1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
//! A size-classed file-backed large object allocator.
//!
//! This library contains types to allocate memory outside the heap,
//! supporting power-of-two object sizes. Each size class has its own
//! memory pool.
//!
//! # Safety
//!
//! This library is very unsafe on account of `unsafe` and interacting directly
//! with libc, including Linux extension.
//!
//! The library relies on memory-mapped files. Users of this file must not fork the process
//! because otherwise two processes would share the same mappings, causing undefined behavior
//! because the mutable pointers would not be unique anymore. Unfortunately, there is no way
//! to tell the memory subsystem that the shared mappings must not be inherited.
//!
//! Clients must not lock pages (`mlock`), or need to unlock the pages before returning them
//! to lgalloc.

#![deny(missing_docs)]

use std::cell::RefCell;
use std::collections::HashMap;
use std::fs::File;
use std::marker::PhantomData;
use std::mem::{take, ManuallyDrop, MaybeUninit};
use std::ops::{Deref, Range};
use std::os::fd::{AsFd, AsRawFd};
use std::path::PathBuf;
use std::ptr::NonNull;
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::sync::mpsc::{Receiver, RecvTimeoutError, Sender};
use std::sync::{Arc, Mutex, OnceLock, RwLock};
use std::thread::{spawn, JoinHandle, ThreadId};
use std::time::{Duration, Instant};

use crossbeam_deque::{Injector, Steal, Stealer, Worker};
use memmap2::MmapMut;
use thiserror::Error;

mod readme {
    #![doc = include_str!("../README.md")]
}

/// Handle to describe allocations.
///
/// Handles represent a leased allocation, which must be explicitly freed. Otherwise, the caller will permanently leak
/// the associated memory.
pub struct Handle {
    /// The actual pointer.
    ptr: NonNull<u8>,
    /// Length of the allocation.
    len: usize,
}

unsafe impl Send for Handle {}
unsafe impl Sync for Handle {}

#[allow(clippy::len_without_is_empty)]
impl Handle {
    /// Construct a new handle from a region of memory
    fn new(ptr: NonNull<u8>, len: usize) -> Self {
        Self { ptr, len }
    }

    /// Construct a dangling handle, which is only suitable for zero-sized types.
    fn dangling() -> Self {
        Self {
            ptr: NonNull::dangling(),
            len: 0,
        }
    }

    fn is_dangling(&self) -> bool {
        self.ptr == NonNull::dangling()
    }

    /// Length of the memory area in bytes.
    fn len(&self) -> usize {
        self.len
    }

    /// Pointer to memory.
    fn as_non_null(&self) -> NonNull<u8> {
        self.ptr
    }

    /// Indicate that the memory is not in use and that the OS can recycle it.
    fn clear(&mut self) -> std::io::Result<()> {
        // SAFETY: `MADV_DONTNEED_STRATEGY` guaranteed to be a valid argument.
        unsafe { self.madvise(MADV_DONTNEED_STRATEGY) }
    }

    /// Indicate that the memory is not in use and that the OS can recycle it.
    fn fast_clear(&mut self) -> std::io::Result<()> {
        // SAFETY: `libc::MADV_DONTNEED` documented to be a valid argument.
        unsafe { self.madvise(libc::MADV_DONTNEED) }
    }

    /// Call `madvise` on the memory region. Unsafe because `advice` is passed verbatim.
    unsafe fn madvise(&self, advice: libc::c_int) -> std::io::Result<()> {
        // SAFETY: Calling into `madvise`:
        // * The ptr is page-aligned by construction.
        // * The ptr + length is page-aligned by construction (not required but surprising otherwise)
        // * Mapped shared and writable (for MADV_REMOVE),
        // * Pages not locked.
        // * The caller is responsible for passing a valid `advice` parameter.
        let ptr = self.as_non_null().as_ptr().cast();
        let ret = unsafe { libc::madvise(ptr, self.len, advice) };
        if ret != 0 {
            let err = std::io::Error::last_os_error();
            eprintln!("madvise failed: {ret} {err:?}",);
            return Err(err);
        }
        Ok(())
    }
}

/// The size of allocations to retain locally, per thread and size class.
const LOCAL_BUFFER_BYTES: usize = 32 << 20;

/// Initial file size
const INITIAL_SIZE: usize = 32 << 20;

/// Range of valid size classes.
pub const VALID_SIZE_CLASS: Range<usize> = 10..37;

/// Strategy to indicate that the OS can reclaim pages
// TODO: On Linux, we want to use MADV_REMOVE, but that's only supported
// on file systems that supports FALLOC_FL_PUNCH_HOLE. We should check
// the return value and retry EOPNOTSUPP with MADV_DONTNEED.
#[cfg(target_os = "linux")]
const MADV_DONTNEED_STRATEGY: libc::c_int = libc::MADV_REMOVE;

#[cfg(not(target_os = "linux"))]
const MADV_DONTNEED_STRATEGY: libc::c_int = libc::MADV_DONTNEED;

type PhantomUnsyncUnsend<T> = PhantomData<*mut T>;

