regex_automata/dfa/
special.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use crate::{
    dfa::DEAD,
    util::{
        primitives::StateID,
        wire::{self, DeserializeError, Endian, SerializeError},
    },
};

macro_rules! err {
    ($msg:expr) => {
        return Err(DeserializeError::generic($msg));
    };
}

// Special represents the identifiers in a DFA that correspond to "special"
// states. If a state is one or more of the following, then it is considered
// special:
//
// * dead - A non-matching state where all outgoing transitions lead back to
//   itself. There is only one of these, regardless of whether minimization
//   has run. The dead state always has an ID of 0. i.e., It is always the
//   first state in a DFA.
// * quit - A state that is entered whenever a byte is seen that should cause
//   a DFA to give up and stop searching. This results in a MatchError::quit
//   error being returned at search time. The default configuration for a DFA
//   has no quit bytes, which means this state is unreachable by default,
//   although it is always present for reasons of implementation simplicity.
//   This state is only reachable when the caller configures the DFA to quit
//   on certain bytes. There is always exactly one of these states and it
//   is always the second state. (Its actual ID depends on the size of the
//   alphabet in dense DFAs, since state IDs are premultiplied in order to
//   allow them to be used directly as indices into the transition table.)
// * match - An accepting state, i.e., indicative of a match. There may be
//   zero or more of these states.
// * accelerated - A state where all of its outgoing transitions, except a
//   few, loop back to itself. These states are candidates for acceleration
//   via memchr during search. There may be zero or more of these states.
// * start - A non-matching state that indicates where the automaton should
//   start during a search. There is always at least one starting state and
//   all are guaranteed to be non-match states. (A start state cannot be a
//   match state because the DFAs in this crate delay all matches by one byte.
//   So every search that finds a match must move through one transition to
//   some other match state, even when searching an empty string.)
//
// These are not mutually exclusive categories. Namely, the following
// overlappings can occur:
//
// * {dead, start} - If a DFA can never lead to a match and it is minimized,
//   then it will typically compile to something where all starting IDs point
//   to the DFA's dead state.
// * {match, accelerated} - It is possible for a match state to have the
//   majority of its transitions loop back to itself, which means it's
//   possible for a match state to be accelerated.
// * {start, accelerated} - Similarly, it is possible for a start state to be
//   accelerated. Note that it is possible for an accelerated state to be
//   neither a match or a start state. Also note that just because both match
//   and start states overlap with accelerated states does not mean that
//   match and start states overlap with each other. In fact, they are
//   guaranteed not to overlap.
//
// As a special mention, every DFA always has a dead and a quit state, even
// though from the perspective of the DFA, they are equivalent. (Indeed,
// minimization special cases them to ensure they don't get merged.) The
// purpose of keeping them distinct is to use the quit state as a sentinel to
// distguish between whether a search finished successfully without finding
// anything or whether it gave up before finishing.
//
// So the main problem we want to solve here is the *fast* detection of whether
// a state is special or not. And we also want to do this while storing as
// little extra data as possible. AND we want to be able to quickly determine
// which categories a state falls into above if it is special.
//
// We achieve this by essentially shuffling all special states to the beginning
// of a DFA. That is, all special states appear before every other non-special
// state. By representing special states this way, we can determine whether a
// state is special or not by a single comparison, where special.max is the
// identifier of the last special state in the DFA:
//
//     if current_state <= special.max:
//         ... do something with special state
//
// The only thing left to do is to determine what kind of special state
// it is. Because what we do next depends on that. Since special states
// are typically rare, we can afford to do a bit more extra work, but we'd
// still like this to be as fast as possible. The trick we employ here is to
