lz4_flex/frame/compress.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
use std::{
fmt,
hash::Hasher,
io::{self, Write},
};
use twox_hash::XxHash32;
use crate::{
block::{
compress::compress_internal,
hashtable::{HashTable, HashTable4K},
},
sink::vec_sink_for_compression,
};
use super::Error;
use super::{
header::{BlockInfo, BlockMode, FrameInfo, BLOCK_INFO_SIZE, MAX_FRAME_INFO_SIZE},
BlockSize,
};
use crate::block::WINDOW_SIZE;
/// A writer for compressing a LZ4 stream.
///
/// This `FrameEncoder` wraps any other writer that implements `io::Write`.
/// Bytes written to this writer are compressed using the [LZ4 frame
/// format](https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md).
///
/// Writes are buffered automatically, so there's no need to wrap the given
/// writer in a `std::io::BufWriter`.
///
/// To ensure a well formed stream the encoder must be finalized by calling
/// either the [`finish()`], [`try_finish()`], or [`auto_finish()`] methods.
///
/// [`finish()`]: Self::finish
/// [`try_finish()`]: Self::try_finish
/// [`auto_finish()`]: Self::auto_finish
///
/// # Example 1
/// Serializing json values into a compressed file.
///
/// ```no_run
/// let compressed_file = std::fs::File::create("datafile").unwrap();
/// let mut compressor = lz4_flex::frame::FrameEncoder::new(compressed_file);
/// serde_json::to_writer(&mut compressor, &serde_json::json!({ "an": "object" })).unwrap();
/// compressor.finish().unwrap();
/// ```
///
/// # Example 2
/// Serializing multiple json values into a compressed file using linked blocks.
///
/// ```no_run
/// let compressed_file = std::fs::File::create("datafile").unwrap();
/// let mut frame_info = lz4_flex::frame::FrameInfo::new();
/// frame_info.block_mode = lz4_flex::frame::BlockMode::Linked;
/// let mut compressor = lz4_flex::frame::FrameEncoder::with_frame_info(frame_info, compressed_file);
/// for i in 0..10u64 {
/// serde_json::to_writer(&mut compressor, &serde_json::json!({ "i": i })).unwrap();
/// }
/// compressor.finish().unwrap();
/// ```
pub struct FrameEncoder<W: io::Write> {
/// Our buffer of uncompressed bytes.
src: Vec<u8>,
/// Index into src: starting point of bytes not yet compressed
src_start: usize,
/// Index into src: end point of bytes not not yet compressed
src_end: usize,
/// Index into src: starting point of external dictionary (applicable in Linked block mode)
ext_dict_offset: usize,
/// Length of external dictionary
ext_dict_len: usize,
/// Counter of bytes already compressed to the compression_table
/// _Not_ the same as `content_len` as this is reset every to 2GB.
src_stream_offset: usize,
/// Encoder table
compression_table: HashTable4K,
/// The underlying writer.
w: W,
/// Xxhash32 used when content checksum is enabled.
content_hasher: XxHash32,
/// Number of bytes compressed
content_len: u64,
/// The compressed bytes buffer. Bytes are compressed from src (usually)
/// to dst before being written to w.
dst: Vec<u8>,
/// Whether we have an open frame in the output.
is_frame_open: bool,
/// Whether we have an frame closed in the output.
data_to_frame_written: bool,
/// The frame information to be used in this encoder.
frame_info: FrameInfo,
}
impl<W: io::Write> FrameEncoder<W> {
fn init(&mut self) {
let max_block_size = self.frame_info.block_size.get_size();
let src_size = if self.frame_info.block_mode == BlockMode::Linked {
// In linked mode we consume the input (bumping src_start) but leave the
// beginning of src to be used as a prefix in subsequent blocks.
// That is at least until we have at least `max_block_size + WINDOW_SIZE`
// bytes in src, then we setup an ext_dict with the last WINDOW_SIZE bytes
// and the input goes to the beginning of src again.