/// Allocation errors
#[derive(Error, Debug)]
pub enum AllocError {
    /// IO error, unrecoverable
    #[error("I/O error")]
    Io(#[from] std::io::Error),
    /// Out of memory, meaning that the pool is exhausted.
    #[error("Out of memory")]
    OutOfMemory,
    /// Size class too large or small
    #[error("Invalid size class")]
    InvalidSizeClass(usize),
    /// Allocator disabled
    #[error("Disabled by configuration")]
    Disabled,
    /// Failed to allocate memory that suits alignment properties.
    #[error("Memory unsuitable for requested alignment")]
    UnalignedMemory,
}

impl AllocError {
    /// Check if this error is [`AllocError::Disabled`].
    #[must_use]
    pub fn is_disabled(&self) -> bool {
        matches!(self, AllocError::Disabled)
    }
}

/// Abstraction over size classes.
#[derive(Clone, Copy)]
struct SizeClass(usize);

impl SizeClass {
    const fn new_unchecked(value: usize) -> Self {
        Self(value)
    }

    const fn index(self) -> usize {
        self.0 - VALID_SIZE_CLASS.start
    }

    /// The size in bytes of this size class.
    const fn byte_size(self) -> usize {
        1 << self.0
    }

    const fn from_index(index: usize) -> Self {
        Self(index + VALID_SIZE_CLASS.start)
    }

    /// Obtain a size class from a size in bytes.
    fn from_byte_size(byte_size: usize) -> Result<Self, AllocError> {
        let class = byte_size.next_power_of_two().trailing_zeros() as usize;
        class.try_into()
    }

    const fn from_byte_size_unchecked(byte_size: usize) -> Self {
        Self::new_unchecked(byte_size.next_power_of_two().trailing_zeros() as usize)
    }
}

impl TryFrom<usize> for SizeClass {
    type Error = AllocError;

    fn try_from(value: usize) -> Result<Self, Self::Error> {
        if VALID_SIZE_CLASS.contains(&value) {
            Ok(SizeClass(value))
        } else {
            Err(AllocError::InvalidSizeClass(value))
        }
    }
}

#[derive(Default, Debug)]
struct AllocStats {
    allocations: AtomicU64,
    slow_path: AtomicU64,
    refill: AtomicU64,
    deallocations: AtomicU64,
    clear_eager: AtomicU64,
    clear_slow: AtomicU64,
}

/// Handle to the shared global state.
static INJECTOR: OnceLock<GlobalStealer> = OnceLock::new();

/// Enabled switch to turn on or off lgalloc. Off by default.
static LGALLOC_ENABLED: AtomicBool = AtomicBool::new(false);

/// Enable eager returning of memory. Off by default.
static LGALLOC_EAGER_RETURN: AtomicBool = AtomicBool::new(false);

/// Type maintaining the global state for each size class.
struct GlobalStealer {
    /// State for each size class. An entry at position `x` handle size class `x`, which is areas
    /// of size `1<<x`.
    size_classes: Vec<SizeClassState>,
    /// Path to store files
    path: RwLock<Option<PathBuf>>,
    /// Shared token to access background thread.
    background_sender: Mutex<Option<(JoinHandle<()>, Sender<BackgroundWorkerConfig>)>>,
}

/// Per-size-class state
#[derive(Default)]
struct SizeClassState {
    /// Handle to memory-mapped regions.
    ///
    /// We must never dereference the memory-mapped regions stored here.
    areas: RwLock<Vec<ManuallyDrop<(File, MmapMut)>>>,
    /// Injector to distribute memory globally.
    injector: Injector<Handle>,
    /// Injector to distribute memory globally, freed memory.
    clean_injector: Injector<Handle>,
    /// Slow-path lock to refill pool.
    lock: Mutex<()>,
    /// Thread stealers to allow all participating threads to steal memory.
    stealers: RwLock<HashMap<ThreadId, PerThreadState<Handle>>>,
    /// Summed stats for terminated threads.
    alloc_stats: AllocStats,
}

impl GlobalStealer {
    /// Obtain the shared global state.
    fn get_static() -> &'static Self {
        INJECTOR.get_or_init(Self::new)
    }

    /// Obtain the per-size-class global state.
    fn get_size_class(&self, size_class: SizeClass) -> &SizeClassState {
        &self.size_classes[size_class.index()]
    }

    fn new() -> Self {
        let mut size_classes = Vec::with_capacity(VALID_SIZE_CLASS.len());

        for _ in VALID_SIZE_CLASS {
            size_classes.push(SizeClassState::default());
        }

        Self {
            size_classes,
            path: RwLock::default(),
            background_sender: Mutex::default(),
        }
    }
}

impl Drop for GlobalStealer {
    fn drop(&mut self) {
        take(&mut self.size_classes);
    }
}

struct PerThreadState<T> {
    stealer: Stealer<T>,
    alloc_stats: Arc<AllocStats>,
}

/// Per-thread and state, sharded by size class.
struct ThreadLocalStealer {
    /// Per-size-class state
    size_classes: Vec<LocalSizeClass>,
    _phantom: PhantomUnsyncUnsend<Self>,
}

impl ThreadLocalStealer {
    fn new() -> Self {
        let thread_id = std::thread::current().id();
        let size_classes = VALID_SIZE_CLASS
            .map(|size_class| LocalSizeClass::new(SizeClass::new_unchecked(size_class), thread_id))
            .collect();
        Self {
            size_classes,
            _phantom: PhantomData,
        }
    }