// continue shuffling states even within the special state range. Such that
// one contiguous region corresponds to match states, another for start states
// and then an overlapping range for accelerated states. At a high level, our
// special state detection might look like this (for leftmost searching, where
// we continue searching even after seeing a match):
//
//     byte = input[offset]
//     current_state = next_state(current_state, byte)
//     offset += 1
//     if current_state <= special.max:
//         if current_state == 0:
//             # We can never leave a dead state, so this always marks the
//             # end of our search.
//             return last_match
//         if current_state == special.quit_id:
//             # A quit state means we give up. If he DFA has no quit state,
//             # then special.quit_id == 0 == dead, which is handled by the
//             # conditional above.
//             return Err(MatchError::quit { byte, offset: offset - 1 })
//         if special.min_match <= current_state <= special.max_match:
//             last_match = Some(offset)
//             if special.min_accel <= current_state <= special.max_accel:
//                 offset = accelerate(input, offset)
//                 last_match = Some(offset)
//         elif special.min_start <= current_state <= special.max_start:
//             offset = prefilter.find(input, offset)
//             if special.min_accel <= current_state <= special.max_accel:
//                 offset = accelerate(input, offset)
//         elif special.min_accel <= current_state <= special.max_accel:
//             offset = accelerate(input, offset)
//
// There are some small details left out of the logic above. For example,
// in order to accelerate a state, we need to know which bytes to search for.
// This in turn implies some extra data we need to store in the DFA. To keep
// things compact, we would ideally only store
//
//     N = special.max_accel - special.min_accel + 1
//
// items. But state IDs are premultiplied, which means they are not contiguous.
// So in order to take a state ID and index an array of accelerated structures,
// we need to do:
//
//     i = (state_id - special.min_accel) / stride
//
// (N.B. 'stride' is always a power of 2, so the above can be implemented via
// '(state_id - special.min_accel) >> stride2', where 'stride2' is x in
// 2^x=stride.)
//
// Moreover, some of these specialty categories may be empty. For example,
// DFAs are not required to have any match states or any accelerated states.
// In that case, the lower and upper bounds are both set to 0 (the dead state
// ID) and the first `current_state == 0` check subsumes cases where the
// ranges are empty.
//
// Loop unrolling, if applicable, has also been left out of the logic above.
//
// Graphically, the ranges look like this, where asterisks indicate ranges
// that can be empty. Each 'x' is a state.
//
//      quit
//  dead|
//     ||
//     xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
//     | |             |    | start |                       |
//     | |-------------|    |-------|                       |
//     |   match*   |          |    |                       |
//     |            |          |    |                       |
//     |            |----------|    |                       |
//     |                accel*      |                       |
//     |                            |                       |
//     |                            |                       |
//     |----------------------------|------------------------
//              special                   non-special*
#[derive(Clone, Copy, Debug)]
pub(crate) struct Special {
    /// The identifier of the last special state in a DFA. A state is special
    /// if and only if its identifier is less than or equal to `max`.
    pub(crate) max: StateID,
    /// The identifier of the quit state in a DFA. (There is no analogous field
    /// for the dead state since the dead state's ID is always zero, regardless
    /// of state ID size.)
    pub(crate) quit_id: StateID,
    /// The identifier of the first match state.
    pub(crate) min_match: StateID,
    /// The identifier of the last match state.
    pub(crate) max_match: StateID,
    /// The identifier of the first accelerated state.
    pub(crate) min_accel: StateID,
    /// The identifier of the last accelerated state.
    pub(crate) max_accel: StateID,
    /// The identifier of the first start state.
    pub(crate) min_start: StateID,
    /// The identifier of the last start state.
    pub(crate) max_start: StateID,
}

