1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Check that the visible type of each query has not been changed
use std::collections::BTreeMap;
use std::fmt::Write;
use std::sync::{Arc, Mutex};
use itertools::Itertools;
use mz_expr::explain::{HumanizedExplain, HumanizerMode};
use mz_expr::{
non_nullable_columns, AggregateExpr, ColumnOrder, Id, JoinImplementation, LocalId,
MirRelationExpr, MirScalarExpr, RECURSION_LIMIT,
};
use mz_ore::stack::{CheckedRecursion, RecursionGuard, RecursionLimitError};
use mz_repr::explain::{DummyHumanizer, ExprHumanizer};
use mz_repr::{ColumnName, ColumnType, RelationType, Row, ScalarBaseType, ScalarType};
/// Typechecking contexts as shared by various typechecking passes.
///
/// We use a `RefCell` to ensure that contexts are shared by multiple typechecker passes.
/// Shared contexts help catch consistency issues.
pub type SharedContext = Arc<Mutex<Context>>;
/// Generates an empty context
pub fn empty_context() -> SharedContext {
Arc::new(Mutex::new(BTreeMap::new()))
}
/// The possible forms of inconsistency/errors discovered during typechecking.
///
/// Every variant has a `source` field identifying the MIR term that is home
/// to the error (though not necessarily the root cause of the error).
#[derive(Clone, Debug)]
pub enum TypeError<'a> {
/// Unbound identifiers (local or global)
Unbound {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The (unbound) identifier referenced
id: Id,
/// The type `id` was expected to have
typ: RelationType,
},
/// Dereference of a non-existent column
NoSuchColumn {
/// Expression with the bug
source: &'a MirRelationExpr,
/// Scalar expression that references an invalid column
expr: &'a MirScalarExpr,
/// The invalid column referenced
col: usize,
},
/// A single column type does not match
MismatchColumn {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The column type we found (`sub` type)
got: ColumnType,
/// The column type we expected (`sup` type)
expected: ColumnType,
/// The difference between these types
diffs: Vec<ColumnTypeDifference>,
/// An explanatory message
message: String,
},
/// Relation column types do not match
MismatchColumns {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The column types we found (`sub` type)
got: Vec<ColumnType>,
/// The solumn types we expected (`sup` type)
expected: Vec<ColumnType>,
/// The difference between these types
diffs: Vec<RelationTypeDifference>,
/// An explanatory message
message: String,
},
/// A constant row does not have the correct type
BadConstantRow {
/// Expression with the bug
source: &'a MirRelationExpr,
/// A constant row
got: Row,
/// The expected type (which that row does not have)
expected: Vec<ColumnType>,
// TODO(mgree) with a good way to get the type of a Datum, we could give a diff here
},
/// Projection of a non-existent column
BadProject {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The column projected
got: Vec<usize>,
/// The input columns (which don't have that column)
input_type: Vec<ColumnType>,
},
/// An equivalence class in a join was malformed
BadJoinEquivalence {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The join equivalences
got: Vec<ColumnType>,
/// The problem with the join equivalences
message: String,
},
/// TopK grouping by non-existent column
BadTopKGroupKey {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The bad column reference in the group key
k: usize,
/// The input columns (which don't have that column)
input_type: Vec<ColumnType>,
},
/// TopK ordering by non-existent column
BadTopKOrdering {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The ordering used
order: ColumnOrder,
/// The input columns (which don't work for that ordering)
input_type: Vec<ColumnType>,
},
/// LetRec bindings are malformed
BadLetRecBindings {
/// Expression with the bug
source: &'a MirRelationExpr,
},
/// Local identifiers are shadowed
Shadowing {
/// Expression with the bug
source: &'a MirRelationExpr,
/// The id that was shadowed
id: Id,
},
/// Recursion depth exceeded
Recursion {
/// The error that aborted recursion
error: RecursionLimitError,
},
}
impl<'a> From<RecursionLimitError> for TypeError<'a> {
fn from(error: RecursionLimitError) -> Self {
TypeError::Recursion { error }
}
}
type Context = BTreeMap<Id, Vec<ColumnType>>;
/// Characterizes differences between relation types
///
/// Each constructor indicates a reason why some type `sub` was not a subtype of another type `sup`
#[derive(Clone, Debug, Hash)]
pub enum RelationTypeDifference {
/// `sub` and `sup` don't have the same number of columns
Length {
/// Length of `sub`
len_sub: usize,
/// Length of `sup`
len_sup: usize,
},
/// `sub` and `sup` differ at the indicated column
Column {
/// The column at which `sub` and `sup` differ
col: usize,
/// The difference between `sub` and `sup`
diff: ColumnTypeDifference,
},
}
/// Characterizes differences between individual column types
///
/// Each constructor indicates a reason why some type `sub` was not a subtype of another type `sup`
/// There may be multiple reasons, e.g., `sub` may be missing fields and have fields of different types
#[derive(Clone, Debug, Hash)]
pub enum ColumnTypeDifference {
/// The `ScalarBaseType` of `sub` doesn't match that of `sup`
NotSubtype {
/// Would-be subtype
sub: ScalarType,
/// Would-be supertype
sup: ScalarType,
},
/// `sub` was nullable but `sup` was not
Nullability {
/// Would-be subtype
sub: ColumnType,
/// Would-be supertype
sup: ColumnType,
},
/// Both `sub` and `sup` are a list, map, array, or range, but `sub`'s element type differed from `sup`s
ElementType {
/// The type constructor (list, array, etc.)
