regex_automata/dfa/
special.rs

1use crate::{
2    dfa::DEAD,
3    util::{
4        primitives::StateID,
5        wire::{self, DeserializeError, Endian, SerializeError},
6    },
7};
8
9macro_rules! err {
10    ($msg:expr) => {
11        return Err(DeserializeError::generic($msg));
12    };
13}
14
15// Special represents the identifiers in a DFA that correspond to "special"
16// states. If a state is one or more of the following, then it is considered
17// special:
18//
19// * dead - A non-matching state where all outgoing transitions lead back to
20//   itself. There is only one of these, regardless of whether minimization
21//   has run. The dead state always has an ID of 0. i.e., It is always the
22//   first state in a DFA.
23// * quit - A state that is entered whenever a byte is seen that should cause
24//   a DFA to give up and stop searching. This results in a MatchError::quit
25//   error being returned at search time. The default configuration for a DFA
26//   has no quit bytes, which means this state is unreachable by default,
27//   although it is always present for reasons of implementation simplicity.
28//   This state is only reachable when the caller configures the DFA to quit
29//   on certain bytes. There is always exactly one of these states and it
30//   is always the second state. (Its actual ID depends on the size of the
31//   alphabet in dense DFAs, since state IDs are premultiplied in order to
32//   allow them to be used directly as indices into the transition table.)
33// * match - An accepting state, i.e., indicative of a match. There may be
34//   zero or more of these states.
35// * accelerated - A state where all of its outgoing transitions, except a
36//   few, loop back to itself. These states are candidates for acceleration
37//   via memchr during search. There may be zero or more of these states.
38// * start - A non-matching state that indicates where the automaton should
39//   start during a search. There is always at least one starting state and
40//   all are guaranteed to be non-match states. (A start state cannot be a
41//   match state because the DFAs in this crate delay all matches by one byte.
42//   So every search that finds a match must move through one transition to
43//   some other match state, even when searching an empty string.)
44//
45// These are not mutually exclusive categories. Namely, the following
46// overlappings can occur:
47//
48// * {dead, start} - If a DFA can never lead to a match and it is minimized,
49//   then it will typically compile to something where all starting IDs point
50//   to the DFA's dead state.
51// * {match, accelerated} - It is possible for a match state to have the
52//   majority of its transitions loop back to itself, which means it's
53//   possible for a match state to be accelerated.
54// * {start, accelerated} - Similarly, it is possible for a start state to be
55//   accelerated. Note that it is possible for an accelerated state to be
56//   neither a match or a start state. Also note that just because both match
57//   and start states overlap with accelerated states does not mean that
58//   match and start states overlap with each other. In fact, they are
59//   guaranteed not to overlap.
60//
61// As a special mention, every DFA always has a dead and a quit state, even
62// though from the perspective of the DFA, they are equivalent. (Indeed,
63// minimization special cases them to ensure they don't get merged.) The
64// purpose of keeping them distinct is to use the quit state as a sentinel to
65// distguish between whether a search finished successfully without finding
66// anything or whether it gave up before finishing.
67//
68// So the main problem we want to solve here is the *fast* detection of whether
69// a state is special or not. And we also want to do this while storing as
70// little extra data as possible. AND we want to be able to quickly determine
71// which categories a state falls into above if it is special.
72//
73// We achieve this by essentially shuffling all special states to the beginning
74// of a DFA. That is, all special states appear before every other non-special
75// state. By representing special states this way, we can determine whether a
76// state is special or not by a single comparison, where special.max is the
77// identifier of the last special state in the DFA:
78//
79//     if current_state <= special.max:
80//         ... do something with special state
81//
82// The only thing left to do is to determine what kind of special state
83// it is. Because what we do next depends on that. Since special states
84// are typically rare, we can afford to do a bit more extra work, but we'd
85// still like this to be as fast as possible. The trick we employ here is to
86// continue shuffling states even within the special state range. Such that
87// one contiguous region corresponds to match states, another for start states
88// and then an overlapping range for accelerated states. At a high level, our
89// special state detection might look like this (for leftmost searching, where
90// we continue searching even after seeing a match):
91//
92//     byte = input[offset]
93//     current_state = next_state(current_state, byte)
94//     offset += 1
95//     if current_state <= special.max:
96//         if current_state == 0:
97//             # We can never leave a dead state, so this always marks the
98//             # end of our search.
99//             return last_match
100//         if current_state == special.quit_id:
101//             # A quit state means we give up. If he DFA has no quit state,
102//             # then special.quit_id == 0 == dead, which is handled by the
103//             # conditional above.
