serde_json/lexical/num.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
// Adapted from https://github.com/Alexhuszagh/rust-lexical.
//! Utilities for Rust numbers.
use core::ops;
/// Precalculated values of radix**i for i in range [0, arr.len()-1].
/// Each value can be **exactly** represented as that type.
const F32_POW10: [f32; 11] = [
1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
];
/// Precalculated values of radix**i for i in range [0, arr.len()-1].
/// Each value can be **exactly** represented as that type.
const F64_POW10: [f64; 23] = [
1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
100000000000.0,
1000000000000.0,
10000000000000.0,
100000000000000.0,
1000000000000000.0,
10000000000000000.0,
100000000000000000.0,
1000000000000000000.0,
10000000000000000000.0,
100000000000000000000.0,
1000000000000000000000.0,
10000000000000000000000.0,
];
/// Type that can be converted to primitive with `as`.
pub trait AsPrimitive: Sized + Copy + PartialOrd {
fn as_u32(self) -> u32;
fn as_u64(self) -> u64;
fn as_u128(self) -> u128;
fn as_usize(self) -> usize;
fn as_f32(self) -> f32;
fn as_f64(self) -> f64;
}
macro_rules! as_primitive_impl {
($($ty:ident)*) => {
$(
impl AsPrimitive for $ty {
#[inline]
fn as_u32(self) -> u32 {
self as u32
}
#[inline]
fn as_u64(self) -> u64 {
self as u64
}
#[inline]
fn as_u128(self) -> u128 {
self as u128
}
#[inline]
fn as_usize(self) -> usize {
self as usize
}
#[inline]
fn as_f32(self) -> f32 {
self as f32
}
#[inline]
fn as_f64(self) -> f64 {
self as f64
}
}
)*
};
}
as_primitive_impl! { u32 u64 u128 usize f32 f64 }
/// An interface for casting between machine scalars.
pub trait AsCast: AsPrimitive {
/// Creates a number from another value that can be converted into
/// a primitive via the `AsPrimitive` trait.
fn as_cast<N: AsPrimitive>(n: N) -> Self;
}
macro_rules! as_cast_impl {
($ty:ident, $method:ident) => {
impl AsCast for $ty {
#[inline]
fn as_cast<N: AsPrimitive>(n: N) -> Self {
n.$method()
}
}
};
}
as_cast_impl!(u32, as_u32);
as_cast_impl!(u64, as_u64);
as_cast_impl!(u128, as_u128);
as_cast_impl!(usize, as_usize);
as_cast_impl!(f32, as_f32);
as_cast_impl!(f64, as_f64);
/// Numerical type trait.
pub trait Number: AsCast + ops::Add<Output = Self> {}
macro_rules! number_impl {
($($ty:ident)*) => {
$(
impl Number for $ty {}
)*
};
}
number_impl! { u32 u64 u128 usize f32 f64 }
/// Defines a trait that supports integral operations.
pub trait Integer: Number + ops::BitAnd<Output = Self> + ops::Shr<i32, Output = Self> {
const ZERO: Self;
}
macro_rules! integer_impl {
($($ty:tt)*) => {
$(
impl Integer for $ty {
const ZERO: Self = 0;
}
)*
};
}
integer_impl! { u32 u64 u128 usize }
/// Type trait for the mantissa type.
pub trait Mantissa: Integer {
/// Mask to extract the high bits from the integer.
const HIMASK: Self;
/// Mask to extract the low bits from the integer.
const LOMASK: Self;
/// Full size of the integer, in bits.
const FULL: i32;
/// Half size of the integer, in bits.
const HALF: i32 = Self::FULL / 2;
}
impl Mantissa for u64 {
const HIMASK: u64 = 0xFFFFFFFF00000000;
const LOMASK: u64 = 0x00000000FFFFFFFF;
const FULL: i32 = 64;
}
/// Get exact exponent limit for radix.
pub trait Float: Number {
/// Unsigned type of the same size.
type Unsigned: Integer;
/// Literal zero.
const ZERO: Self;
/// Maximum number of digits that can contribute in the mantissa.
///
/// We can exactly represent a float in radix `b` from radix 2 if
/// `b` is divisible by 2. This function calculates the exact number of
/// digits required to exactly represent that float.
///
/// According to the "Handbook of Floating Point Arithmetic",
/// for IEEE754, with emin being the min exponent, p2 being the
/// precision, and b being the radix, the number of digits follows as:
///
/// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
///
/// For f32, this follows as:
/// emin = -126
/// p2 = 24
///
/// For f64, this follows as:
/// emin = -1022
/// p2 = 53
///
/// In Python:
/// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))`
///
/// This was used to calculate the maximum number of digits for [2, 36].
const MAX_DIGITS: usize;
// MASKS
/// Bitmask for the exponent, including the hidden bit.
const EXPONENT_MASK: Self::Unsigned;
/// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction.
const HIDDEN_BIT_MASK: Self::Unsigned;
/// Bitmask for the mantissa (fraction), excluding the hidden bit.
const MANTISSA_MASK: Self::Unsigned;
// PROPERTIES
/// Positive infinity as bits.
const INFINITY_BITS: Self::Unsigned;
/// Size of the significand (mantissa) without hidden bit.
const MANTISSA_SIZE: i32;
/// Bias of the exponent
const EXPONENT_BIAS: i32;
/// Exponent portion of a denormal float.