impl Special {
    /// Creates a new set of special ranges for a DFA. All ranges are initially
    /// set to only contain the dead state. This is interpreted as an empty
    /// range.
    #[cfg(feature = "dfa-build")]
    pub(crate) fn new() -> Special {
        Special {
            max: DEAD,
            quit_id: DEAD,
            min_match: DEAD,
            max_match: DEAD,
            min_accel: DEAD,
            max_accel: DEAD,
            min_start: DEAD,
            max_start: DEAD,
        }
    }

    /// Remaps all of the special state identifiers using the function given.
    #[cfg(feature = "dfa-build")]
    pub(crate) fn remap(&self, map: impl Fn(StateID) -> StateID) -> Special {
        Special {
            max: map(self.max),
            quit_id: map(self.quit_id),
            min_match: map(self.min_match),
            max_match: map(self.max_match),
            min_accel: map(self.min_accel),
            max_accel: map(self.max_accel),
            min_start: map(self.min_start),
            max_start: map(self.max_start),
        }
    }

    /// Deserialize the given bytes into special state ranges. If the slice
    /// given is not big enough, then this returns an error. Similarly, if
    /// any of the expected invariants around special state ranges aren't
    /// upheld, an error is returned. Note that this does not guarantee that
    /// the information returned is correct.
    ///
    /// Upon success, this returns the number of bytes read in addition to the
    /// special state IDs themselves.
    pub(crate) fn from_bytes(
        mut slice: &[u8],
    ) -> Result<(Special, usize), DeserializeError> {
        wire::check_slice_len(slice, 8 * StateID::SIZE, "special states")?;

        let mut nread = 0;
        let mut read_id = |what| -> Result<StateID, DeserializeError> {
            let (id, nr) = wire::try_read_state_id(slice, what)?;
            nread += nr;
            slice = &slice[StateID::SIZE..];
            Ok(id)
        };

        let max = read_id("special max id")?;
        let quit_id = read_id("special quit id")?;
        let min_match = read_id("special min match id")?;
        let max_match = read_id("special max match id")?;
        let min_accel = read_id("special min accel id")?;
        let max_accel = read_id("special max accel id")?;
        let min_start = read_id("special min start id")?;
        let max_start = read_id("special max start id")?;

        let special = Special {
            max,
            quit_id,
            min_match,
            max_match,
            min_accel,
            max_accel,
            min_start,
            max_start,
        };
        special.validate()?;
        assert_eq!(nread, special.write_to_len());
        Ok((special, nread))
    }

    /// Validate that the information describing special states satisfies
    /// all known invariants.
    pub(crate) fn validate(&self) -> Result<(), DeserializeError> {
        // Check that both ends of the range are DEAD or neither are.
        if self.min_match == DEAD && self.max_match != DEAD {
            err!("min_match is DEAD, but max_match is not");
        }
        if self.min_match != DEAD && self.max_match == DEAD {
            err!("max_match is DEAD, but min_match is not");
        }
        if self.min_accel == DEAD && self.max_accel != DEAD {
            err!("min_accel is DEAD, but max_accel is not");
        }
        if self.min_accel != DEAD && self.max_accel == DEAD {
            err!("max_accel is DEAD, but min_accel is not");
        }
        if self.min_start == DEAD && self.max_start != DEAD {
            err!("min_start is DEAD, but max_start is not");
        }
        if self.min_start != DEAD && self.max_start == DEAD {
            err!("max_start is DEAD, but min_start is not");
        }

        // Check that ranges are well formed.
        if self.min_match > self.max_match {
            err!("min_match should not be greater than max_match");
        }
        if self.min_accel > self.max_accel {
            err!("min_accel should not be greater than max_accel");
        }
        if self.min_start > self.max_start {
            err!("min_start should not be greater than max_start");
        }

        // Check that ranges are ordered with respect to one another.
        if self.matches() && self.quit_id >= self.min_match {
            err!("quit_id should not be greater than min_match");
        }
        if self.accels() && self.quit_id >= self.min_accel {
            err!("quit_id should not be greater than min_accel");
        }
        if self.starts() && self.quit_id >= self.min_start {
            err!("quit_id should not be greater than min_start");
        }
        if self.matches() && self.accels() && self.min_accel < self.min_match {
            err!("min_match should not be greater than min_accel");
        }
        if self.matches() && self.starts() && self.min_start < self.min_match {
            err!("min_match should not be greater than min_start");
        }
        if self.accels() && self.starts() && self.min_start < self.min_accel {
            err!("min_accel should not be greater than min_start");
        }

        // Check that max is at least as big as everything else.
        if self.max < self.quit_id {
            err!("quit_id should not be greater than max");
        }
        if self.max < self.max_match {
            err!("max_match should not be greater than max");
        }
        if self.max < self.max_accel {
            err!("max_accel should not be greater than max");
        }
        if self.max < self.max_start {
            err!("max_start should not be greater than max");
        }

        Ok(())
    }

    /// Validate that the special state information is compatible with the
    /// given state len.
    pub(crate) fn validate_state_len(
        &self,
        len: usize,
        stride2: usize,
    ) -> Result<(), DeserializeError> {
        // We assume that 'validate' has already passed, so we know that 'max'
        // is truly the max. So all we need to check is that the max state ID
        // is less than the state ID len. The max legal value here is len-1,
        // which occurs when there are no non-special states.
        if (self.max.as_usize() >> stride2) >= len {
            err!("max should not be greater than or equal to state length");
        }
        Ok(())
    }