    /// Allocate a memory region from a specific size class.
    ///
    /// Returns [`AllocError::Disabled`] if lgalloc is not enabled. Returns other error types
    /// if out of memory, or an internal operation fails.
    fn allocate(&mut self, size_class: SizeClass) -> Result<Handle, AllocError> {
        if !LGALLOC_ENABLED.load(Ordering::Relaxed) {
            return Err(AllocError::Disabled);
        }
        self.size_classes[size_class.index()].get_with_refill()
    }

    /// Return memory to the allocator. Must have been obtained through [`allocate`].
    fn deallocate(&self, mem: Handle) {
        let size_class = SizeClass::from_byte_size_unchecked(mem.len());

        self.size_classes[size_class.index()].push(mem);
    }
}

thread_local! {
    static WORKER: RefCell<ThreadLocalStealer> = RefCell::new(ThreadLocalStealer::new());
}

/// Per-thread, per-size-class state
///
/// # Safety
///
/// We store parts of areas in this struct. Leaking this struct leaks the areas, which is safe
/// because we will never try to access or reclaim them.
struct LocalSizeClass {
    /// Local memory queue.
    worker: Worker<Handle>,
    /// Size class we're covering
    size_class: SizeClass,
    /// Handle to global size class state
    size_class_state: &'static SizeClassState,
    /// Owning thread's ID
    thread_id: ThreadId,
    /// Shared statistics maintained by this thread.
    stats: Arc<AllocStats>,
    /// Phantom data to prevent sending the type across thread boundaries.
    _phantom: PhantomUnsyncUnsend<Self>,
}

impl LocalSizeClass {
    /// Construct a new local size class state. Registers the worker with the global state.
    fn new(size_class: SizeClass, thread_id: ThreadId) -> Self {
        let worker = Worker::new_lifo();
        let stealer = GlobalStealer::get_static();
        let size_class_state = stealer.get_size_class(size_class);

        let stats = Arc::new(AllocStats::default());

        let mut lock = size_class_state.stealers.write().unwrap();
        lock.insert(
            thread_id,
            PerThreadState {
                stealer: worker.stealer(),
                alloc_stats: Arc::clone(&stats),
            },
        );

        Self {
            worker,
            size_class,
            size_class_state,
            thread_id,
            stats,
            _phantom: PhantomData,
        }
    }

    /// Get a memory area. Tries to get a region from the local cache, before obtaining data from
    /// the global state. As a last option, obtains memory from other workers.
    ///
    /// Returns [`AllcError::OutOfMemory`] if all pools are empty.
    #[inline]
    fn get(&self) -> Result<Handle, AllocError> {
        self.worker
            .pop()
            .or_else(|| {
                std::iter::repeat_with(|| {
                    // The loop tries to obtain memory in the following order:
                    // 1. Memory from the global state,
                    // 2. Memory from the global cleaned state,
                    // 3. Memory from other threads.
                    let limit = 1.max(LOCAL_BUFFER_BYTES / self.size_class.byte_size() / 2);

                    self.size_class_state
                        .injector
                        .steal_batch_with_limit_and_pop(&self.worker, limit)
                        .or_else(|| {
                            self.size_class_state
                                .clean_injector
                                .steal_batch_with_limit_and_pop(&self.worker, limit)
                        })
                        .or_else(|| {
                            self.size_class_state
                                .stealers
                                .read()
                                .unwrap()
                                .values()
                                .map(|state| state.stealer.steal())
                                .collect()
                        })
                })
                .find(|s| !s.is_retry())
                .and_then(Steal::success)
            })
            .ok_or(AllocError::OutOfMemory)
    }

    /// Like [`Self::get()`] but trying to refill the pool if it is empty.
    fn get_with_refill(&self) -> Result<Handle, AllocError> {
        self.stats.allocations.fetch_add(1, Ordering::Relaxed);
        // Fast-path: Get non-blocking
        match self.get() {
            Err(AllocError::OutOfMemory) => {
                self.stats.slow_path.fetch_add(1, Ordering::Relaxed);
                // Get a slow-path lock
                let _lock = self.size_class_state.lock.lock().unwrap();
                // Try again because another thread might have refilled already
                if let Ok(mem) = self.get() {
                    return Ok(mem);
                }
                self.try_refill_and_get()
            }
            r => r,
        }
    }

    /// Recycle memory. Stores it locally or forwards it to the global state.
    fn push(&self, mut mem: Handle) {
        debug_assert_eq!(mem.len(), self.size_class.byte_size());
        self.stats.deallocations.fetch_add(1, Ordering::Relaxed);
        if self.worker.len() >= LOCAL_BUFFER_BYTES / self.size_class.byte_size() {
            if LGALLOC_EAGER_RETURN.load(Ordering::Relaxed) {
                self.stats.clear_eager.fetch_add(1, Ordering::Relaxed);
                mem.fast_clear().expect("clearing successful");
            }
            self.size_class_state.injector.push(mem);
        } else {
            self.worker.push(mem);
        }
    }