104//             return Err(MatchError::quit { byte, offset: offset - 1 })
105//         if special.min_match <= current_state <= special.max_match:
106//             last_match = Some(offset)
107//             if special.min_accel <= current_state <= special.max_accel:
108//                 offset = accelerate(input, offset)
109//                 last_match = Some(offset)
110//         elif special.min_start <= current_state <= special.max_start:
111//             offset = prefilter.find(input, offset)
112//             if special.min_accel <= current_state <= special.max_accel:
113//                 offset = accelerate(input, offset)
114//         elif special.min_accel <= current_state <= special.max_accel:
115//             offset = accelerate(input, offset)
116//
117// There are some small details left out of the logic above. For example,
118// in order to accelerate a state, we need to know which bytes to search for.
119// This in turn implies some extra data we need to store in the DFA. To keep
120// things compact, we would ideally only store
121//
122//     N = special.max_accel - special.min_accel + 1
123//
124// items. But state IDs are premultiplied, which means they are not contiguous.
125// So in order to take a state ID and index an array of accelerated structures,
126// we need to do:
127//
128//     i = (state_id - special.min_accel) / stride
129//
130// (N.B. 'stride' is always a power of 2, so the above can be implemented via
131// '(state_id - special.min_accel) >> stride2', where 'stride2' is x in
132// 2^x=stride.)
133//
134// Moreover, some of these specialty categories may be empty. For example,
135// DFAs are not required to have any match states or any accelerated states.
136// In that case, the lower and upper bounds are both set to 0 (the dead state
137// ID) and the first `current_state == 0` check subsumes cases where the
138// ranges are empty.
139//
140// Loop unrolling, if applicable, has also been left out of the logic above.
141//
142// Graphically, the ranges look like this, where asterisks indicate ranges
143// that can be empty. Each 'x' is a state.
144//
145//      quit
146//  dead|
147//     ||
148//     xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
149//     | |             |    | start |                       |
150//     | |-------------|    |-------|                       |
151//     |   match*   |          |    |                       |
152//     |            |          |    |                       |
153//     |            |----------|    |                       |
154//     |                accel*      |                       |
155//     |                            |                       |
156//     |                            |                       |
157//     |----------------------------|------------------------
158//              special                   non-special*
159#[derive(Clone, Copy, Debug)]
160pub(crate) struct Special {
161    /// The identifier of the last special state in a DFA. A state is special
162    /// if and only if its identifier is less than or equal to `max`.
163    pub(crate) max: StateID,
164    /// The identifier of the quit state in a DFA. (There is no analogous field
165    /// for the dead state since the dead state's ID is always zero, regardless
166    /// of state ID size.)
167    pub(crate) quit_id: StateID,
168    /// The identifier of the first match state.
169    pub(crate) min_match: StateID,
170    /// The identifier of the last match state.
171    pub(crate) max_match: StateID,
172    /// The identifier of the first accelerated state.
173    pub(crate) min_accel: StateID,
174    /// The identifier of the last accelerated state.
175    pub(crate) max_accel: StateID,
176    /// The identifier of the first start state.
177    pub(crate) min_start: StateID,
178    /// The identifier of the last start state.
179    pub(crate) max_start: StateID,
180}
181
182impl Special {
183    /// Creates a new set of special ranges for a DFA. All ranges are initially
184    /// set to only contain the dead state. This is interpreted as an empty
185    /// range.
186    #[cfg(feature = "dfa-build")]
187    pub(crate) fn new() -> Special {
188        Special {
189            max: DEAD,
190            quit_id: DEAD,
191            min_match: DEAD,
192            max_match: DEAD,
193            min_accel: DEAD,
194            max_accel: DEAD,
195            min_start: DEAD,
196            max_start: DEAD,
197        }
198    }
199
200    /// Remaps all of the special state identifiers using the function given.
201    #[cfg(feature = "dfa-build")]
202    pub(crate) fn remap(&self, map: impl Fn(StateID) -> StateID) -> Special {
203        Special {
204            max: map(self.max),
205            quit_id: map(self.quit_id),
206            min_match: map(self.min_match),
207            max_match: map(self.max_match),
208            min_accel: map(self.min_accel),
209            max_accel: map(self.max_accel),
210            min_start: map(self.min_start),
211            max_start: map(self.max_start),
212        }
213    }
214
215    /// Deserialize the given bytes into special state ranges. If the slice
216    /// given is not big enough, then this returns an error. Similarly, if
217    /// any of the expected invariants around special state ranges aren't
218    /// upheld, an error is returned. Note that this does not guarantee that
219    /// the information returned is correct.
220    ///
221    /// Upon success, this returns the number of bytes read in addition to the
222    /// special state IDs themselves.
