hibitset/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
//! # hibitset
//!
//! Provides hierarchical bit sets,
//! which allow very fast iteration
//! on sparse data structures.
//!
//! ## What it does
//!
//! A `BitSet` may be considered analogous to a `HashSet<u32>`. It
//! tracks whether or not certain indices exist within it. Its
//! implementation is very different, however.
//!
//! At its root, a `BitSet` relies on an array of bits, which express
//! whether or not indices exist. This provides the functionality to
//! `add( )` and `remove( )` indices.
//!
//! This array is referred to as Layer 0. Above it, there is another
//! layer: Layer 1. Layer 1 acts as a 'summary' of Layer 0. It contains
//! one bit for each `usize` bits of Layer 0. If any bit in that `usize`
//! of Layer 0 is set, the bit in Layer 1 will be set.
//!
//! There are, in total, four layers. Layers 1 through 3 are each a
//! summary of the layer immediately below them.
//!
//! ```no_compile
//! Example, with an imaginary 4-bit usize:
//!
//! Layer 3: 1------------------------------------------------ ...
//! Layer 2: 1------------------ 1------------------ 0-------- ...
//! Layer 1: 1--- 0--- 0--- 0--- 1--- 0--- 1--- 0--- 0--- 0--- ...
//! Layer 0: 0010 0000 0000 0000 0011 0000 1111 0000 0000 0000 ...
//! ```
//!
//! This method makes operations that operate over the whole `BitSet`,
//! such as unions, intersections, and iteration, very fast (because if
//! any bit in any summary layer is zero, an entire range of bits
//! below it can be skipped.)
//!
//! However, there is a maximum on index size. The top layer (Layer 3)
//! of the BitSet is a single `usize` long. This makes the maximum index
//! `usize**4` (`1,048,576` for a 32-bit `usize`, `16,777,216` for a
//! 64-bit `usize`). Attempting to add indices larger than that will cause
//! the `BitSet` to panic.
//!
#![deny(missing_docs)]
#[cfg(test)]
extern crate rand;
#[cfg(feature = "parallel")]
extern crate rayon;
mod atomic;
mod iter;
mod ops;
mod util;
pub use atomic::AtomicBitSet;
pub use iter::{BitIter, DrainBitIter};
#[cfg(feature = "parallel")]
pub use iter::{BitParIter, BitProducer};
pub use ops::{BitSetAll, BitSetAnd, BitSetNot, BitSetOr, BitSetXor};
use util::*;
/// A `BitSet` is a simple set designed to track which indices are placed
/// into it.
///
/// Note, a `BitSet` is limited by design to only `usize**4` indices.
/// Adding beyond this limit will cause the `BitSet` to panic.
#[derive(Clone, Debug, Default)]
pub struct BitSet {
layer3: usize,
layer2: Vec<usize>,
layer1: Vec<usize>,
layer0: Vec<usize>,
}
impl BitSet {
/// Creates an empty `BitSet`.
pub fn new() -> BitSet {
Default::default()
}
#[inline]
fn valid_range(max: Index) {
if (MAX_EID as u32) < max {
panic!("Expected index to be less then {}, found {}", MAX_EID, max);
}
}
/// Creates an empty `BitSet`, preallocated for up to `max` indices.
pub fn with_capacity(max: Index) -> BitSet {
Self::valid_range(max);
let mut value = BitSet::new();
value.extend(max);
value
}
#[inline(never)]
fn extend(&mut self, id: Index) {
Self::valid_range(id);
let (p0, p1, p2) = offsets(id);
Self::fill_up(&mut self.layer2, p2);
Self::fill_up(&mut self.layer1, p1);
Self::fill_up(&mut self.layer0, p0);
}
fn fill_up(vec: &mut Vec<usize>, upper_index: usize) {
if vec.len() <= upper_index {
vec.resize(upper_index + 1, 0);
}
}
/// This is used to set the levels in the hierarchy
/// when the lowest layer was set from 0.
#[inline(never)]
fn add_slow(&mut self, id: Index) {
let (_, p1, p2) = offsets(id);
self.layer1[p1] |= id.mask(SHIFT1);
self.layer2[p2] |= id.mask(SHIFT2);
self.layer3 |= id.mask(SHIFT3);
}
/// Adds `id` to the `BitSet`. Returns `true` if the value was
/// already in the set.