    /// Refill the memory pool, and get one area.
    ///
    /// Returns an error if the memory pool cannot be refilled.
    fn try_refill_and_get(&self) -> Result<Handle, AllocError> {
        self.stats.refill.fetch_add(1, Ordering::Relaxed);
        let mut stash = self.size_class_state.areas.write().unwrap();

        let byte_len = stash.iter().last().map_or_else(
            || std::cmp::max(INITIAL_SIZE, self.size_class.byte_size()),
            |mmap| mmap.1.len() * 2,
        );

        let (file, mut mmap) = Self::init_file(byte_len)?;
        // SAFETY: Memory region initialized, so pointers to it are valid.
        let mut chunks = mmap
            .as_mut()
            .chunks_exact_mut(self.size_class.byte_size())
            .map(|chunk| unsafe { NonNull::new_unchecked(chunk.as_mut_ptr()) });

        // Capture first region to return immediately.
        let ptr = chunks.next().expect("At least once chunk allocated.");
        let mem = Handle::new(ptr, self.size_class.byte_size());

        // Stash remaining in the injector.
        for ptr in chunks {
            self.size_class_state
                .clean_injector
                .push(Handle::new(ptr, self.size_class.byte_size()));
        }

        stash.push(ManuallyDrop::new((file, mmap)));
        Ok(mem)
    }

    /// Allocate and map a file of size `byte_len`. Returns an handle, or error if the allocation
    /// fails.
    fn init_file(byte_len: usize) -> Result<(File, MmapMut), AllocError> {
        let path = GlobalStealer::get_static().path.read().unwrap().clone();
        let Some(path) = path else {
            return Err(AllocError::Io(std::io::Error::from(
                std::io::ErrorKind::NotFound,
            )));
        };
        let file = tempfile::tempfile_in(path)?;
        let fd = file.as_fd().as_raw_fd();
        // SAFETY: Calling ftruncate on the file, which we just created.
        unsafe {
            let ret = libc::ftruncate(fd, libc::off_t::try_from(byte_len).expect("Must fit"));
            if ret != 0 {
                return Err(std::io::Error::last_os_error().into());
            }
        }
        // SAFETY: We only map `file` once, and never share it with other processes.
        let mmap = unsafe { memmap2::MmapOptions::new().map_mut(&file)? };
        assert_eq!(mmap.len(), byte_len);
        Ok((file, mmap))
    }
}

impl Drop for LocalSizeClass {
    fn drop(&mut self) {
        // Remove state associated with thread
        if let Ok(mut lock) = self.size_class_state.stealers.write() {
            lock.remove(&self.thread_id);
        }

        // Send memory back to global state
        while let Some(mem) = self.worker.pop() {
            self.size_class_state.injector.push(mem);
        }

        let ordering = Ordering::Relaxed;

        // Update global metrics by moving all worker-local metrics to global state.
        self.size_class_state
            .alloc_stats
            .allocations
            .fetch_add(self.stats.allocations.load(ordering), ordering);
        let global_stats = &self.size_class_state.alloc_stats;
        global_stats
            .refill
            .fetch_add(self.stats.refill.load(ordering), ordering);
        global_stats
            .slow_path
            .fetch_add(self.stats.slow_path.load(ordering), ordering);
        global_stats
            .deallocations
            .fetch_add(self.stats.deallocations.load(ordering), ordering);
        global_stats
            .clear_slow
            .fetch_add(self.stats.clear_slow.load(ordering), ordering);
        global_stats
            .clear_eager
            .fetch_add(self.stats.clear_eager.load(ordering), ordering);
    }
}

/// Access the per-thread context.
fn thread_context<R, F: FnOnce(&mut ThreadLocalStealer) -> R>(f: F) -> R {
    WORKER.with(|cell| f(&mut cell.borrow_mut()))
}

/// Allocate a memory area suitable to hold `capacity` consecutive elements of `T`.
///
/// Returns a pointer, a capacity in `T`, and a handle if successful, and an error
/// otherwise. The capacity can be larger than requested.
///
/// The memory must be freed using [`deallocate`], otherwise the memory leaks. The memory can be freed on a different thread.
///
/// # Errors
///
/// Allocate errors if the capacity cannot be supported by one of the size classes,
/// the alignment requirements of `T` cannot be fulfilled, if no more memory can be
/// obtained from the system, or if any syscall fails.
///
/// The function also returns an error if lgalloc is disabled.
///
/// In the case of an error, no memory is allocated, and we maintain the internal
/// invariants of the allocator.
///
/// # Panics
///
/// The function can panic on internal errors, specifically when an allocation returned
/// an unexpected size. In this case, the we do no maintain the allocator invariants
/// and the caller should abort the process.
///
/// Panics if the thread local variable has been dropped, see [`std::thread::LocalKey`]
/// for details.
pub fn allocate<T>(capacity: usize) -> Result<(NonNull<T>, usize, Handle), AllocError> {
    if std::mem::size_of::<T>() == 0 {
        return Ok((NonNull::dangling(), usize::MAX, Handle::dangling()));
    } else if capacity == 0 {
        return Ok((NonNull::dangling(), 0, Handle::dangling()));
    }