// Since we always want to be able to write a full block (up to max_block_size)
// we need a buffer with at least `max_block_size * 2 + WINDOW_SIZE` bytes.
max_block_size * 2 + WINDOW_SIZE
} else {
max_block_size
};
// Since this method is called potentially multiple times, don't reserve _additional_
// capacity if not required.
self.src
.reserve(src_size.saturating_sub(self.src.capacity()));
self.dst.reserve(
crate::block::compress::get_maximum_output_size(max_block_size)
.saturating_sub(self.dst.capacity()),
);
}
/// Returns a wrapper around `self` that will finish the stream on drop.
///
/// # Note
/// Errors on drop get silently ignored. If you want to handle errors then use [`finish()`] or
/// [`try_finish()`] instead.
///
/// [`finish()`]: Self::finish
/// [`try_finish()`]: Self::try_finish
pub fn auto_finish(self) -> AutoFinishEncoder<W> {
AutoFinishEncoder {
encoder: Some(self),
}
}
/// Creates a new Encoder with the specified FrameInfo.
pub fn with_frame_info(frame_info: FrameInfo, wtr: W) -> Self {
FrameEncoder {
src: Vec::new(),
w: wtr,
// 16 KB hash table for matches, same as the reference implementation.
compression_table: HashTable4K::new(),
content_hasher: XxHash32::with_seed(0),
content_len: 0,
dst: Vec::new(),
is_frame_open: false,
data_to_frame_written: false,
frame_info,
src_start: 0,
src_end: 0,
ext_dict_offset: 0,
ext_dict_len: 0,
src_stream_offset: 0,
}
}
/// Creates a new Encoder with the default settings.
pub fn new(wtr: W) -> Self {
Self::with_frame_info(Default::default(), wtr)
}
/// The frame information used by this Encoder.
pub fn frame_info(&mut self) -> &FrameInfo {
&self.frame_info
}
/// Consumes this encoder, flushing internal buffer and writing stream terminator.
pub fn finish(mut self) -> Result<W, Error> {
self.try_finish()?;
Ok(self.w)
}
/// Attempt to finish this output stream, flushing internal buffer and writing stream
/// terminator.
pub fn try_finish(&mut self) -> Result<(), Error> {
match self.flush() {
Ok(()) => {
// Empty input special case
// https://github.com/ouch-org/ouch/pull/163#discussion_r1108965151
if !self.is_frame_open && !self.data_to_frame_written {
self.begin_frame(0)?;
}
self.end_frame()?;
self.data_to_frame_written = true;
Ok(())
}
Err(err) => Err(err.into()),
}
}
/// Returns the underlying writer _without_ flushing the stream.
/// This may leave the output in an unfinished state.
pub fn into_inner(self) -> W {
self.w
}
/// Gets a reference to the underlying writer in this encoder.
pub fn get_ref(&self) -> &W {
&self.w
}
/// Gets a reference to the underlying writer in this encoder.
///
/// Note that mutating the output/input state of the stream may corrupt
/// this encoder, so care must be taken when using this method.
pub fn get_mut(&mut self) -> &mut W {
&mut self.w
}
/// Closes the frame by writing the end marker.
fn end_frame(&mut self) -> Result<(), Error> {
debug_assert!(self.is_frame_open);
self.is_frame_open = false;
if let Some(expected) = self.frame_info.content_size {
if expected != self.content_len {
return Err(Error::ContentLengthError {
expected,
actual: self.content_len,
});
}
}
let mut block_info_buffer = [0u8; BLOCK_INFO_SIZE];
BlockInfo::EndMark.write(&mut block_info_buffer[..])?;
self.w.write_all(&block_info_buffer[..])?;
if self.frame_info.content_checksum {
let content_checksum = self.content_hasher.finish() as u32;
self.w.write_all(&content_checksum.to_le_bytes())?;
}
Ok(())
}
/// Begin the frame by writing the frame header.
