1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
//! Traits and types describing timely dataflow events.
//!
//! The `Event` type describes the information an operator can observe about a timely dataflow
//! stream. There are two types of events, (i) the receipt of data and (ii) reports of progress
//! of timestamps.
use columnar::Columnar;
use serde::{Deserialize, Serialize};
/// Data and progress events of the captured stream.
#[derive(Debug, Clone, Hash, Ord, PartialOrd, Eq, PartialEq, Deserialize, Serialize, Columnar)]
pub enum Event<T, C> {
/// Progress received via `push_external_progress`.
Progress(Vec<(T, i64)>),
/// Messages received via the data stream.
Messages(T, C),
}
/// Iterates over contained `Event<T, C>`.
///
/// The `EventIterator` trait describes types that can iterate over references to events,
/// and which can be used to replay a stream into a new timely dataflow computation.
///
/// This method is not simply an iterator because of the lifetime in the result.
pub trait EventIterator<T, C> {
/// Iterates over references to `Event<T, C>` elements.
fn next(&mut self) -> Option<&Event<T, C>>;
}
/// Receives `Event<T, C>` events.
pub trait EventPusher<T, C> {
/// Provides a new `Event<T, D>` to the pusher.
fn push(&mut self, event: Event<T, C>);
}
// implementation for the linked list behind a `Handle`.
impl<T, C> EventPusher<T, C> for ::std::sync::mpsc::Sender<Event<T, C>> {
fn push(&mut self, event: Event<T, C>) {
// NOTE: An Err(x) result just means "data not accepted" most likely
// because the receiver is gone. No need to panic.
let _ = self.send(event);
}
}
/// A linked-list event pusher and iterator.
pub mod link {
use std::rc::Rc;
use std::cell::RefCell;
use super::{Event, EventPusher, EventIterator};
/// A linked list of Event<T, C>.
pub struct EventLink<T, C> {
/// An event, if one exists.
///
/// An event might not exist, if either we want to insert a `None` and have the output iterator pause,
/// or in the case of the very first linked list element, which has no event when constructed.
pub event: Option<Event<T, C>>,
/// The next event, if it exists.
pub next: RefCell<Option<Rc<EventLink<T, C>>>>,
}
impl<T, C> EventLink<T, C> {
/// Allocates a new `EventLink`.
pub fn new() -> EventLink<T, C> {
EventLink { event: None, next: RefCell::new(None) }
}
}
// implementation for the linked list behind a `Handle`.
impl<T, C> EventPusher<T, C> for Rc<EventLink<T, C>> {
fn push(&mut self, event: Event<T, C>) {
*self.next.borrow_mut() = Some(Rc::new(EventLink { event: Some(event), next: RefCell::new(None) }));
let next = self.next.borrow().as_ref().unwrap().clone();
*self = next;
}
}
impl<T, C> EventIterator<T, C> for Rc<EventLink<T, C>> {
fn next(&mut self) -> Option<&Event<T, C>> {
let is_some = self.next.borrow().is_some();
if is_some {
let next = self.next.borrow().as_ref().unwrap().clone();
*self = next;
self.event.as_ref()
}
else {
None
}
}
}
// Drop implementation to prevent stack overflow through naive drop impl.
impl<T, C> Drop for EventLink<T, C> {
fn drop(&mut self) {
while let Some(link) = self.next.replace(None) {
if let Ok(head) = Rc::try_unwrap(link) {
*self = head;
}
}
}
}
impl<T, C> Default for EventLink<T, C> {
fn default() -> Self {
Self::new()
}
}
#[test]
fn avoid_stack_overflow_in_drop() {
let mut event1 = Rc::new(EventLink::<(),()>::new());
let _event2 = event1.clone();
for _ in 0 .. 1_000_000 {
event1.push(Event::Progress(vec![]));
}
}
}
/// A binary event pusher and iterator.
pub mod binary {
use serde::{de::DeserializeOwned, Serialize};
use super::{Event, EventPusher, EventIterator};
/// A wrapper for `W: Write` implementing `EventPusher<T, C>`.
pub struct EventWriter<T, C, W: ::std::io::Write> {
stream: W,
phant: ::std::marker::PhantomData<(T, C)>,
}
impl<T, C, W: ::std::io::Write> EventWriter<T, C, W> {
/// Allocates a new `EventWriter` wrapping a supplied writer.
pub fn new(w: W) -> Self {
Self {
stream: w,
phant: ::std::marker::PhantomData,
}
}
}
impl<T: Serialize, C: Serialize, W: ::std::io::Write> EventPusher<T, C> for EventWriter<T, C, W> {
fn push(&mut self, event: Event<T, C>) {
// TODO: `push` has no mechanism to report errors, so we `unwrap`.
::bincode::serialize_into(&mut self.stream, &event).expect("Event bincode/write failed");
}
}
/// A Wrapper for `R: Read` implementing `EventIterator<T, D>`.
pub struct EventReader<T, C, R: ::std::io::Read> {
reader: R,
decoded: Option<Event<T, C>>,
}
impl<T, C, R: ::std::io::Read> EventReader<T, C, R> {
/// Allocates a new `EventReader` wrapping a supplied reader.
pub fn new(r: R) -> Self {
Self {
reader: r,
decoded: None,
}
}
}
impl<T: DeserializeOwned, C: DeserializeOwned, R: ::std::io::Read> EventIterator<T, C> for EventReader<T, C, R> {
fn next(&mut self) -> Option<&Event<T, C>> {
self.decoded = ::bincode::deserialize_from(&mut self.reader).ok();
self.decoded.as_ref()
}
}
}