#[inline]
pub fn add(&mut self, id: Index) -> bool {
let (p0, mask) = (id.offset(SHIFT1), id.mask(SHIFT0));
if p0 >= self.layer0.len() {
self.extend(id);
}
if self.layer0[p0] & mask != 0 {
return true;
}
// we need to set the bit on every layer to indicate
// that the value can be found here.
let old = self.layer0[p0];
self.layer0[p0] |= mask;
if old == 0 {
self.add_slow(id);
}
false
}
fn layer_mut(&mut self, level: usize, idx: usize) -> &mut usize {
match level {
0 => {
Self::fill_up(&mut self.layer0, idx);
&mut self.layer0[idx]
}
1 => {
Self::fill_up(&mut self.layer1, idx);
&mut self.layer1[idx]
}
2 => {
Self::fill_up(&mut self.layer2, idx);
&mut self.layer2[idx]
}
3 => &mut self.layer3,
_ => panic!("Invalid layer: {}", level),
}
}
/// Removes `id` from the set, returns `true` if the value
/// was removed, and `false` if the value was not set
/// to begin with.
#[inline]
pub fn remove(&mut self, id: Index) -> bool {
let (p0, p1, p2) = offsets(id);
if p0 >= self.layer0.len() {
return false;
}
if self.layer0[p0] & id.mask(SHIFT0) == 0 {
return false;
}
// if the bitmask was set we need to clear
// its bit from layer0 to 3. the layers abover only
// should be cleared if the bit cleared was the last bit
// in its set
self.layer0[p0] &= !id.mask(SHIFT0);
if self.layer0[p0] != 0 {
return true;
}
self.layer1[p1] &= !id.mask(SHIFT1);
if self.layer1[p1] != 0 {
return true;
}
self.layer2[p2] &= !id.mask(SHIFT2);
if self.layer2[p2] != 0 {
return true;
}
self.layer3 &= !id.mask(SHIFT3);
return true;
}
/// Returns `true` if `id` is in the set.
#[inline]
pub fn contains(&self, id: Index) -> bool {
let p0 = id.offset(SHIFT1);
p0 < self.layer0.len() && (self.layer0[p0] & id.mask(SHIFT0)) != 0
}
/// Returns `true` if all ids in `other` are contained in this set
#[inline]
pub fn contains_set(&self, other: &BitSet) -> bool {
for id in other.iter() {
if !self.contains(id) {
return false;
}
}
true
}
/// Completely wipes out the bit set.
pub fn clear(&mut self) {
self.layer0.clear();
self.layer1.clear();
self.layer2.clear();
self.layer3 = 0;
}
/// How many bits are in a `usize`.
///
/// This value can be trivially determined. It is provided here as a constant for clarity.
///
/// # Example
///
/// ```
/// use hibitset::BitSet;
/// assert_eq!(BitSet::BITS_PER_USIZE, std::mem::size_of::<usize>()*8);
/// ```
#[cfg(target_pointer_width = "32")]
pub const BITS_PER_USIZE: usize = 32;
/// How many bits are in a `usize`.
///
/// This value can be trivially determined. It is provided here as a constant for clarity.
///
/// # Example
///
/// ```
/// use hibitset::BitSet;
/// assert_eq!(BitSet::BITS_PER_USIZE, std::mem::size_of::<usize>()*8);
/// ```
#[cfg(target_pointer_width = "64")]
pub const BITS_PER_USIZE: usize = 64;
/// Returns the bottom layer of the bitset as a slice. Each bit in this slice refers to a single
/// `Index`.
///
/// The slice's length will be at least the length needed to reflect all the `1`s in the bitset,
/// but is not otherwise guaranteed. Consider it to be an implementation detail.