/// It'll also setup the encoder for compressing blocks for the the new frame.
fn begin_frame(&mut self, buf_len: usize) -> io::Result<()> {
self.is_frame_open = true;
if self.frame_info.block_size == BlockSize::Auto {
self.frame_info.block_size = BlockSize::from_buf_length(buf_len);
}
self.init();
let mut frame_info_buffer = [0u8; MAX_FRAME_INFO_SIZE];
let size = self.frame_info.write(&mut frame_info_buffer)?;
self.w.write_all(&frame_info_buffer[..size])?;
if self.content_len != 0 {
// This is the second or later frame for this Encoder,
// reset compressor state for the new frame.
self.content_len = 0;
self.src_stream_offset = 0;
self.src.clear();
self.src_start = 0;
self.src_end = 0;
self.ext_dict_len = 0;
self.content_hasher = XxHash32::with_seed(0);
self.compression_table.clear();
}
Ok(())
}
/// Consumes the src contents between src_start and src_end,
/// which shouldn't exceed the max block size.
fn write_block(&mut self) -> io::Result<()> {
debug_assert!(self.is_frame_open);
let max_block_size = self.frame_info.block_size.get_size();
debug_assert!(self.src_end - self.src_start <= max_block_size);
// Reposition the compression table if we're anywhere near an overflowing hazard
if self.src_stream_offset + max_block_size + WINDOW_SIZE >= u32::MAX as usize / 2 {
self.compression_table
.reposition((self.src_stream_offset - self.ext_dict_len) as _);
self.src_stream_offset = self.ext_dict_len;
}
// input to the compressor, which may include a prefix when blocks are linked
let input = &self.src[..self.src_end];
// the contents of the block are between src_start and src_end
let src = &input[self.src_start..];
let dst_required_size = crate::block::compress::get_maximum_output_size(src.len());
let compress_result = if self.ext_dict_len != 0 {
debug_assert_eq!(self.frame_info.block_mode, BlockMode::Linked);
compress_internal::<_, true, _>(
input,
self.src_start,
&mut vec_sink_for_compression(&mut self.dst, 0, 0, dst_required_size),
&mut self.compression_table,
&self.src[self.ext_dict_offset..self.ext_dict_offset + self.ext_dict_len],
self.src_stream_offset,
)
} else {
compress_internal::<_, false, _>(
input,
self.src_start,
&mut vec_sink_for_compression(&mut self.dst, 0, 0, dst_required_size),
&mut self.compression_table,
b"",
self.src_stream_offset,
)
};
let (block_info, block_data) = match compress_result.map_err(Error::CompressionError)? {
comp_len if comp_len < src.len() => {
(BlockInfo::Compressed(comp_len as _), &self.dst[..comp_len])
}
_ => (BlockInfo::Uncompressed(src.len() as _), src),
};
// Write the (un)compressed block to the writer and the block checksum (if applicable).
let mut block_info_buffer = [0u8; BLOCK_INFO_SIZE];
block_info.write(&mut block_info_buffer[..])?;
self.w.write_all(&block_info_buffer[..])?;
self.w.write_all(block_data)?;
if self.frame_info.block_checksums {
let mut block_hasher = XxHash32::with_seed(0);
block_hasher.write(block_data);
let block_checksum = block_hasher.finish() as u32;
self.w.write_all(&block_checksum.to_le_bytes())?;
}
// Content checksum, if applicable
if self.frame_info.content_checksum {
self.content_hasher.write(src);
}
// Buffer and offsets maintenance
self.content_len += src.len() as u64;
self.src_start += src.len();
debug_assert_eq!(self.src_start, self.src_end);
if self.frame_info.block_mode == BlockMode::Linked {
// In linked mode we consume the input (bumping src_start) but leave the
// beginning of src to be used as a prefix in subsequent blocks.
// That is at least until we have at least `max_block_size + WINDOW_SIZE`
// bytes in src, then we setup an ext_dict with the last WINDOW_SIZE bytes
// and the input goes to the beginning of src again.
debug_assert_eq!(self.src.capacity(), max_block_size * 2 + WINDOW_SIZE);
if self.src_start >= max_block_size + WINDOW_SIZE {
// The ext_dict will become the last WINDOW_SIZE bytes
self.ext_dict_offset = self.src_end - WINDOW_SIZE;
self.ext_dict_len = WINDOW_SIZE;
// Input goes in the beginning of the buffer again.
self.src_stream_offset += self.src_end;
self.src_start = 0;
self.src_end = 0;
} else if self.src_start + self.ext_dict_len > WINDOW_SIZE {
// There's more than WINDOW_SIZE bytes of lookback adding the prefix and ext_dict.