ctor: String,
/// The difference in the element type
element_type: Box<ColumnTypeDifference>,
},
/// `sub` and `sup` are both records, but `sub` is missing fields present in `sup`
RecordMissingFields {
/// The missing fields
missing: Vec<ColumnName>,
},
/// `sub` and `sup` are both records, but some fields in `sub` are not subtypes of fields in `sup`
RecordFields {
/// The differences, by field
fields: Vec<(ColumnName, ColumnTypeDifference)>,
},
}
impl RelationTypeDifference {
/// Returns the same type difference, but ignoring nullability
///
/// Returns `None` when _all_ of the differences are due to nullability
pub fn ignore_nullability(self) -> Option<Self> {
use RelationTypeDifference::*;
match self {
Length { .. } => Some(self),
Column { col, diff } => diff.ignore_nullability().map(|diff| Column { col, diff }),
}
}
}
impl ColumnTypeDifference {
/// Returns the same type difference, but ignoring nullability
///
/// Returns `None` when _all_ of the differences are due to nullability
pub fn ignore_nullability(self) -> Option<Self> {
use ColumnTypeDifference::*;
match self {
Nullability { .. } => None,
NotSubtype { .. } | RecordMissingFields { .. } => Some(self),
ElementType { ctor, element_type } => {
element_type
.ignore_nullability()
.map(|element_type| ElementType {
ctor,
element_type: Box::new(element_type),
})
}
RecordFields { fields } => {
let fields = fields
.into_iter()
.flat_map(|(col, diff)| diff.ignore_nullability().map(|diff| (col, diff)))
.collect::<Vec<_>>();
if fields.is_empty() {
None
} else {
Some(RecordFields { fields })
}
}
}
}
}
/// Returns a list of differences that make `sub` not a subtype of `sup`
///
/// This function returns an empty list when `sub` is a subtype of `sup`
pub fn relation_subtype_difference(
sub: &[ColumnType],
sup: &[ColumnType],
) -> Vec<RelationTypeDifference> {
let mut diffs = Vec::new();
if sub.len() != sup.len() {
diffs.push(RelationTypeDifference::Length {
len_sub: sub.len(),
len_sup: sup.len(),
});
// TODO(mgree) we could do an edit-distance computation to report more errors
return diffs;
}
diffs.extend(
sub.iter()
.zip_eq(sup.iter())
.enumerate()
.flat_map(|(col, (sub_ty, sup_ty))| {
column_subtype_difference(sub_ty, sup_ty)
.into_iter()
.map(move |diff| RelationTypeDifference::Column { col, diff })
}),
);
diffs
}
/// Returns a list of differences that make `sub` not a subtype of `sup`
///
/// This function returns an empty list when `sub` is a subtype of `sup`
pub fn column_subtype_difference(sub: &ColumnType, sup: &ColumnType) -> Vec<ColumnTypeDifference> {
let mut diffs = scalar_subtype_difference(&sub.scalar_type, &sup.scalar_type);
if sub.nullable && !sup.nullable {
diffs.push(ColumnTypeDifference::Nullability {
sub: sub.clone(),
sup: sup.clone(),
});
}
diffs
}
/// Returns a list of differences that make `sub` not a subtype of `sup`
///
/// This function returns an empty list when `sub` is a subtype of `sup`
pub fn scalar_subtype_difference(sub: &ScalarType, sup: &ScalarType) -> Vec<ColumnTypeDifference> {
use ScalarType::*;
let mut diffs = Vec::new();
match (sub, sup) {
(
List {
element_type: sub_elt,
..
},
List {
element_type: sup_elt,
..
},
)
| (
Map {
value_type: sub_elt,
..
},
Map {
value_type: sup_elt,
..
},
)
| (
Range {
element_type: sub_elt,
..
},
Range {
element_type: sup_elt,
..
},
)
| (Array(sub_elt), Array(sup_elt)) => {
let ctor = format!("{:?}", ScalarBaseType::from(sub));
diffs.extend(
scalar_subtype_difference(sub_elt, sup_elt)
.into_iter()
.map(|diff| ColumnTypeDifference::ElementType {
ctor: ctor.clone(),
element_type: Box::new(diff),
}),
);
}
(
Record {
fields: sub_fields, ..