    // Round up to at least a page.
    let byte_len = std::cmp::max(page_size::get(), std::mem::size_of::<T>() * capacity);
    // With above rounding up to page sizes, we only allocate multiples of page size because
    // we only support powers-of-two sized regions.
    let size_class = SizeClass::from_byte_size(byte_len)?;

    thread_context(|s| s.allocate(size_class)).and_then(|handle| {
        debug_assert_eq!(handle.len(), size_class.byte_size());
        let ptr: NonNull<T> = handle.as_non_null().cast();
        // Memory region should be page-aligned, which we assume to be larger than any alignment
        // we might encounter. If this is not the case, bail out.
        if ptr.as_ptr().align_offset(std::mem::align_of::<T>()) != 0 {
            thread_context(move |s| s.deallocate(handle));
            return Err(AllocError::UnalignedMemory);
        }
        let actual_capacity = handle.len() / std::mem::size_of::<T>();
        Ok((ptr, actual_capacity, handle))
    })
}

/// Free the memory referenced by `handle`, which has been obtained from [`allocate`].
///
/// This function cannot fail. The caller must not access the memory after freeing it. The caller is responsible
/// for dropping/forgetting data.
///
/// # Panics
///
/// Panics if the thread local variable has been dropped, see [`std::thread::LocalKey`]
/// for details.
pub fn deallocate(handle: Handle) {
    if handle.is_dangling() {
        return;
    }
    thread_context(|s| s.deallocate(handle));
}

/// A background worker that performs periodic tasks.
struct BackgroundWorker {
    config: BackgroundWorkerConfig,
    receiver: Receiver<BackgroundWorkerConfig>,
    global_stealer: &'static GlobalStealer,
    worker: Worker<Handle>,
}

impl BackgroundWorker {
    fn new(receiver: Receiver<BackgroundWorkerConfig>) -> Self {
        let config = BackgroundWorkerConfig {
            interval: Duration::MAX,
            ..Default::default()
        };
        let global_stealer = GlobalStealer::get_static();
        let worker = Worker::new_fifo();
        Self {
            config,
            receiver,
            global_stealer,
            worker,
        }
    }

    fn run(&mut self) {
        let mut next_cleanup: Option<Instant> = None;
        loop {
            let timeout = next_cleanup.map_or(Duration::MAX, |next_cleanup| {
                next_cleanup.saturating_duration_since(Instant::now())
            });
            match self.receiver.recv_timeout(timeout) {
                Ok(config) => {
                    self.config = config;
                    next_cleanup = None;
                }
                Err(RecvTimeoutError::Disconnected) => break,
                Err(RecvTimeoutError::Timeout) => {
                    self.maintenance();
                }
            }
            next_cleanup = next_cleanup
                .unwrap_or_else(Instant::now)
                .checked_add(self.config.interval);
        }
    }

    fn maintenance(&self) {
        for (index, size_class_state) in self.global_stealer.size_classes.iter().enumerate() {
            let size_class = SizeClass::from_index(index);
            let count = self.clear(size_class, size_class_state, &self.worker);
            size_class_state
                .alloc_stats
                .clear_slow
                .fetch_add(count as u64, Ordering::Relaxed);
        }
    }

    fn clear(
        &self,
        size_class: SizeClass,
        state: &SizeClassState,
        worker: &Worker<Handle>,
    ) -> usize {
        // Clear batch size, and at least one element.
        let byte_size = size_class.byte_size();
        let mut limit = (self.config.clear_bytes + byte_size - 1) / byte_size;
        let mut count = 0;
        let mut steal = Steal::Retry;
        while limit > 0 && !steal.is_empty() {
            steal = std::iter::repeat_with(|| state.injector.steal_batch_with_limit(worker, limit))
                .find(|s| !s.is_retry())
                .unwrap_or(Steal::Empty);
            while let Some(mut mem) = worker.pop() {
                match mem.clear() {
                    Ok(()) => count += 1,
                    Err(e) => panic!("Syscall failed: {e:?}"),
                }
                state.clean_injector.push(mem);
                limit -= 1;
            }
        }
        count
    }
}

/// Set or update the configuration for lgalloc.
///
/// The function accepts a configuration, which is then applied on lgalloc. It allows clients to
/// change the path where area files reside, and change the configuration of the background task.
///
/// Updating the area path only applies to new allocations, existing allocations are not moved to
/// the new path.
///
/// Updating the background thread configuration eventually applies the new configuration on the
/// running thread, or starts the background worker.
///
/// # Panics
///
/// Panics if the internal state of lgalloc is corrupted.
pub fn lgalloc_set_config(config: &LgAlloc) {
    let stealer = GlobalStealer::get_static();

    if let Some(enabled) = &config.enabled {
        LGALLOC_ENABLED.store(*enabled, Ordering::Relaxed);
    }

    if let Some(eager_return) = &config.eager_return {
        LGALLOC_EAGER_RETURN.store(*eager_return, Ordering::Relaxed);
    }

    if let Some(path) = &config.path {
        *stealer.path.write().unwrap() = Some(path.clone());
    }

    if let Some(config) = config.background_config.clone() {
        let mut lock = stealer.background_sender.lock().unwrap();

        let config = if let Some((_, sender)) = &*lock {
            match sender.send(config) {
                Ok(()) => None,
                Err(err) => Some(err.0),
            }
        } else {
            Some(config)
        };
        if let Some(config) = config {
            let (sender, receiver) = std::sync::mpsc::channel();
            let mut worker = BackgroundWorker::new(receiver);
            let join_handle = spawn(move || worker.run());
            sender.send(config).expect("Receiver exists");
            *lock = Some((join_handle, sender));
        }
    }
}