223    pub(crate) fn from_bytes(
224        mut slice: &[u8],
225    ) -> Result<(Special, usize), DeserializeError> {
226        wire::check_slice_len(slice, 8 * StateID::SIZE, "special states")?;
227
228        let mut nread = 0;
229        let mut read_id = |what| -> Result<StateID, DeserializeError> {
230            let (id, nr) = wire::try_read_state_id(slice, what)?;
231            nread += nr;
232            slice = &slice[StateID::SIZE..];
233            Ok(id)
234        };
235
236        let max = read_id("special max id")?;
237        let quit_id = read_id("special quit id")?;
238        let min_match = read_id("special min match id")?;
239        let max_match = read_id("special max match id")?;
240        let min_accel = read_id("special min accel id")?;
241        let max_accel = read_id("special max accel id")?;
242        let min_start = read_id("special min start id")?;
243        let max_start = read_id("special max start id")?;
244
245        let special = Special {
246            max,
247            quit_id,
248            min_match,
249            max_match,
250            min_accel,
251            max_accel,
252            min_start,
253            max_start,
254        };
255        special.validate()?;
256        assert_eq!(nread, special.write_to_len());
257        Ok((special, nread))
258    }
259
260    /// Validate that the information describing special states satisfies
261    /// all known invariants.
262    pub(crate) fn validate(&self) -> Result<(), DeserializeError> {
263        // Check that both ends of the range are DEAD or neither are.
264        if self.min_match == DEAD && self.max_match != DEAD {
265            err!("min_match is DEAD, but max_match is not");
266        }
267        if self.min_match != DEAD && self.max_match == DEAD {
268            err!("max_match is DEAD, but min_match is not");
269        }
270        if self.min_accel == DEAD && self.max_accel != DEAD {
271            err!("min_accel is DEAD, but max_accel is not");
272        }
273        if self.min_accel != DEAD && self.max_accel == DEAD {
274            err!("max_accel is DEAD, but min_accel is not");
275        }
276        if self.min_start == DEAD && self.max_start != DEAD {
277            err!("min_start is DEAD, but max_start is not");
278        }
279        if self.min_start != DEAD && self.max_start == DEAD {
280            err!("max_start is DEAD, but min_start is not");
281        }
282
283        // Check that ranges are well formed.
284        if self.min_match > self.max_match {
285            err!("min_match should not be greater than max_match");
286        }
287        if self.min_accel > self.max_accel {
288            err!("min_accel should not be greater than max_accel");
289        }
290        if self.min_start > self.max_start {
291            err!("min_start should not be greater than max_start");
292        }
293
294        // Check that ranges are ordered with respect to one another.
295        if self.matches() && self.quit_id >= self.min_match {
296            err!("quit_id should not be greater than min_match");
297        }
298        if self.accels() && self.quit_id >= self.min_accel {
299            err!("quit_id should not be greater than min_accel");
300        }
301        if self.starts() && self.quit_id >= self.min_start {
302            err!("quit_id should not be greater than min_start");
303        }
304        if self.matches() && self.accels() && self.min_accel < self.min_match {
305            err!("min_match should not be greater than min_accel");
306        }
307        if self.matches() && self.starts() && self.min_start < self.min_match {
308            err!("min_match should not be greater than min_start");
309        }
310        if self.accels() && self.starts() && self.min_start < self.min_accel {
311            err!("min_accel should not be greater than min_start");
312        }
313
314        // Check that max is at least as big as everything else.
315        if self.max < self.quit_id {
316            err!("quit_id should not be greater than max");
317        }
318        if self.max < self.max_match {
319            err!("max_match should not be greater than max");
320        }
321        if self.max < self.max_accel {
322            err!("max_accel should not be greater than max");
323        }
324        if self.max < self.max_start {
325            err!("max_start should not be greater than max");
326        }
327
328        Ok(())
329    }
330
331    /// Validate that the special state information is compatible with the
332    /// given state len.
333    pub(crate) fn validate_state_len(
334        &self,
335        len: usize,
336        stride2: usize,
337    ) -> Result<(), DeserializeError> {
338        // We assume that 'validate' has already passed, so we know that 'max'
339        // is truly the max. So all we need to check is that the max state ID
340        // is less than the state ID len. The max legal value here is len-1,
341        // which occurs when there are no non-special states.
342        if (self.max.as_usize() >> stride2) >= len {
343            err!("max should not be greater than or equal to state length");
344        }
345        Ok(())
346    }
347
348    /// Write the IDs and ranges for special states to the given byte buffer.
349    /// The buffer given must have enough room to store all data, otherwise
350    /// this will return an error. The number of bytes written is returned
351    /// on success. The number of bytes written is guaranteed to be a multiple
352    /// of 8.