const DENORMAL_EXPONENT: i32;
/// Maximum exponent value in float.
const MAX_EXPONENT: i32;
// ROUNDING
/// Default number of bits to shift (or 64 - mantissa size - 1).
const DEFAULT_SHIFT: i32;
/// Mask to determine if a full-carry occurred (1 in bit above hidden bit).
const CARRY_MASK: u64;
/// Get min and max exponent limits (exact) from radix.
fn exponent_limit() -> (i32, i32);
/// Get the number of digits that can be shifted from exponent to mantissa.
fn mantissa_limit() -> i32;
// Re-exported methods from std.
fn pow10(self, n: i32) -> Self;
fn from_bits(u: Self::Unsigned) -> Self;
fn to_bits(self) -> Self::Unsigned;
fn is_sign_positive(self) -> bool;
/// Returns true if the float is a denormal.
#[inline]
fn is_denormal(self) -> bool {
self.to_bits() & Self::EXPONENT_MASK == Self::Unsigned::ZERO
}
/// Returns true if the float is a NaN or Infinite.
#[inline]
fn is_special(self) -> bool {
self.to_bits() & Self::EXPONENT_MASK == Self::EXPONENT_MASK
}
/// Returns true if the float is infinite.
#[inline]
fn is_inf(self) -> bool {
self.is_special() && (self.to_bits() & Self::MANTISSA_MASK) == Self::Unsigned::ZERO
}
/// Get exponent component from the float.
#[inline]
fn exponent(self) -> i32 {
if self.is_denormal() {
return Self::DENORMAL_EXPONENT;
}
let bits = self.to_bits();
let biased_e = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE).as_u32();
biased_e as i32 - Self::EXPONENT_BIAS
}
/// Get mantissa (significand) component from float.
#[inline]
fn mantissa(self) -> Self::Unsigned {
let bits = self.to_bits();
let s = bits & Self::MANTISSA_MASK;
if !self.is_denormal() {
s + Self::HIDDEN_BIT_MASK
} else {
s
}
}
/// Get next greater float for a positive float.
/// Value must be >= 0.0 and < INFINITY.
#[inline]
fn next_positive(self) -> Self {
debug_assert!(self.is_sign_positive() && !self.is_inf());
Self::from_bits(self.to_bits() + Self::Unsigned::as_cast(1u32))
}
/// Round a positive number to even.
#[inline]
fn round_positive_even(self) -> Self {
if self.mantissa() & Self::Unsigned::as_cast(1u32) == Self::Unsigned::as_cast(1u32) {
self.next_positive()
} else {
self
}
}
}
impl Float for f32 {
type Unsigned = u32;
const ZERO: f32 = 0.0;
const MAX_DIGITS: usize = 114;
const EXPONENT_MASK: u32 = 0x7F800000;
const HIDDEN_BIT_MASK: u32 = 0x00800000;
const MANTISSA_MASK: u32 = 0x007FFFFF;
const INFINITY_BITS: u32 = 0x7F800000;
const MANTISSA_SIZE: i32 = 23;
const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS;
const DEFAULT_SHIFT: i32 = u64::FULL - f32::MANTISSA_SIZE - 1;
const CARRY_MASK: u64 = 0x1000000;
#[inline]
fn exponent_limit() -> (i32, i32) {
(-10, 10)
}
#[inline]
fn mantissa_limit() -> i32 {
7
}
#[inline]
fn pow10(self, n: i32) -> f32 {
// Check the exponent is within bounds in debug builds.
debug_assert!({
let (min, max) = Self::exponent_limit();
n >= min && n <= max
});
if n > 0 {
self * F32_POW10[n as usize]
} else {
self / F32_POW10[-n as usize]
}
}
#[inline]
fn from_bits(u: u32) -> f32 {
f32::from_bits(u)
}
#[inline]
fn to_bits(self) -> u32 {
f32::to_bits(self)
}
#[inline]
fn is_sign_positive(self) -> bool {
f32::is_sign_positive(self)
}
}
impl Float for f64 {
type Unsigned = u64;
const ZERO: f64 = 0.0;
const MAX_DIGITS: usize = 769;
const EXPONENT_MASK: u64 = 0x7FF0000000000000;
const HIDDEN_BIT_MASK: u64 = 0x0010000000000000;
const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF;
const INFINITY_BITS: u64 = 0x7FF0000000000000;
const MANTISSA_SIZE: i32 = 52;
const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS;
const DEFAULT_SHIFT: i32 = u64::FULL - f64::MANTISSA_SIZE - 1;
const CARRY_MASK: u64 = 0x20000000000000;
#[inline]
fn exponent_limit() -> (i32, i32) {
(-22, 22)
}
#[inline]
fn mantissa_limit() -> i32 {
15
}
#[inline]
fn pow10(self, n: i32) -> f64 {
// Check the exponent is within bounds in debug builds.
debug_assert!({
let (min, max) = Self::exponent_limit();
n >= min && n <= max
});
if n > 0 {
self * F64_POW10[n as usize]
} else {
self / F64_POW10[-n as usize]
}
}
#[inline]
fn from_bits(u: u64) -> f64 {
f64::from_bits(u)
}
#[inline]
fn to_bits(self) -> u64 {
f64::to_bits(self)
}
#[inline]
fn is_sign_positive(self) -> bool {
f64::is_sign_positive(self)
}
}