/// Configuration for lgalloc's background worker.
#[derive(Default, Debug, Clone, Eq, PartialEq)]
pub struct BackgroundWorkerConfig {
    /// How frequently it should tick
    pub interval: Duration,
    /// How many bytes to clear per size class.
    pub clear_bytes: usize,
}

/// Lgalloc configuration
#[derive(Default, Clone, Eq, PartialEq)]
pub struct LgAlloc {
    /// Whether the allocator is enabled or not.
    pub enabled: Option<bool>,
    /// Path where files reside.
    pub path: Option<PathBuf>,
    /// Configuration of the background worker.
    pub background_config: Option<BackgroundWorkerConfig>,
    /// Whether to return physical memory on deallocate
    pub eager_return: Option<bool>,
}

impl LgAlloc {
    /// Construct a new configuration. All values are initialized to their default (None) values.
    #[must_use]
    pub fn new() -> Self {
        Self::default()
    }

    /// Enable lgalloc globally.
    pub fn enable(&mut self) -> &mut Self {
        self.enabled = Some(true);
        self
    }

    /// Disable lgalloc globally.
    pub fn disable(&mut self) -> &mut Self {
        self.enabled = Some(false);
        self
    }

    /// Set the background worker configuration.
    pub fn with_background_config(&mut self, config: BackgroundWorkerConfig) -> &mut Self {
        self.background_config = Some(config);
        self
    }

    /// Set the area file path.
    pub fn with_path(&mut self, path: PathBuf) -> &mut Self {
        self.path = Some(path);
        self
    }

    /// Enable eager memory reclamation.
    pub fn eager_return(&mut self, eager_return: bool) -> &mut Self {
        self.eager_return = Some(eager_return);
        self
    }
}

/// Determine global statistics per size class
///
/// Note that this function take a read lock on various structures.
///
/// # Panics
///
/// Panics if the internal state of lgalloc is corrupted.
pub fn lgalloc_stats(stats: &mut LgAllocStats) {
    stats.size_class.clear();
    stats.file_stats.clear();

    // `numa_maps` only exists on Linux, don't spam errors on other OSs.
    #[cfg(target_os = "linux")]
    let mut numa_map = numa_maps::NumaMap::from_file("/proc/self/numa_maps")
        .map_err(|e| eprintln!("Failed to parse numa_maps: {e}"))
        .unwrap_or_default();
    #[cfg(not(target_os = "linux"))]
    let mut numa_map = numa_maps::NumaMap::default();

    // Normalize numa_maps, and sort by address.
    for entry in &mut numa_map.ranges {
        entry.normalize();
    }
    numa_map.ranges.sort();

    let global = GlobalStealer::get_static();

    for (index, size_class_state) in global.size_classes.iter().enumerate() {
        let size_class = SizeClass::from_index(index);

        let areas_lock = size_class_state.areas.read().unwrap();

        let areas = areas_lock.len();
        if areas == 0 {
            continue;
        }

        let size_class = size_class.byte_size();
        let area_total_bytes = areas_lock.iter().map(|area| area.1.len()).sum();
        let global_regions = size_class_state.injector.len();
        let clean_regions = size_class_state.clean_injector.len();
        let stealers = size_class_state.stealers.read().unwrap();
        let mut thread_regions = 0;
        let mut allocations = 0;
        let mut deallocations = 0;
        let mut refill = 0;
        let mut slow_path = 0;
        let mut clear_eager_total = 0;
        let mut clear_slow_total = 0;
        for thread_state in stealers.values() {
            thread_regions += thread_state.stealer.len();
            let thread_stats = &*thread_state.alloc_stats;
            allocations += thread_stats.allocations.load(Ordering::Relaxed);
            deallocations += thread_stats.deallocations.load(Ordering::Relaxed);
            refill += thread_stats.refill.load(Ordering::Relaxed);
            slow_path += thread_stats.slow_path.load(Ordering::Relaxed);
            clear_eager_total += thread_stats.clear_eager.load(Ordering::Relaxed);
            clear_slow_total += thread_stats.clear_slow.load(Ordering::Relaxed);
        }

        let free_regions = thread_regions + global_regions + clean_regions;

        let global_stats = &size_class_state.alloc_stats;
        allocations += global_stats.allocations.load(Ordering::Relaxed);
        deallocations += global_stats.deallocations.load(Ordering::Relaxed);
        refill += global_stats.refill.load(Ordering::Relaxed);
        slow_path += global_stats.slow_path.load(Ordering::Relaxed);
        clear_eager_total += global_stats.clear_eager.load(Ordering::Relaxed);
        clear_slow_total += global_stats.clear_slow.load(Ordering::Relaxed);