},
Record {
fields: sup_fields, ..
},
) => {
let sub = sub_fields
.iter()
.map(|(sub_field, sub_ty)| (sub_field.clone(), sub_ty))
.collect::<BTreeMap<_, _>>();
let mut missing = Vec::new();
let mut field_diffs = Vec::new();
for (sup_field, sup_ty) in sup_fields {
if let Some(sub_ty) = sub.get(sup_field) {
let diff = column_subtype_difference(sub_ty, sup_ty);
if !diff.is_empty() {
field_diffs.push((sup_field.clone(), diff));
}
} else {
missing.push(sup_field.clone());
}
}
}
(_, _) => {
// TODO(mgree) confirm that we don't want to allow numeric subtyping
if ScalarBaseType::from(sub) != ScalarBaseType::from(sup) {
diffs.push(ColumnTypeDifference::NotSubtype {
sub: sub.clone(),
sup: sup.clone(),
})
}
}
};
diffs
}
/// Returns true when it is safe to treat a `sub` row as an `sup` row
///
/// In particular, the core types must be equal, and if a column in `sup` is nullable, that column should also be nullable in `sub`
/// Conversely, it is okay to treat a known non-nullable column as nullable: `sub` may be nullable when `sup` is not
pub fn is_subtype_of(sub: &[ColumnType], sup: &[ColumnType]) -> bool {
if sub.len() != sup.len() {
return false;
}
sub.iter().zip_eq(sup.iter()).all(|(got, known)| {
(!known.nullable || got.nullable) && got.scalar_type.base_eq(&known.scalar_type)
})
}
/// Check that the visible type of each query has not been changed
#[derive(Debug)]
pub struct Typecheck {
/// The known types of the queries so far
ctx: SharedContext,
/// Whether or not this is the first run of the transform
disallow_new_globals: bool,
/// Whether or not to be strict about join equivalences having the same nullability
strict_join_equivalences: bool,
/// Recursion guard for checked recursion
recursion_guard: RecursionGuard,
}
impl CheckedRecursion for Typecheck {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl Typecheck {
/// Creates a typechecking consistency checking pass using a given shared context
pub fn new(ctx: SharedContext) -> Self {
Self {
ctx,
disallow_new_globals: false,
strict_join_equivalences: false,
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
/// New non-transient global IDs will be treated as an error
///
/// Only turn this on after the context has been appropraitely populated by, e.g., an earlier run
pub fn disallow_new_globals(mut self) -> Self {
self.disallow_new_globals = true;
self
}
/// Equivalence classes in joins must not only agree on scalar type, but also on nullability
///
/// Only turn this on before `JoinImplementation`
pub fn strict_join_equivalences(mut self) -> Self {
self.strict_join_equivalences = true;
self
}
/// Returns the type of a relation expression or a type error.
///
/// This function is careful to check validity, not just find out the type.
///
/// It should be linear in the size of the AST.
///
/// ??? should we also compute keys and return a `RelationType`?
/// ggevay: Checking keys would have the same problem as checking nullability: key inference
/// is very heuristic (even more so than nullability inference), so it's almost impossible to
/// reliably keep it stable across transformations.
pub fn typecheck<'a>(
&self,
expr: &'a MirRelationExpr,
ctx: &Context,
) -> Result<Vec<ColumnType>, TypeError<'a>> {
use MirRelationExpr::*;
self.checked_recur(|tc| match expr {
Constant { typ, rows } => {
if let Ok(rows) = rows {
for (row, _id) in rows {
let datums = row.unpack();
// correct length
if datums.len() != typ.column_types.len() {
return Err(TypeError::BadConstantRow {
source: expr,
got: row.clone(),
expected: typ.column_types.clone(),
});
}
// correct types
if datums
.iter()
.zip_eq(typ.column_types.iter())
.any(|(d, ty)| d != &mz_repr::Datum::Dummy && !d.is_instance_of(ty))
{