    /// Write the IDs and ranges for special states to the given byte buffer.
    /// The buffer given must have enough room to store all data, otherwise
    /// this will return an error. The number of bytes written is returned
    /// on success. The number of bytes written is guaranteed to be a multiple
    /// of 8.
    pub(crate) fn write_to<E: Endian>(
        &self,
        dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        use crate::util::wire::write_state_id as write;

        if dst.len() < self.write_to_len() {
            return Err(SerializeError::buffer_too_small("special state ids"));
        }

        let mut nwrite = 0;
        nwrite += write::<E>(self.max, &mut dst[nwrite..]);
        nwrite += write::<E>(self.quit_id, &mut dst[nwrite..]);
        nwrite += write::<E>(self.min_match, &mut dst[nwrite..]);
        nwrite += write::<E>(self.max_match, &mut dst[nwrite..]);
        nwrite += write::<E>(self.min_accel, &mut dst[nwrite..]);
        nwrite += write::<E>(self.max_accel, &mut dst[nwrite..]);
        nwrite += write::<E>(self.min_start, &mut dst[nwrite..]);
        nwrite += write::<E>(self.max_start, &mut dst[nwrite..]);

        assert_eq!(
            self.write_to_len(),
            nwrite,
            "expected to write certain number of bytes",
        );
        assert_eq!(
            nwrite % 8,
            0,
            "expected to write multiple of 8 bytes for special states",
        );
        Ok(nwrite)
    }

    /// Returns the total number of bytes written by `write_to`.
    pub(crate) fn write_to_len(&self) -> usize {
        8 * StateID::SIZE
    }

    /// Sets the maximum special state ID based on the current values. This
    /// should be used once all possible state IDs are set.
    #[cfg(feature = "dfa-build")]
    pub(crate) fn set_max(&mut self) {
        use core::cmp::max;
        self.max = max(
            self.quit_id,
            max(self.max_match, max(self.max_accel, self.max_start)),
        );
    }

    /// Sets the maximum special state ID such that starting states are not
    /// considered "special." This also marks the min/max starting states as
    /// DEAD such that 'is_start_state' always returns false, even if the state
    /// is actually a starting state.
    ///
    /// This is useful when there is no prefilter set. It will avoid
    /// ping-ponging between the hot path in the DFA search code and the start
    /// state handling code, which is typically only useful for executing a
    /// prefilter.
    #[cfg(feature = "dfa-build")]
    pub(crate) fn set_no_special_start_states(&mut self) {
        use core::cmp::max;
        self.max = max(self.quit_id, max(self.max_match, self.max_accel));
        self.min_start = DEAD;
        self.max_start = DEAD;
    }

    /// Returns true if and only if the given state ID is a special state.
    #[inline]
    pub(crate) fn is_special_state(&self, id: StateID) -> bool {
        id <= self.max
    }

    /// Returns true if and only if the given state ID is a dead state.
    #[inline]
    pub(crate) fn is_dead_state(&self, id: StateID) -> bool {
        id == DEAD
    }

    /// Returns true if and only if the given state ID is a quit state.
    #[inline]
    pub(crate) fn is_quit_state(&self, id: StateID) -> bool {
        !self.is_dead_state(id) && self.quit_id == id
    }

    /// Returns true if and only if the given state ID is a match state.
    #[inline]
    pub(crate) fn is_match_state(&self, id: StateID) -> bool {
        !self.is_dead_state(id) && self.min_match <= id && id <= self.max_match
    }

    /// Returns true if and only if the given state ID is an accel state.
    #[inline]
    pub(crate) fn is_accel_state(&self, id: StateID) -> bool {
        !self.is_dead_state(id) && self.min_accel <= id && id <= self.max_accel
    }

    /// Returns true if and only if the given state ID is a start state.
    #[inline]
    pub(crate) fn is_start_state(&self, id: StateID) -> bool {
        !self.is_dead_state(id) && self.min_start <= id && id <= self.max_start
    }

    /// Returns the total number of match states for a dense table based DFA.
    #[inline]
    pub(crate) fn match_len(&self, stride: usize) -> usize {
        if self.matches() {
            (self.max_match.as_usize() - self.min_match.as_usize() + stride)
                / stride
        } else {
            0
        }
    }

    /// Returns true if and only if there is at least one match state.
    #[inline]
    pub(crate) fn matches(&self) -> bool {
        self.min_match != DEAD
    }

    /// Returns the total number of accel states.
    #[cfg(feature = "dfa-build")]
    pub(crate) fn accel_len(&self, stride: usize) -> usize {
        if self.accels() {
            (self.max_accel.as_usize() - self.min_accel.as_usize() + stride)
                / stride
        } else {
            0
        }
    }

    /// Returns true if and only if there is at least one accel state.
    #[inline]
    pub(crate) fn accels(&self) -> bool {
        self.min_accel != DEAD
    }

    /// Returns true if and only if there is at least one start state.
    #[inline]
    pub(crate) fn starts(&self) -> bool {
        self.min_start != DEAD
    }
}