///
/// # Example
///
/// ```
/// use hibitset::BitSet;
///
/// let index: u32 = 12345;
///
/// let mut bitset = BitSet::new();
/// bitset.add(index);
///
/// // layer 0 is 1:1 with Indexes, so we expect that bit in the slice to be set
/// let slice = bitset.layer0_as_slice();
/// let bit_index = index as usize;
///
/// // map that bit index to a usize in the slice and a bit within that usize
/// let slice_index = bit_index / BitSet::BITS_PER_USIZE;
/// let bit_at_index = bit_index % BitSet::BITS_PER_USIZE;
///
/// assert_eq!(slice[slice_index], 1 << bit_at_index);
/// ```
pub fn layer0_as_slice(&self) -> &[usize] {
self.layer0.as_slice()
}
/// How many `Index`es are described by as single layer 1 bit, intended for use with
/// `BitSet::layer1_as_slice()`.
///
/// `BitSet`s are defined in terms of `usize`s summarizing `usize`s, so this value can be
/// trivially determined. It is provided here as a constant for clarity.
///
/// # Example
///
/// ```
/// use hibitset::BitSet;
/// assert_eq!(BitSet::LAYER1_GRANULARITY, BitSet::BITS_PER_USIZE);
/// ```
pub const LAYER1_GRANULARITY: usize = Self::BITS_PER_USIZE;
/// Returns the second layer of the bitset as a slice. Each bit in this slice summarizes a
/// corresponding `usize` from `layer0`. (If `usize` is 64 bits, bit 0 will be set if any
/// `Index`es 0-63 are set, bit 1 will be set if any `Index`es 64-127 are set, etc.)
/// `BitSet::LAYER1_GRANULARITY` reflects how many indexes are summarized per layer 1 bit.
///
/// The slice's length is not guaranteed, except that it will be at least the length needed to
/// reflect all the `1`s in the bitset.
///
/// # Example
///
/// ```
/// use hibitset::BitSet;
///
/// let index: u32 = 12345;
///
/// let mut bitset = BitSet::new();
/// bitset.add(index);
///
/// // layer 1 summarizes multiple indexes per bit, so divide appropriately
/// let slice = bitset.layer1_as_slice();
/// let bit_index = index as usize / BitSet::LAYER1_GRANULARITY;
///
/// // map that bit index to a usize in the slice and a bit within that usize
/// let slice_index = bit_index / BitSet::BITS_PER_USIZE;
/// let bit_at_index = bit_index % BitSet::BITS_PER_USIZE;
///
/// assert_eq!(slice[slice_index], 1 << bit_at_index);
/// ```
pub fn layer1_as_slice(&self) -> &[usize] {
self.layer1.as_slice()
}
/// How many `Index`es are described by as single layer 2 bit, intended for use with
/// `BitSet::layer2_as_slice()`.
///
/// `BitSet`s are defined in terms of `usize`s summarizing `usize`s, so this value can be
/// trivially determined. It is provided here as a constant for clarity.
///
/// # Example
///
/// ```
/// use hibitset::BitSet;
/// assert_eq!(BitSet::LAYER2_GRANULARITY, BitSet::LAYER1_GRANULARITY * BitSet::BITS_PER_USIZE);
/// ```
pub const LAYER2_GRANULARITY: usize = Self::LAYER1_GRANULARITY * Self::BITS_PER_USIZE;
/// Returns the third layer of the bitset as a slice. Each bit in this slice summarizes a
/// corresponding `usize` from `layer1`. If `usize` is 64 bits, bit 0 will be set if any
/// `Index`es 0-4095 are set, bit 1 will be set if any `Index`es 4096-8191 are set, etc.
///
/// The slice's length is not guaranteed, except that it will be at least the length needed to
/// reflect all the `1`s in the bitset.
///
/// # Example
///
/// ```
/// use hibitset::BitSet;
///
/// let index: u32 = 12345;
///
/// let mut bitset = BitSet::new();
/// bitset.add(index);
///
/// // layer 2 summarizes multiple indexes per bit, so divide appropriately
/// let slice = bitset.layer2_as_slice();
/// let bit_index = index as usize / BitSet::LAYER2_GRANULARITY;
///
/// // map that bit index to a usize in the slice and a bit within that usize
/// let slice_index = bit_index / BitSet::BITS_PER_USIZE;
/// let bit_at_index = bit_index % BitSet::BITS_PER_USIZE;
///
/// assert_eq!(slice[slice_index], 1 << bit_at_index);
/// ```
pub fn layer2_as_slice(&self) -> &[usize] {
self.layer2.as_slice()
}
}
/// A generic interface for [`BitSetLike`]-like types.