return Err(TypeError::BadConstantRow {
source: expr,
got: row.clone(),
expected: typ.column_types.clone(),
});
}
}
}
Ok(typ.column_types.clone())
}
Get { typ, id, .. } => {
if let Id::Global(_global_id) = id {
if !ctx.contains_key(id) {
// TODO(mgree) pass QueryContext through to check these types
return Ok(typ.column_types.clone());
}
}
let ctx_typ = ctx.get(id).ok_or_else(|| TypeError::Unbound {
source: expr,
id: id.clone(),
typ: typ.clone(),
})?;
// covariant: the ascribed type must be a subtype of the actual type in the context
let diffs = relation_subtype_difference(&typ.column_types, ctx_typ).into_iter().flat_map(|diff| diff.ignore_nullability()).collect::<Vec<_>>();
if !diffs.is_empty() {
return Err(TypeError::MismatchColumns {
source: expr,
got: typ.column_types.clone(),
expected: ctx_typ.clone(),
diffs,
message: "annotation did not match context type".into(),
});
}
Ok(typ.column_types.clone())
}
Project { input, outputs } => {
let t_in = tc.typecheck(input, ctx)?;
for x in outputs {
if *x >= t_in.len() {
return Err(TypeError::BadProject {
source: expr,
got: outputs.clone(),
input_type: t_in,
});
}
}
Ok(outputs.iter().map(|col| t_in[*col].clone()).collect())
}
Map { input, scalars } => {
let mut t_in = tc.typecheck(input, ctx)?;
for scalar_expr in scalars.iter() {
t_in.push(tc.typecheck_scalar(scalar_expr, expr, &t_in)?);
}
Ok(t_in)
}
FlatMap { input, func, exprs } => {
let mut t_in = tc.typecheck(input, ctx)?;
let mut t_exprs = Vec::with_capacity(exprs.len());
for scalar_expr in exprs {
t_exprs.push(tc.typecheck_scalar(scalar_expr, expr, &t_in)?);
}
// TODO(mgree) check t_exprs agrees with `func`'s input type
let t_out = func.output_type().column_types;
// FlatMap extends the existing columns
t_in.extend(t_out);
Ok(t_in)
}
Filter { input, predicates } => {
let mut t_in = tc.typecheck(input, ctx)?;
// Set as nonnull any columns where null values would cause
// any predicate to evaluate to null.
for column in non_nullable_columns(predicates) {
t_in[column].nullable = false;
}
for scalar_expr in predicates {
let t = tc.typecheck_scalar(scalar_expr, expr, &t_in)?;
// filter condition must be boolean
// ignoring nullability: null is treated as false
// NB this behavior is slightly different from columns_match (for which we would set nullable to false in the expected type)
if t.scalar_type != ScalarType::Bool {
let sub = t.scalar_type.clone();
return Err(TypeError::MismatchColumn {
source: expr,
got: t,
expected: ColumnType {
scalar_type: ScalarType::Bool,
nullable: true,
},
diffs: vec![ColumnTypeDifference::NotSubtype { sub, sup: ScalarType::Bool }],
message: "expected boolean condition".into(),
});
}
}
Ok(t_in)
}
Join {
inputs,
equivalences,
implementation,
} => {
let mut t_in_global = Vec::new();
let mut t_in_local = vec![Vec::new(); inputs.len()];
for (i, input) in inputs.iter().enumerate() {
let input_t = tc.typecheck(input, ctx)?;
t_in_global.extend(input_t.clone());
t_in_local[i] = input_t;
}
for eq_class in equivalences {
let mut t_exprs: Vec<ColumnType> = Vec::with_capacity(eq_class.len());
let mut all_nullable = true;
for scalar_expr in eq_class {
// Note: the equivalences have global column references
let t_expr = tc.typecheck_scalar(scalar_expr, expr, &t_in_global)?;
if !t_expr.nullable {
all_nullable = false;
}
if let Some(t_first) = t_exprs.get(0) {
let diffs = scalar_subtype_difference(&t_expr.scalar_type, &t_first.scalar_type);
if !diffs.is_empty() {
return Err(TypeError::MismatchColumn {
source: expr,
got: t_expr,
expected: t_first.clone(),
diffs,
message: "equivalence class members have different scalar types".into(),
});
}
// equivalences may or may not match on nullability
// before JoinImplementation runs, nullability should match.
