lexical_write_integer/decimal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
//! Radix-generic, lexical integer-to-string conversion routines.
//!
//! An optimization for decimal is pre-computing the number of digits written
//! prior to actually writing digits, avoiding the use of temporary buffers.
//! This scales well with integer size, short of `u128`, due to the slower
//! division algorithms required.
//!
//! See [`Algorithm.md`] for a more detailed description of the algorithm
//! choice here.
//!
//! [`Algorithm.md`]: https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-integer/docs/Algorithm.md
#![cfg(not(feature = "compact"))]
#![doc(hidden)]
use lexical_util::num::UnsignedInteger;
use crate::digit_count::fast_log2;
use crate::jeaiii;
/// Calculate the fast, integral log10 of a value.
///
/// This is relatively easy to explain as well: we calculate the log2
/// of the value, then multiply by an integral constant for the log10(2).
///
/// Note that this value is frequently off by 1, so we need to round-up
/// accordingly. This magic number is valid at least up until `1<<18`,
/// which works for all values, since our max log2 is 127.
#[inline(always)]
pub fn fast_log10<T: UnsignedInteger>(x: T) -> usize {
let log2 = fast_log2(x);
(log2 * 1233) >> 12
}
/// Fast algorithm to calculate the number of digits in an integer.
///
/// We only use this for 32-bit or smaller values: for larger numbers,
/// we first write digits until we get to 32-bits, then we call this.
///
/// The values are as follows:
///
/// - `2^32 for j = 1`
/// - `⌈log10(2^j)⌉ * 2^128 + 2^128 – 10^(⌈log10(2j)⌉) for j from 2 to 30`
/// - `⌈log10(2^j)⌉ for j = 31 and j = 32`
///
/// This algorithm is described in detail in "Computing the number of digits
/// of an integer even faster", available
/// [here](https://lemire.me/blog/2021/06/03/computing-the-number-of-digits-of-an-integer-even-faster/).
#[inline(always)]
pub fn fast_digit_count(x: u32) -> usize {
const TABLE: [u64; 32] = [
4294967296,
8589934582,
8589934582,
8589934582,
12884901788,
12884901788,
12884901788,
17179868184,
17179868184,
17179868184,
21474826480,
21474826480,
21474826480,
21474826480,
25769703776,
25769703776,
25769703776,
30063771072,
30063771072,
30063771072,
34349738368,
34349738368,
34349738368,
34349738368,
38554705664,
38554705664,
38554705664,
41949672960,
41949672960,
41949672960,
42949672960,
42949672960,
];
// This always safe, since `fast_log2` will always return a value
// <= 32. This is because the range of values from `ctlz(x | 1)` is
// `[0, 31]`, so `32 - 1 - ctlz(x | 1)` must be in the range `[0, 31]`.
let shift = TABLE[fast_log2(x)];
let count = (x as u64 + shift) >> 32;
count as usize
}
/// Slightly slower algorithm to calculate the number of digits in an integer.
///
/// This uses no static storage, and uses a fast log10(2) estimation
/// to calculate the number of digits, from the log2 value.
///
/// This algorithm is described in detail in "Computing the number of digits
/// of an integer even faster", available
/// [here](https://lemire.me/blog/2021/06/03/computing-the-number-of-digits-of-an-integer-even-faster/).
#[inline(always)]
pub fn fallback_digit_count<T: UnsignedInteger>(x: T, table: &[T]) -> usize {
// This value is always within 1: calculate if we need to round-up
// based on a pre-computed table.
let log10 = fast_log10(x);
let shift_up = table.get(log10).map_or(false, |&y| x >= y);
log10 + shift_up as usize + 1
}
/// Quickly calculate the number of decimal digits in a type.
///
/// # Safety
///
/// Safe as long as `digit_count` returns at least the number of
/// digits that would be written by the integer. If the value is
/// too small, then the buffer might underflow, causing out-of-bounds
/// read/writes.
pub unsafe trait DecimalCount: UnsignedInteger {
/// Get the number of digits in a value.
fn decimal_count(self) -> usize;
}
// SAFETY: Safe since `fast_digit_count` is always correct for `<= u32::MAX`.
unsafe impl DecimalCount for u8 {
#[inline(always)]
fn decimal_count(self) -> usize {
fast_digit_count(self as u32)
}
}
// SAFETY: Safe since `fast_digit_count` is always correct for `<= u32::MAX`.