        stats.size_class.push(SizeClassStats {
            size_class,
            areas,
            area_total_bytes,
            free_regions,
            global_regions,
            clean_regions,
            thread_regions,
            allocations,
            deallocations,
            refill,
            slow_path,
            clear_eager_total,
            clear_slow_total,
        });

        for (file, mmap) in areas_lock.iter().map(ManuallyDrop::deref) {
            let (mapped, active, dirty) = {
                let base = mmap.as_ptr().cast::<()>() as usize;
                let range = match numa_map
                    .ranges
                    .binary_search_by(|range| range.address.cmp(&base))
                {
                    Ok(pos) => Some(&numa_map.ranges[pos]),
                    // `numa_maps` only updates periodically, so we might be missing some
                    // expected ranges.
                    Err(_pos) => None,
                };

                let mut mapped = 0;
                let mut active = 0;
                let mut dirty = 0;
                for property in range.iter().flat_map(|e| e.properties.iter()) {
                    match property {
                        numa_maps::Property::Dirty(d) => dirty = *d,
                        numa_maps::Property::Mapped(m) => mapped = *m,
                        numa_maps::Property::Active(a) => active = *a,
                        _ => {}
                    }
                }
                (mapped, active, dirty)
            };

            let mut stat: MaybeUninit<libc::stat> = MaybeUninit::uninit();
            // SAFETY: File descriptor valid, stat object valid.
            let ret = unsafe { libc::fstat(file.as_raw_fd(), stat.as_mut_ptr()) };
            let stat = if ret == -1 {
                None
            } else {
                // SAFETY: `stat` is initialized in the fstat non-error case.
                Some(unsafe { stat.assume_init_ref() })
            };

            let (blocks, file_size) = stat.map_or((0, 0), |stat| {
                (
                    stat.st_blocks.try_into().unwrap_or(0),
                    stat.st_size.try_into().unwrap_or(0),
                )
            });

            stats.file_stats.push(FileStats {
                size_class,
                file_size,
                // Documented as multiples of 512
                allocated_size: blocks * 512,
                mapped,
                active,
                dirty,
            });
        }
    }
}

/// Statistics about lgalloc's internal behavior.
#[derive(Debug, Default)]
pub struct LgAllocStats {
    /// Per size-class statistics.
    pub size_class: Vec<SizeClassStats>,
    /// Per size-class and backing file statistics.
    pub file_stats: Vec<FileStats>,
}

/// Statistics per size class.
#[derive(Debug)]
pub struct SizeClassStats {
    /// Size class in bytes
    pub size_class: usize,
    /// Number of areas backing a size class.
    pub areas: usize,
    /// Total number of bytes summed across all areas.
    pub area_total_bytes: usize,
    /// Free regions
    pub free_regions: usize,
    /// Clean free regions in the global allocator
    pub clean_regions: usize,
    /// Regions in the global allocator
    pub global_regions: usize,
    /// Regions retained in thread-local allocators
    pub thread_regions: usize,
    /// Total allocations
    pub allocations: u64,
    /// Total slow-path allocations (globally out of memory)
    pub slow_path: u64,
    /// Total refills
    pub refill: u64,
    /// Total deallocations
    pub deallocations: u64,
    /// Total times memory has been returned to the OS (eager reclamation) in regions.
    pub clear_eager_total: u64,
    /// Total times memory has been returned to the OS (slow reclamation) in regions.
    pub clear_slow_total: u64,
}

/// Statistics per size class and backing file.
#[derive(Debug)]
pub struct FileStats {
    /// The size class in bytes.
    pub size_class: usize,
    /// The size of the file in bytes.
    pub file_size: usize,
    /// Size of the file on disk in bytes.
    pub allocated_size: usize,
    /// Number of mapped bytes, if different from `dirty`. Consult `man 7 numa` for details.
    pub mapped: usize,
    /// Number of active bytes. Consult `man 7 numa` for details.
    pub active: usize,
    /// Number of dirty bytes. Consult `man 7 numa` for details.
    pub dirty: usize,
}

#[cfg(test)]
mod test {
    use std::mem::{ManuallyDrop, MaybeUninit};
    use std::ptr::NonNull;
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::Arc;
    use std::time::Duration;

    use serial_test::serial;

    use crate::{
        allocate, deallocate, lgalloc_stats, AllocError, BackgroundWorkerConfig, Handle, LgAlloc,
        LgAllocStats,
    };

    fn initialize() {
        crate::lgalloc_set_config(
            LgAlloc::new()
                .enable()
                .with_background_config(BackgroundWorkerConfig {
                    interval: Duration::from_secs(1),
                    clear_bytes: 4 << 20,
                })
                .with_path(std::env::temp_dir()),
        );
    }

    struct Wrapper<T> {
        handle: MaybeUninit<Handle>,
        ptr: NonNull<MaybeUninit<T>>,
        cap: usize,
    }

    unsafe impl<T: Send> Send for Wrapper<T> {}
    unsafe impl<T: Sync> Sync for Wrapper<T> {}

    impl<T> Wrapper<T> {
        fn allocate(capacity: usize) -> Result<Self, AllocError> {
            let (ptr, cap, handle) = allocate(capacity)?;
            assert!(cap > 0);
            let handle = MaybeUninit::new(handle);
            Ok(Self { ptr, cap, handle })
        }

        fn as_slice(&mut self) -> &mut [MaybeUninit<T>] {
            unsafe { std::slice::from_raw_parts_mut(self.ptr.as_ptr(), self.cap) }
        }
    }

    impl<T> Drop for Wrapper<T> {
        fn drop(&mut self) {
            unsafe { deallocate(self.handle.assume_init_read()) };
        }
    }