///
/// Every `BitSetLike` is hierarchical, meaning that there
/// are multiple levels that branch out in a tree like structure.
///
/// Layer0 each bit represents one Index of the set
/// Layer1 each bit represents one `usize` of Layer0, and will be
/// set only if the word below it is not zero.
/// Layer2 has the same arrangement but with Layer1, and Layer3 with Layer2.
///
/// This arrangement allows for rapid jumps across the key-space.
///
/// [`BitSetLike`]: ../trait.BitSetLike.html
pub trait BitSetLike {
/// Gets the `usize` corresponding to layer and index.
///
/// The `layer` should be in the range [0, 3]
fn get_from_layer(&self, layer: usize, idx: usize) -> usize {
match layer {
0 => self.layer0(idx),
1 => self.layer1(idx),
2 => self.layer2(idx),
3 => self.layer3(),
_ => panic!("Invalid layer: {}", layer),
}
}
/// Returns true if this `BitSetLike` contains nothing, and false otherwise.
fn is_empty(&self) -> bool {
self.layer3() == 0
}
/// Return a `usize` where each bit represents if any word in layer2
/// has been set.
fn layer3(&self) -> usize;
/// Return the `usize` from the array of usizes that indicates if any
/// bit has been set in layer1
fn layer2(&self, i: usize) -> usize;
/// Return the `usize` from the array of usizes that indicates if any
/// bit has been set in layer0
fn layer1(&self, i: usize) -> usize;
/// Return a `usize` that maps to the direct 1:1 association with
/// each index of the set
fn layer0(&self, i: usize) -> usize;
/// Allows checking if set bit is contained in the bit set.
fn contains(&self, i: Index) -> bool;
/// Create an iterator that will scan over the keyspace
fn iter(self) -> BitIter<Self>
where
Self: Sized,
{
let layer3 = self.layer3();
BitIter::new(self, [0, 0, 0, layer3], [0; LAYERS - 1])
}
/// Create a parallel iterator that will scan over the keyspace
#[cfg(feature = "parallel")]
fn par_iter(self) -> BitParIter<Self>
where
Self: Sized,
{
BitParIter::new(self)
}
}
/// A extension to the [`BitSetLike`] trait which allows draining it.
pub trait DrainableBitSet: BitSetLike {
/// Removes bit from the bit set.
///
/// Returns `true` if removal happened and `false` otherwise.
fn remove(&mut self, i: Index) -> bool;
/// Create a draining iterator that will scan over the keyspace and clears it while doing so.
fn drain<'a>(&'a mut self) -> DrainBitIter<'a, Self>
where
Self: Sized,
{
let layer3 = self.layer3();
DrainBitIter::new(self, [0, 0, 0, layer3], [0; LAYERS - 1])
}
}
impl<'a, T> BitSetLike for &'a T
where
T: BitSetLike + ?Sized,
{
#[inline]
fn layer3(&self) -> usize {
(*self).layer3()
}
#[inline]
fn layer2(&self, i: usize) -> usize {
(*self).layer2(i)
}
#[inline]
fn layer1(&self, i: usize) -> usize {
(*self).layer1(i)
}
#[inline]
fn layer0(&self, i: usize) -> usize {
(*self).layer0(i)
}
#[inline]
fn contains(&self, i: Index) -> bool {
(*self).contains(i)
}
}
impl<'a, T> BitSetLike for &'a mut T
where
T: BitSetLike + ?Sized,
{
#[inline]
fn layer3(&self) -> usize {
(**self).layer3()
}
#[inline]
fn layer2(&self, i: usize) -> usize {
(**self).layer2(i)
}
#[inline]
fn layer1(&self, i: usize) -> usize {
(**self).layer1(i)
}
#[inline]
fn layer0(&self, i: usize) -> usize {
(**self).layer0(i)
}
#[inline]