// but afterwards, some nulls may appear that are actually being filtered out elsewhere
if self.strict_join_equivalences {
if t_expr.nullable != t_first.nullable {
let sub = t_expr.clone();
let sup = t_first.clone();
let err = TypeError::MismatchColumn {
source: expr,
got: t_expr.clone(),
expected: t_first.clone(),
diffs: vec![ColumnTypeDifference::Nullability { sub, sup }],
message: "equivalence class members have different nullability (and join equivalence checking is strict)".to_string(),
};
// TODO(mgree) this imprecision should be resolved, but we need to fix the optimizer
::tracing::debug!("{err}");
}
}
}
t_exprs.push(t_expr);
}
if self.strict_join_equivalences && all_nullable {
let err = TypeError::BadJoinEquivalence {
source: expr,
got: t_exprs,
message: "all expressions were nullable (and join equivalence checking is strict)".to_string(),
};
// TODO(mgree) this imprecision should be resolved, but we need to fix the optimizer
::tracing::debug!("{err}");
}
}
// check that the join implementation is consistent
match implementation {
JoinImplementation::Differential((start_idx, first_key, _), others) => {
if let Some(key) = first_key {
for k in key {
let _ = tc.typecheck_scalar(k, expr, &t_in_local[*start_idx])?;
}
}
for (idx, key, _) in others {
for k in key {
let _ = tc.typecheck_scalar(k, expr, &t_in_local[*idx])?;
}
}
}
JoinImplementation::DeltaQuery(plans) => {
for plan in plans {
for (idx, key, _) in plan {
for k in key {
let _ = tc.typecheck_scalar(k, expr, &t_in_local[*idx])?;
}
}
}
}
JoinImplementation::IndexedFilter(_coll_id, _idx_id, key, consts) => {
let typ: Vec<ColumnType> = key
.iter()
.map(|k| tc.typecheck_scalar(k, expr, &t_in_global))
.collect::<Result<Vec<ColumnType>, TypeError>>()?;
for row in consts {
let datums = row.unpack();
// correct length
if datums.len() != typ.len() {
return Err(TypeError::BadConstantRow {
source: expr,
got: row.clone(),
expected: typ,
});
}
// correct types
if datums
.iter()
.zip_eq(typ.iter())
.any(|(d, ty)| d != &mz_repr::Datum::Dummy && !d.is_instance_of(ty))
{
return Err(TypeError::BadConstantRow {
source: expr,
got: row.clone(),
expected: typ,
});
}
}
}
JoinImplementation::Unimplemented => (),
}
Ok(t_in_global)
}
Reduce {
input,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
let t_in = tc.typecheck(input, ctx)?;
let mut t_out = group_key
.iter()
.map(|scalar_expr| tc.typecheck_scalar(scalar_expr, expr, &t_in))
.collect::<Result<Vec<_>, _>>()?;
for agg in aggregates {
t_out.push(tc.typecheck_aggregate(agg, expr, &t_in)?);
}
Ok(t_out)
}
TopK {
input,
group_key,
order_key,
limit: _,
offset: _,
monotonic: _,
expected_group_size: _,
} => {
let t_in = tc.typecheck(input, ctx)?;
for &k in group_key {
if k >= t_in.len() {
return Err(TypeError::BadTopKGroupKey {
source: expr,
k,
input_type: t_in,
});
}
}
for order in order_key {
if order.column >= t_in.len() {
return Err(TypeError::BadTopKOrdering {
source: expr,
order: order.clone(),
input_type: t_in,
});
}
}
Ok(t_in)
}
Negate { input } => tc.typecheck(input, ctx),
Threshold { input } => tc.typecheck(input, ctx),
Union { base, inputs } => {
let mut t_base = tc.typecheck(base, ctx)?;
for input in inputs {
let t_input = tc.typecheck(input, ctx)?;
let len_sub = t_base.len();
let len_sup = t_input.len();
if len_sub != len_sup {
return Err(TypeError::MismatchColumns {
source: expr,
got: t_base.clone(),
expected: t_input,
diffs: vec![RelationTypeDifference::Length {
len_sub,
len_sup,
}],
message: "union branches have different numbers of columns".into(),
});
}
for (base_col, input_col) in t_base.iter_mut().zip_eq(t_input) {
*base_col =
base_col
.union(&input_col)
.map_err(|e| {
let base_col = base_col.clone();
let diffs = column_subtype_difference(&base_col, &input_col);
TypeError::MismatchColumn {
source: expr,
got: input_col,
expected: base_col,
diffs,
message: format!(
"couldn't compute union of column types in union: {e}"
),
}
})?;
}
}
Ok(t_base)
}
Let { id, value, body } => {
let t_value = tc.typecheck(value, ctx)?;
let binding = Id::Local(*id);
if ctx.contains_key(&binding) {
return Err(TypeError::Shadowing {
source: expr,
id: binding,
});
}
let mut body_ctx = ctx.clone();
body_ctx.insert(Id::Local(*id), t_value);
tc.typecheck(body, &body_ctx)
}
LetRec { ids, values, body, limits: _ } => {
if ids.len() != values.len() {
return Err(TypeError::BadLetRecBindings { source: expr });
}
// temporary hack: steal info from the Gets inside to learn the expected types
// if no get occurs in any definition or the body, that means that relation is dead code (which is okay)
let mut ctx = ctx.clone();
// calling tc.collect_recursive_variable_types(expr, ...) triggers a panic due to nested letrecs with shadowing IDs
for inner_expr in values.iter().chain(std::iter::once(body.as_ref())) {
tc.collect_recursive_variable_types(inner_expr, ids, &mut ctx)?;
}
for (id, value) in ids.iter().zip_eq(values.iter()) {
let typ = tc.typecheck(value, &ctx)?;
let id = Id::Local(id.clone());
if let Some(ctx_typ) = ctx.get_mut(&id) {
for (base_col, input_col) in ctx_typ.iter_mut().zip_eq(typ) {
*base_col = base_col.union(&input_col).map_err(|e| {
let base_col = base_col.clone();
let diffs = column_subtype_difference(&base_col, &input_col);
TypeError::MismatchColumn {
source: expr,
got: input_col,
expected: base_col,
diffs,
message: format!(
"couldn't compute union of column types in let rec: {e}"
),
}
})?;
}
} else {
// dead code: no `Get` references this relation anywhere. we record the type anyway
ctx.insert(id, typ);
}
}
tc.typecheck(body, &ctx)
}
ArrangeBy { input, keys } => {
let t_in = tc.typecheck(input, ctx)?;
for key in keys {
for k in key {
let _ = tc.typecheck_scalar(k, expr, &t_in)?;
}
}
Ok(t_in)
}
})
}
/// Traverses a term to collect the types of given ids.
