plan, keys))
    }

    /// Lowers a `Reduce` with the given fields and an `mfp_on_top`, which is the MFP that is
    /// originally on top of the `Reduce`. This MFP, or a part of it, might be fused into the
    /// `Reduce`, in which case `mfp_on_top` is mutated to be the residual MFP, i.e., what was not
    /// fused.
    fn lower_reduce<T: Timestamp>(
        &mut self,
        input: &MirRelationExpr,
        group_key: &Vec<MirScalarExpr>,
        aggregates: &Vec<AggregateExpr>,
        monotonic: &bool,
        expected_group_size: &Option<u64>,
        mfp_on_top: &mut MapFilterProject,
        fused_unnest_list: bool,
    ) -> Result<(Plan<T>, AvailableCollections), String> {
        let input_arity = input.arity();
        let (input, keys) = self.lower_mir_expr(input)?;
        let (input_key, permutation_and_new_arity) =
            if let Some((input_key, permutation, thinning)) = keys.arbitrary_arrangement() {
                (
                    Some(input_key.clone()),
                    Some((permutation.clone(), thinning.len() + input_key.len())),
                )
            } else {
                (None, None)
            };
        let key_val_plan = KeyValPlan::new(
            input_arity,
            group_key,
            aggregates,
            permutation_and_new_arity,
        );
        let reduce_plan = ReducePlan::create_from(
            aggregates.clone(),
            *monotonic,
            *expected_group_size,
            fused_unnest_list,
        );
        // Return the plan, and the keys it produces.
        let mfp_after;
        let output_arity;
        if self.enable_reduce_mfp_fusion {
            (mfp_after, *mfp_on_top, output_arity) =
                reduce_plan.extract_mfp_after(mfp_on_top.clone(), group_key.len());
        } else {
            (mfp_after, output_arity) = (
                MapFilterProject::new(mfp_on_top.input_arity),
                group_key.len() + aggregates.len(),
            );
        }
        soft_assert_eq_or_log!(
            mfp_on_top.input_arity,
            output_arity,
            "Output arity of reduce must match input arity for MFP on top of it"
        );
        let output_keys = reduce_plan.keys(group_key.len(), output_arity);
        let lir_id = self.allocate_lir_id();
        Ok((
            PlanNode::Reduce {
                input: Box::new(input),
                key_val_plan,
                plan: reduce_plan,
                input_key,
                mfp_after,
            }
            .as_plan(lir_id),
            output_keys,
        ))
    }

    /// Replace the plan with another one
    /// that has the collection in some additional forms.
    pub fn arrange_by<T>(
        &mut self,
        plan: Plan<T>,
        collections: AvailableCollections,
        old_collections: &AvailableCollections,
        arity: usize,
    ) -> Plan<T> {
        if let Plan {
            node:
                PlanNode::ArrangeBy {
                    input,
                    mut forms,
                    input_key,
                    input_mfp,
                },
            lir_id,
        } = plan
        {
            forms.raw |= collections.raw;
            forms.arranged.extend(collections.arranged);
            forms.arranged.sort_by(|k1, k2| k1.0.cmp(&k2.0));
            forms.arranged.dedup_by(|k1, k2| k1.0 == k2.0);
            if forms.types.is_none() {
                forms.types = collections.types;
            } else {
                assert!(collections.types.is_none() || collections.types == forms.types);
            }
            PlanNode::ArrangeBy {
                input,
                forms,
                input_key,
                input_mfp,
            }
            .as_plan(lir_id)
        } else {
            let (input_key, input_mfp) = if let Some((input_key, permutation, thinning)) =
                old_collections.arbitrary_arrangement()
            {
                let mut mfp = MapFilterProject::new(arity);
                mfp.permute_fn(|c| permutation[c], thinning.len() + input_key.len());
                (Some(input_key.clone()), mfp)
            } else {
                (None, MapFilterProject::new(arity))
            };
            let lir_id = self.allocate_lir_id();
            PlanNode::ArrangeBy {
                input: Box::new(plan),
                forms: collections,
                input_key,
                input_mfp,
            }
            .as_plan(lir_id)
        }
    }
}

/// Various bits of state to print along with error messages during LIR planning,
/// to aid debugging.
#[derive(Clone, Debug)]
pub struct LirDebugInfo {
    debug_name: String,
    id: GlobalId,
}

impl std::fmt::Display for LirDebugInfo {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "Debug name: {}; id: {}", self.debug_name, self.id)
    }
}