fn contains(&self, i: Index) -> bool {
(**self).contains(i)
}
}
impl<'a, T> DrainableBitSet for &'a mut T
where
T: DrainableBitSet,
{
#[inline]
fn remove(&mut self, i: Index) -> bool {
(**self).remove(i)
}
}
impl BitSetLike for BitSet {
#[inline]
fn layer3(&self) -> usize {
self.layer3
}
#[inline]
fn layer2(&self, i: usize) -> usize {
self.layer2.get(i).map(|&x| x).unwrap_or(0)
}
#[inline]
fn layer1(&self, i: usize) -> usize {
self.layer1.get(i).map(|&x| x).unwrap_or(0)
}
#[inline]
fn layer0(&self, i: usize) -> usize {
self.layer0.get(i).map(|&x| x).unwrap_or(0)
}
#[inline]
fn contains(&self, i: Index) -> bool {
self.contains(i)
}
}
impl DrainableBitSet for BitSet {
#[inline]
fn remove(&mut self, i: Index) -> bool {
self.remove(i)
}
}
impl PartialEq for BitSet {
#[inline]
fn eq(&self, rhv: &BitSet) -> bool {
if self.layer3 != rhv.layer3 {
return false;
}
if self.layer2.len() != rhv.layer2.len()
|| self.layer1.len() != rhv.layer1.len()
|| self.layer0.len() != rhv.layer0.len()
{
return false;
}
for i in 0..self.layer2.len() {
if self.layer2(i) != rhv.layer2(i) {
return false;
}
}
for i in 0..self.layer1.len() {
if self.layer1(i) != rhv.layer1(i) {
return false;
}
}
for i in 0..self.layer0.len() {
if self.layer0(i) != rhv.layer0(i) {
return false;
}
}
true
}
}
impl Eq for BitSet {}
#[cfg(test)]
mod tests {
use super::{BitSet, BitSetAnd, BitSetLike, BitSetNot};
#[test]
fn insert() {
let mut c = BitSet::new();
for i in 0..1_000 {
assert!(!c.add(i));
assert!(c.add(i));
}
for i in 0..1_000 {
assert!(c.contains(i));
}
}
#[test]
fn insert_100k() {
let mut c = BitSet::new();
for i in 0..100_000 {
assert!(!c.add(i));
assert!(c.add(i));
}
for i in 0..100_000 {
assert!(c.contains(i));
}
}
#[test]
fn remove() {
let mut c = BitSet::new();
for i in 0..1_000 {
assert!(!c.add(i));
}
for i in 0..1_000 {
assert!(c.contains(i));
assert!(c.remove(i));
assert!(!c.contains(i));
assert!(!c.remove(i));
}
}
#[test]
fn iter() {
let mut c = BitSet::new();
for i in 0..100_000 {
c.add(i);
}
let mut count = 0;
for (idx, i) in c.iter().enumerate() {
count += 1;
assert_eq!(idx, i as usize);
}
assert_eq!(count, 100_000);
}
#[test]
fn iter_odd_even() {
let mut odd = BitSet::new();
let mut even = BitSet::new();
for i in 0..100_000 {
if i % 2 == 1 {
odd.add(i);
} else {
even.add(i);
}
}
assert_eq!((&odd).iter().count(), 50_000);
assert_eq!((&even).iter().count(), 50_000);
assert_eq!(BitSetAnd(&odd, &even).iter().count(), 0);
}
#[test]
fn iter_random_add() {
use rand::prelude::*;
let mut set = BitSet::new();
let mut rng = thread_rng();
let limit = 1_048_576;
let mut added = 0;
for _ in 0..(limit / 10) {
let index = rng.gen_range(0, limit);
if !set.add(index) {
added += 1;
}
}
assert_eq!(set.iter().count(), added as usize);
}
#[test]
fn iter_clusters() {
let mut set = BitSet::new();
for x in 0..8 {
let x = (x * 3) << (::BITS * 2); // scale to the last slot
for y in 0..8 {
let y = (y * 3) << (::BITS);
for z in 0..8 {
let z = z * 2;
set.add(x + y + z);
}
}
}
assert_eq!(set.iter().count(), 8usize.pow(3));
}
#[test]
fn not() {
let mut c = BitSet::new();
for i in 0..10_000 {
if i % 2 == 1 {
c.add(i);
}
}
let d = BitSetNot(c);
for (idx, i) in d.iter().take(5_000).enumerate() {
assert_eq!(idx * 2, i as usize);
}
}
}