///
/// LetRec doesn't have type info stored in it. Until we change the MIR to track that information explicitly, we have to rebuild it from looking at the term.
fn collect_recursive_variable_types<'a>(
&self,
expr: &'a MirRelationExpr,
ids: &[LocalId],
ctx: &mut Context,
) -> Result<(), TypeError<'a>> {
use MirRelationExpr::*;
self.checked_recur(|tc| {
match expr {
Get {
id: Id::Local(id),
typ,
..
} => {
if !ids.contains(id) {
return Ok(());
}
let id = Id::Local(id.clone());
if let Some(ctx_typ) = ctx.get_mut(&id) {
for (base_col, input_col) in
ctx_typ.iter_mut().zip_eq(typ.column_types.iter())
{
*base_col = base_col.union(input_col).map_err(|e| {
let base_col = base_col.clone();
let diffs = column_subtype_difference(&base_col, input_col);
TypeError::MismatchColumn {
source: expr,
got: input_col.clone(),
expected: base_col,
diffs,
message: format!(
"couldn't compute union of collected column types: {}",
e
),
}
})?;
}
} else {
ctx.insert(id, typ.column_types.clone());
}
}
Get {
id: Id::Global(..), ..
}
| Constant { .. } => (),
Let { id, value, body } => {
tc.collect_recursive_variable_types(value, ids, ctx)?;
// we've shadowed the id
if ids.contains(id) {
return Err(TypeError::Shadowing {
source: expr,
id: Id::Local(*id),
});
}
tc.collect_recursive_variable_types(body, ids, ctx)?;
}
LetRec {
ids: inner_ids,
values,
body,
limits: _,
} => {
for inner_id in inner_ids {
if ids.contains(inner_id) {
return Err(TypeError::Shadowing {
source: expr,
id: Id::Local(*inner_id),
});
}
}
for value in values {
tc.collect_recursive_variable_types(value, ids, ctx)?;
}
tc.collect_recursive_variable_types(body, ids, ctx)?;
}
Project { input, .. }
| Map { input, .. }
| FlatMap { input, .. }
| Filter { input, .. }
| Reduce { input, .. }
| TopK { input, .. }
| Negate { input }
| Threshold { input }
| ArrangeBy { input, .. } => {
tc.collect_recursive_variable_types(input, ids, ctx)?;
}
Join { inputs, .. } => {
for input in inputs {
tc.collect_recursive_variable_types(input, ids, ctx)?;
}
}
Union { base, inputs } => {
tc.collect_recursive_variable_types(base, ids, ctx)?;
for input in inputs {
tc.collect_recursive_variable_types(input, ids, ctx)?;
}
}
}
Ok(())
})
}
fn typecheck_scalar<'a>(
&self,
expr: &'a MirScalarExpr,
source: &'a MirRelationExpr,
column_types: &[ColumnType],
) -> Result<ColumnType, TypeError<'a>> {
use MirScalarExpr::*;
self.checked_recur(|tc| match expr {
Column(i) => match column_types.get(*i) {
Some(ty) => Ok(ty.clone()),
None => Err(TypeError::NoSuchColumn {
source,
expr,
col: *i,
}),
},
Literal(row, typ) => {
if let Ok(row) = row {
let datums = row.unpack();
if datums.len() != 1
|| (datums[0] != mz_repr::Datum::Dummy && !datums[0].is_instance_of(typ))
{
return Err(TypeError::BadConstantRow {
source,
got: row.clone(),
expected: vec![typ.clone()],
});
}
}
Ok(typ.clone())
}
CallUnmaterializable(func) => Ok(func.output_type()),
CallUnary { expr, func } => {
Ok(func.output_type(tc.typecheck_scalar(expr, source, column_types)?))