353    pub(crate) fn write_to<E: Endian>(
354        &self,
355        dst: &mut [u8],
356    ) -> Result<usize, SerializeError> {
357        use crate::util::wire::write_state_id as write;
358
359        if dst.len() < self.write_to_len() {
360            return Err(SerializeError::buffer_too_small("special state ids"));
361        }
362
363        let mut nwrite = 0;
364        nwrite += write::<E>(self.max, &mut dst[nwrite..]);
365        nwrite += write::<E>(self.quit_id, &mut dst[nwrite..]);
366        nwrite += write::<E>(self.min_match, &mut dst[nwrite..]);
367        nwrite += write::<E>(self.max_match, &mut dst[nwrite..]);
368        nwrite += write::<E>(self.min_accel, &mut dst[nwrite..]);
369        nwrite += write::<E>(self.max_accel, &mut dst[nwrite..]);
370        nwrite += write::<E>(self.min_start, &mut dst[nwrite..]);
371        nwrite += write::<E>(self.max_start, &mut dst[nwrite..]);
372
373        assert_eq!(
374            self.write_to_len(),
375            nwrite,
376            "expected to write certain number of bytes",
377        );
378        assert_eq!(
379            nwrite % 8,
380            0,
381            "expected to write multiple of 8 bytes for special states",
382        );
383        Ok(nwrite)
384    }
385
386    /// Returns the total number of bytes written by `write_to`.
387    pub(crate) fn write_to_len(&self) -> usize {
388        8 * StateID::SIZE
389    }
390
391    /// Sets the maximum special state ID based on the current values. This
392    /// should be used once all possible state IDs are set.
393    #[cfg(feature = "dfa-build")]
394    pub(crate) fn set_max(&mut self) {
395        use core::cmp::max;
396        self.max = max(
397            self.quit_id,
398            max(self.max_match, max(self.max_accel, self.max_start)),
399        );
400    }
401
402    /// Sets the maximum special state ID such that starting states are not
403    /// considered "special." This also marks the min/max starting states as
404    /// DEAD such that 'is_start_state' always returns false, even if the state
405    /// is actually a starting state.
406    ///
407    /// This is useful when there is no prefilter set. It will avoid
408    /// ping-ponging between the hot path in the DFA search code and the start
409    /// state handling code, which is typically only useful for executing a
410    /// prefilter.
411    #[cfg(feature = "dfa-build")]
412    pub(crate) fn set_no_special_start_states(&mut self) {
413        use core::cmp::max;
414        self.max = max(self.quit_id, max(self.max_match, self.max_accel));
415        self.min_start = DEAD;
416        self.max_start = DEAD;
417    }
418
419    /// Returns true if and only if the given state ID is a special state.
420    #[inline]
421    pub(crate) fn is_special_state(&self, id: StateID) -> bool {
422        id <= self.max
423    }
424
425    /// Returns true if and only if the given state ID is a dead state.
426    #[inline]
427    pub(crate) fn is_dead_state(&self, id: StateID) -> bool {
428        id == DEAD
429    }
430
431    /// Returns true if and only if the given state ID is a quit state.
432    #[inline]
433    pub(crate) fn is_quit_state(&self, id: StateID) -> bool {
434        !self.is_dead_state(id) && self.quit_id == id
435    }
436
437    /// Returns true if and only if the given state ID is a match state.
438    #[inline]
439    pub(crate) fn is_match_state(&self, id: StateID) -> bool {
440        !self.is_dead_state(id) && self.min_match <= id && id <= self.max_match
441    }
442
443    /// Returns true if and only if the given state ID is an accel state.
444    #[inline]
445    pub(crate) fn is_accel_state(&self, id: StateID) -> bool {
446        !self.is_dead_state(id) && self.min_accel <= id && id <= self.max_accel
447    }
448
449    /// Returns true if and only if the given state ID is a start state.
450    #[inline]
451    pub(crate) fn is_start_state(&self, id: StateID) -> bool {
452        !self.is_dead_state(id) && self.min_start <= id && id <= self.max_start
453    }
454
455    /// Returns the total number of match states for a dense table based DFA.
456    #[inline]
457    pub(crate) fn match_len(&self, stride: usize) -> usize {
458        if self.matches() {
459            (self.max_match.as_usize() - self.min_match.as_usize() + stride)
460                / stride
461        } else {
462            0
463        }
464    }
465
466    /// Returns true if and only if there is at least one match state.
467    #[inline]
468    pub(crate) fn matches(&self) -> bool {
469        self.min_match != DEAD
470    }
471
472    /// Returns the total number of accel states.
473    #[cfg(feature = "dfa-build")]
474    pub(crate) fn accel_len(&self, stride: usize) -> usize {
475        if self.accels() {
476            (self.max_accel.as_usize() - self.min_accel.as_usize() + stride)
477                / stride
478        } else {
479            0
480        }
481    }
482
483    /// Returns true if and only if there is at least one accel state.
484    #[inline]
485    pub(crate) fn accels(&self) -> bool {
486        self.min_accel != DEAD
487    }
488
489    /// Returns true if and only if there is at least one start state.
490    #[inline]
491    pub(crate) fn starts(&self) -> bool {
492        self.min_start != DEAD
493    }
494}