unsafe impl DecimalCount for u16 {
#[inline(always)]
fn decimal_count(self) -> usize {
fast_digit_count(self as u32)
}
}
// SAFETY: Safe since `fast_digit_count` is always correct for `<= u32::MAX`.
unsafe impl DecimalCount for u32 {
#[inline(always)]
fn decimal_count(self) -> usize {
fast_digit_count(self)
}
}
// SAFETY: Safe since `fallback_digit_count` is valid for the current table,
// as described in <https://lemire.me/blog/2021/06/03/computing-the-number-of-digits-of-an-integer-even-faster/>
unsafe impl DecimalCount for u64 {
#[inline(always)]
fn decimal_count(self) -> usize {
const TABLE: [u64; 19] = [
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
10000000000,
100000000000,
1000000000000,
10000000000000,
100000000000000,
1000000000000000,
10000000000000000,
100000000000000000,
1000000000000000000,
10000000000000000000,
];
fallback_digit_count(self, &TABLE)
}
}
// SAFETY: Safe since `fallback_digit_count` is valid for the current table,
// as described in <https://lemire.me/blog/2021/06/03/computing-the-number-of-digits-of-an-integer-even-faster/>
unsafe impl DecimalCount for u128 {
#[inline(always)]
fn decimal_count(self) -> usize {
const TABLE: [u128; 38] = [
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
10000000000,
100000000000,
1000000000000,
10000000000000,
100000000000000,
1000000000000000,
10000000000000000,
100000000000000000,
1000000000000000000,
10000000000000000000,
100000000000000000000,
1000000000000000000000,
10000000000000000000000,
100000000000000000000000,
1000000000000000000000000,
10000000000000000000000000,
100000000000000000000000000,
1000000000000000000000000000,
10000000000000000000000000000,
100000000000000000000000000000,
1000000000000000000000000000000,
10000000000000000000000000000000,
100000000000000000000000000000000,
1000000000000000000000000000000000,
10000000000000000000000000000000000,
100000000000000000000000000000000000,
1000000000000000000000000000000000000,
10000000000000000000000000000000000000,
100000000000000000000000000000000000000,
];
fallback_digit_count(self, &TABLE)
}
}
// SAFETY: Safe since it uses the default implementation for the type size.
unsafe impl DecimalCount for usize {
#[inline(always)]
fn decimal_count(self) -> usize {
match Self::BITS {
8 | 16 | 32 => (self as u32).decimal_count(),
64 => (self as u64).decimal_count(),
128 => (self as u128).decimal_count(),
_ => unimplemented!(),
}
}
}
/// Write integer to decimal string.
pub trait Decimal: DecimalCount {
fn decimal(self, buffer: &mut [u8]) -> usize;
/// Specialized overload is the type is sized.
///
/// # Panics
///
/// If the data original provided was unsigned and therefore
/// has more digits than the signed variant. This only affects
/// `i64` (see #191).
#[inline(always)]
fn decimal_signed(self, buffer: &mut [u8]) -> usize {
self.decimal(buffer)
}
}
// Implement decimal for type.
macro_rules! decimal_impl {
($($t:ty; $f:ident)*) => ($(
impl Decimal for $t {
#[inline(always)]
fn decimal(self, buffer: &mut [u8]) -> usize {
jeaiii::$f(self, buffer)
}
}
)*);
}
decimal_impl! {
u8; from_u8
u16; from_u16
u32; from_u32
u128; from_u128
}
impl Decimal for u64 {
#[inline(always)]
fn decimal(self, buffer: &mut [u8]) -> usize {
jeaiii::from_u64(self, buffer)
}
#[inline(always)]
fn decimal_signed(self, buffer: &mut [u8]) -> usize {
jeaiii::from_i64(self, buffer)
}
}
impl Decimal for usize {
#[inline(always)]
fn decimal(self, buffer: &mut [u8]) -> usize {
match usize::BITS {
8 => (self as u8).decimal(buffer),
16 => (self as u16).decimal(buffer),
32 => (self as u32).decimal(buffer),
64 => (self as u64).decimal(buffer),
128 => (self as u128).decimal(buffer),
_ => unimplemented!(),
}
}
#[inline(always)]
fn decimal_signed(self, buffer: &mut [u8]) -> usize {
match usize::BITS {
8 => (self as u8).decimal_signed(buffer),
16 => (self as u16).decimal_signed(buffer),
32 => (self as u32).decimal_signed(buffer),
64 => (self as u64).decimal_signed(buffer),
128 => (self as u128).decimal_signed(buffer),
_ => unimplemented!(),
}
}
}