}
CallBinary { expr1, expr2, func } => Ok(func.output_type(
tc.typecheck_scalar(expr1, source, column_types)?,
tc.typecheck_scalar(expr2, source, column_types)?,
)),
CallVariadic { exprs, func } => Ok(func.output_type(
exprs
.iter()
.map(|e| tc.typecheck_scalar(e, source, column_types))
.collect::<Result<Vec<_>, TypeError>>()?,
)),
If { cond, then, els } => {
let cond_type = tc.typecheck_scalar(cond, source, column_types)?;
// condition must be boolean
// ignoring nullability: null is treated as false
// NB this behavior is slightly different from columns_match (for which we would set nullable to false in the expected type)
if cond_type.scalar_type != ScalarType::Bool {
let sub = cond_type.scalar_type.clone();
return Err(TypeError::MismatchColumn {
source,
got: cond_type,
expected: ColumnType {
scalar_type: ScalarType::Bool,
nullable: true,
},
diffs: vec![ColumnTypeDifference::NotSubtype {
sub,
sup: ScalarType::Bool,
}],
message: "expected boolean condition".into(),
});
}
let then_type = tc.typecheck_scalar(then, source, column_types)?;
let else_type = tc.typecheck_scalar(els, source, column_types)?;
then_type.union(&else_type).map_err(|e| {
let diffs = column_subtype_difference(&then_type, &else_type);
TypeError::MismatchColumn {
source,
got: then_type,
expected: else_type,
diffs,
message: format!("couldn't compute union of column types for if: {e}"),
}
})
}
})
}
/// Typecheck an `AggregateExpr`
pub fn typecheck_aggregate<'a>(
&self,
expr: &'a AggregateExpr,
source: &'a MirRelationExpr,
column_types: &[ColumnType],
) -> Result<ColumnType, TypeError<'a>> {
self.checked_recur(|tc| {
let t_in = tc.typecheck_scalar(&expr.expr, source, column_types)?;
// TODO check that t_in is actually acceptable for `func`
Ok(expr.func.output_type(t_in))
})
}
}
/// Detailed type error logging as a warning, with failures in CI (SOFT_ASSERTIONS) and a logged error in production
///
/// type_error(severity, ...) logs a type warning; if `severity` is `true`, it will also log an error (visible in Sentry)
macro_rules! type_error {
($severity:expr, $($arg:tt)+) => {{
if $severity {
::tracing::warn!($($arg)+);
::tracing::error!("type error in MIR optimization (details in warning; see 'Type error omnibus' issue database-issues#5663 <https://github.com/MaterializeInc/database-issues/issues/5663>)");
} else {
::tracing::debug!($($arg)+);
}
}}
}
impl crate::Transform for Typecheck {
fn transform(
&self,
relation: &mut MirRelationExpr,
transform_ctx: &mut crate::TransformCtx,
) -> Result<(), crate::TransformError> {
let mut typecheck_ctx = self.ctx.lock().expect("typecheck ctx");
let expected = transform_ctx
.global_id
.map_or_else(|| None, |id| typecheck_ctx.get(&Id::Global(id)));
if let Some(id) = transform_ctx.global_id {
if self.disallow_new_globals
&& expected.is_none()
&& transform_ctx.global_id.is_some()
&& !id.is_transient()
{
type_error!(
false, // not severe
"TYPE WARNING: NEW NON-TRANSIENT GLOBAL ID {id}\n{}",
relation.pretty()
);
}
}
let got = self.typecheck(relation, &typecheck_ctx);
let humanizer = mz_repr::explain::DummyHumanizer;
match (got, expected) {
(Ok(got), Some(expected)) => {
let id = transform_ctx.global_id.unwrap();
// contravariant: global types can be updated
let diffs = relation_subtype_difference(expected, &got);
if !diffs.is_empty() {
// SEVERE only if got and expected have true differences, not just nullability
let severity = diffs
.iter()
.any(|diff| diff.clone().ignore_nullability().is_some());
let err = TypeError::MismatchColumns {
source: relation,
got,
expected: expected.clone(),
diffs,
message: format!("a global id {id}'s type changed (was `expected` which should be a subtype of `got`) "),
};
type_error!(severity, "TYPE ERROR IN KNOWN GLOBAL ID {id}:\n{err}");
}
}
(Ok(got), None) => {
if let Some(id) = transform_ctx.global_id {
typecheck_ctx.insert(Id::Global(id), got);
}
}
(Err(err), _) => {
let (expected, binding) = match expected {
Some(expected) => {
let id = transform_ctx.global_id.unwrap();
(
format!("expected type {}\n", columns_pretty(expected, &humanizer)),
format!("KNOWN GLOBAL ID {id}"),
)
}
None => ("".to_string(), "TRANSIENT QUERY".to_string()),
};
type_error!(
true, // SEVERE: the transformed code is inconsistent
"TYPE ERROR IN {binding}:\n{err}\n{expected}{}",
relation.pretty()
);
}
}
Ok(())
}
}