#[cfg(all(test, feature = "parallel"))]
mod test_parallel {
use super::{BitSet, BitSetAnd, BitSetLike};
use rayon::iter::ParallelIterator;
#[test]
fn par_iter_one() {
let step = 5000;
let tests = 1_048_576 / step;
for n in 0..tests {
let n = n * step;
let mut set = BitSet::new();
set.add(n);
assert_eq!(set.par_iter().count(), 1);
}
let mut set = BitSet::new();
set.add(1_048_576 - 1);
assert_eq!(set.par_iter().count(), 1);
}
#[test]
fn par_iter_random_add() {
use rand::prelude::*;
use std::collections::HashSet;
use std::sync::{Arc, Mutex};
let mut set = BitSet::new();
let mut check_set = HashSet::new();
let mut rng = thread_rng();
let limit = 1_048_576;
for _ in 0..(limit / 10) {
let index = rng.gen_range(0, limit);
set.add(index);
check_set.insert(index);
}
let check_set = Arc::new(Mutex::new(check_set));
let missing_set = Arc::new(Mutex::new(HashSet::new()));
set.par_iter().for_each(|n| {
let check_set = check_set.clone();
let missing_set = missing_set.clone();
let mut check = check_set.lock().unwrap();
if !check.remove(&n) {
let mut missing = missing_set.lock().unwrap();
missing.insert(n);
}
});
let check_set = check_set.lock().unwrap();
let missing_set = missing_set.lock().unwrap();
if !check_set.is_empty() && !missing_set.is_empty() {
panic!(
"There were values that didn't get iterated: {:?}
There were values that got iterated, but that shouldn't be: {:?}",
*check_set, *missing_set
);
}
if !check_set.is_empty() {
panic!(
"There were values that didn't get iterated: {:?}",
*check_set
);
}
if !missing_set.is_empty() {
panic!(
"There were values that got iterated, but that shouldn't be: {:?}",
*missing_set
);
}
}
#[test]
fn par_iter_odd_even() {
let mut odd = BitSet::new();
let mut even = BitSet::new();
for i in 0..100_000 {
if i % 2 == 1 {
odd.add(i);
} else {
even.add(i);
}
}
assert_eq!((&odd).par_iter().count(), 50_000);
assert_eq!((&even).par_iter().count(), 50_000);
assert_eq!(BitSetAnd(&odd, &even).par_iter().count(), 0);
}
#[test]
fn par_iter_clusters() {
use std::collections::HashSet;
use std::sync::{Arc, Mutex};
let mut set = BitSet::new();
let mut check_set = HashSet::new();
for x in 0..8 {
let x = (x * 3) << (::BITS * 2); // scale to the last slot
for y in 0..8 {
let y = (y * 3) << (::BITS);
for z in 0..8 {
let z = z * 2;
let index = x + y + z;
set.add(index);
check_set.insert(index);
}
}
}
let check_set = Arc::new(Mutex::new(check_set));
let missing_set = Arc::new(Mutex::new(HashSet::new()));
set.par_iter().for_each(|n| {
let check_set = check_set.clone();
let missing_set = missing_set.clone();
let mut check = check_set.lock().unwrap();
if !check.remove(&n) {
let mut missing = missing_set.lock().unwrap();
missing.insert(n);
}
});
let check_set = check_set.lock().unwrap();
let missing_set = missing_set.lock().unwrap();
if !check_set.is_empty() && !missing_set.is_empty() {
panic!(
"There were values that didn't get iterated: {:?}
There were values that got iterated, but that shouldn't be: {:?}",
*check_set, *missing_set
);
}
if !check_set.is_empty() {
panic!(
"There were values that didn't get iterated: {:?}",
*check_set
);
}
if !missing_set.is_empty() {
panic!(
"There were values that got iterated, but that shouldn't be: {:?}",
*missing_set
);
}
}
}