    #[test]
    fn test_readme() -> Result<(), AllocError> {
        initialize();

        // Allocate memory
        let (ptr, cap, handle) = allocate::<u8>(2 << 20)?;
        // SAFETY: `allocate` returns a valid memory region and errors otherwise.
        let mut vec = ManuallyDrop::new(unsafe { Vec::from_raw_parts(ptr.as_ptr(), 0, cap) });

        // Write into region, make sure not to reallocate vector.
        vec.extend_from_slice(&[1, 2, 3, 4]);

        // We can read from the vector.
        assert_eq!(&*vec, &[1, 2, 3, 4]);

        // Deallocate after use
        deallocate(handle);
        Ok(())
    }

    #[test]
    #[serial]
    fn test_1() -> Result<(), AllocError> {
        initialize();
        <Wrapper<u8>>::allocate(4 << 20)?.as_slice()[0] = MaybeUninit::new(1);
        Ok(())
    }

    #[test]
    #[serial]
    fn test_3() -> Result<(), AllocError> {
        initialize();
        let until = Arc::new(AtomicBool::new(true));

        let inner = || {
            let until = Arc::clone(&until);
            move || {
                let mut i = 0;
                let until = &*until;
                while until.load(Ordering::Relaxed) {
                    i += 1;
                    let mut r = <Wrapper<u8>>::allocate(4 << 20).unwrap();
                    r.as_slice()[0] = MaybeUninit::new(1);
                }
                println!("repetitions: {i}");
            }
        };
        let handles = [
            std::thread::spawn(inner()),
            std::thread::spawn(inner()),
            std::thread::spawn(inner()),
            std::thread::spawn(inner()),
        ];
        std::thread::sleep(Duration::from_secs(4));
        until.store(false, Ordering::Relaxed);
        for handle in handles {
            handle.join().unwrap();
        }
        // std::thread::sleep(Duration::from_secs(600));
        Ok(())
    }

    #[test]
    #[serial]
    fn test_4() -> Result<(), AllocError> {
        initialize();
        let until = Arc::new(AtomicBool::new(true));

        let inner = || {
            let until = Arc::clone(&until);
            move || {
                let mut i = 0;
                let until = &*until;
                let batch = 64;
                let mut buffer = Vec::with_capacity(batch);
                while until.load(Ordering::Relaxed) {
                    i += 64;
                    buffer.extend((0..batch).map(|_| {
                        let mut r = <Wrapper<u8>>::allocate(2 << 20).unwrap();
                        r.as_slice()[0] = MaybeUninit::new(1);
                        r
                    }));
                    buffer.clear();
                }
                println!("repetitions vec: {i}");
            }
        };
        let handles = [
            std::thread::spawn(inner()),
            std::thread::spawn(inner()),
            std::thread::spawn(inner()),
            std::thread::spawn(inner()),
        ];
        std::thread::sleep(Duration::from_secs(4));
        until.store(false, Ordering::Relaxed);
        for handle in handles {
            handle.join().unwrap();
        }
        std::thread::sleep(Duration::from_secs(1));
        let mut stats = Default::default();
        crate::lgalloc_stats(&mut stats);
        println!("stats: {stats:?}");
        Ok(())
    }

    #[test]
    #[serial]
    fn leak() -> Result<(), AllocError> {
        crate::lgalloc_set_config(&crate::LgAlloc {
            enabled: Some(true),
            path: Some(std::env::temp_dir()),
            background_config: None,
            eager_return: None,
        });
        let r = <Wrapper<u8>>::allocate(1000)?;

        let thread = std::thread::spawn(move || drop(r));

        thread.join().unwrap();
        Ok(())
    }

    #[test]
    fn test_zst() -> Result<(), AllocError> {
        initialize();
        <Wrapper<()>>::allocate(10)?;
        Ok(())
    }

    #[test]
    fn test_zero_capacity_zst() -> Result<(), AllocError> {
        initialize();
        <Wrapper<()>>::allocate(0)?;
        Ok(())
    }

    #[test]
    fn test_zero_capacity_nonzst() -> Result<(), AllocError> {
        initialize();
        <Wrapper<()>>::allocate(0)?;
        Ok(())
    }

    #[test]
    fn test_stats() -> Result<(), AllocError> {
        initialize();
        let (_ptr, _cap, handle) = allocate::<usize>(1024)?;
        deallocate(handle);

        let mut stats = LgAllocStats::default();
        lgalloc_stats(&mut stats);

        assert!(!stats.size_class.is_empty());

        Ok(())
    }

    #[test]
    #[serial]
    fn test_disable() {
        crate::lgalloc_set_config(&*LgAlloc::new().disable());
        assert!(matches!(allocate::<u8>(1024), Err(AllocError::Disabled)));
    }
}