// Since we have a limited buffer we must shrink ext_dict in favor of the prefix,
// so that we can fit up to max_block_size bytes between dst_start and ext_dict
// start.
let delta = self
.ext_dict_len
.min(self.src_start + self.ext_dict_len - WINDOW_SIZE);
self.ext_dict_offset += delta;
self.ext_dict_len -= delta;
debug_assert!(self.src_start + self.ext_dict_len >= WINDOW_SIZE)
}
debug_assert!(
self.ext_dict_len == 0 || self.src_start + max_block_size <= self.ext_dict_offset
);
} else {
// In independent block mode we consume the entire src buffer
// which is sized equal to the frame max_block_size.
debug_assert_eq!(self.ext_dict_len, 0);
debug_assert_eq!(self.src.capacity(), max_block_size);
self.src_start = 0;
self.src_end = 0;
// Advance stream offset so we don't have to reset the match dict
// for the next block.
self.src_stream_offset += src.len();
}
debug_assert!(self.src_start <= self.src_end);
debug_assert!(self.src_start + max_block_size <= self.src.capacity());
Ok(())
}
}
impl<W: io::Write> io::Write for FrameEncoder<W> {
fn write(&mut self, mut buf: &[u8]) -> io::Result<usize> {
if !self.is_frame_open && !buf.is_empty() {
self.begin_frame(buf.len())?;
}
let buf_len = buf.len();
while !buf.is_empty() {
let src_filled = self.src_end - self.src_start;
let max_fill_len = self.frame_info.block_size.get_size() - src_filled;
if max_fill_len == 0 {
// make space by writing next block
self.write_block()?;
debug_assert_eq!(self.src_end, self.src_start);
continue;
}
let fill_len = max_fill_len.min(buf.len());
vec_copy_overwriting(&mut self.src, self.src_end, &buf[..fill_len]);
buf = &buf[fill_len..];
self.src_end += fill_len;
}
Ok(buf_len)
}
fn flush(&mut self) -> io::Result<()> {
if self.src_start != self.src_end {
self.write_block()?;
}
Ok(())
}
}
/// A wrapper around an [`FrameEncoder<W>`] that finishes the stream on drop.
///
/// This can be created by the [`auto_finish()`] method on the [`FrameEncoder<W>`].
///
/// # Note
/// Errors on drop get silently ignored. If you want to handle errors then use [`finish()`] or
/// [`try_finish()`] instead.
///
/// [`finish()`]: FrameEncoder::finish
/// [`try_finish()`]: FrameEncoder::try_finish
/// [`auto_finish()`]: FrameEncoder::auto_finish
pub struct AutoFinishEncoder<W: Write> {
// We wrap this in an option to take it during drop.
encoder: Option<FrameEncoder<W>>,
}
impl<W: io::Write> Drop for AutoFinishEncoder<W> {
fn drop(&mut self) {
if let Some(mut encoder) = self.encoder.take() {
let _ = encoder.try_finish();
}
}
}
impl<W: Write> Write for AutoFinishEncoder<W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.encoder.as_mut().unwrap().write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.encoder.as_mut().unwrap().flush()
}
}
impl<W: fmt::Debug + io::Write> fmt::Debug for FrameEncoder<W> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("FrameEncoder")
.field("w", &self.w)
.field("frame_info", &self.frame_info)
.field("is_frame_open", &self.is_frame_open)
.field("content_hasher", &self.content_hasher)
.field("content_len", &self.content_len)
.field("dst", &"[...]")
.field("src", &"[...]")
.field("src_start", &self.src_start)
.field("src_end", &self.src_end)
.field("ext_dict_offset", &self.ext_dict_offset)
.field("ext_dict_len", &self.ext_dict_len)
.field("src_stream_offset", &self.src_stream_offset)
.finish()
}
}
/// Copy `src` into `target` starting from the `start` index, overwriting existing data if any.
#[inline]
fn vec_copy_overwriting(target: &mut Vec<u8>, target_start: usize, src: &[u8]) {
debug_assert!(target_start + src.len() <= target.capacity());
// By combining overwriting (copy_from_slice) and extending (extend_from_slice)
// we can fill the ring buffer without initializing it (eg. filling with 0).
let overwrite_len = (target.len() - target_start).min(src.len());
target[target_start..target_start + overwrite_len].copy_from_slice(&src[..overwrite_len]);
target.extend_from_slice(&src[overwrite_len..]);
}