/// Prints a type prettily with a given `ExprHumanizer`
pub fn columns_pretty<H>(cols: &[ColumnType], humanizer: &H) -> String
where
H: ExprHumanizer,
{
let mut s = String::with_capacity(2 + 3 * cols.len());
s.push('(');
let mut it = cols.iter().peekable();
while let Some(col) = it.next() {
s.push_str(&humanizer.humanize_column_type(col));
if it.peek().is_some() {
s.push_str(", ");
}
}
s.push(')');
s
}
impl RelationTypeDifference {
/// Pretty prints a type difference
///
/// Always indents two spaces
pub fn humanize<H>(&self, h: &H, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result
where
H: ExprHumanizer,
{
use RelationTypeDifference::*;
match self {
Length { len_sub, len_sup } => {
writeln!(
f,
" number of columns do not match ({len_sub} != {len_sup})"
)
}
Column { col, diff } => {
writeln!(f, " column {col} differs:")?;
diff.humanize(4, h, f)
}
}
}
}
impl ColumnTypeDifference {
/// Pretty prints a type difference at a given indentation level
pub fn humanize<H>(
&self,
indent: usize,
h: &H,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result
where
H: ExprHumanizer,
{
use ColumnTypeDifference::*;
// indent
write!(f, "{:indent$}", "")?;
match self {
NotSubtype { sub, sup } => {
let sub = h.humanize_scalar_type(sub);
let sup = h.humanize_scalar_type(sup);
writeln!(f, "{sub} is a not a subtype of {sup}")
}
Nullability { sub, sup } => {
let sub = h.humanize_column_type(sub);
let sup = h.humanize_column_type(sup);
writeln!(f, "{sub} is nullable but {sup} is not")
}
ElementType { ctor, element_type } => {
writeln!(f, "{ctor} element types differ:")?;
element_type.humanize(indent + 2, h, f)
}
RecordMissingFields { missing } => {
write!(f, "missing column fields:")?;
for col in missing {
write!(f, " {col}")?;
}
f.write_char('\n')
}
RecordFields { fields } => {
writeln!(f, "{} record fields differ:", fields.len())?;
for (col, diff) in fields {
writeln!(f, "{:indent$} field '{col}':", "")?;
diff.humanize(indent + 4, h, f)?;
}
Ok(())
}
}
}
}
/// Wrapper struct for a `Display` instance for `TypeError`s with a given `ExprHumanizer`
#[allow(missing_debug_implementations)]
pub struct TypeErrorHumanizer<'a, 'b, H>
where
H: ExprHumanizer,
{
err: &'a TypeError<'a>,
humanizer: &'b H,
}
impl<'a, 'b, H> TypeErrorHumanizer<'a, 'b, H>
where
H: ExprHumanizer,
{
/// Create a `Display`-shim struct for a given `TypeError`/`ExprHumanizer` pair
pub fn new(err: &'a TypeError, humanizer: &'b H) -> Self {
Self { err, humanizer }
}
}
impl<'a, 'b, H> std::fmt::Display for TypeErrorHumanizer<'a, 'b, H>
where
H: ExprHumanizer,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.err.humanize(self.humanizer, f)
}
}
impl<'a> std::fmt::Display for TypeError<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
TypeErrorHumanizer {
err: self,
humanizer: &DummyHumanizer,
}
.fmt(f)
}
}
impl<'a> TypeError<'a> {
/// The source of the type error
pub fn source(&self) -> Option<&'a MirRelationExpr> {
use TypeError::*;
match self {
Unbound { source, .. }
| NoSuchColumn { source, .. }
| MismatchColumn { source, .. }
| MismatchColumns { source, .. }
| BadConstantRow { source, .. }
| BadProject { source, .. }
| BadJoinEquivalence { source, .. }
| BadTopKGroupKey { source, .. }
| BadTopKOrdering { source, .. }
| BadLetRecBindings { source }
| Shadowing { source, .. } => Some(source),
Recursion { .. } => None,
}
}
fn humanize<H>(&self, humanizer: &H, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result
where
H: ExprHumanizer,
{
if let Some(source) = self.source() {
writeln!(f, "In the MIR term:\n{}\n", source.pretty())?;
}
use TypeError::*;
match self {
Unbound { source: _, id, typ } => {
let typ = columns_pretty(&typ.column_types, humanizer);
writeln!(f, "{id} is unbound\ndeclared type {typ}")?
}
NoSuchColumn {
source: _,
expr,
col,
} => writeln!(f, "{expr} references non-existent column {col}")?,
MismatchColumn {
source: _,
got,
expected,
diffs,
message,
} => {
let got = humanizer.humanize_column_type(got);
let expected = humanizer.humanize_column_type(expected);
writeln!(
f,
"mismatched column types: {message}\n got {got}\nexpected {expected}"
)?;
for diff in diffs {
diff.humanize(2, humanizer, f)?;
}
}
MismatchColumns {
source: _,
got,
expected,
diffs,
message,
} => {
let got = columns_pretty(got, humanizer);
let expected = columns_pretty(expected, humanizer);
writeln!(
f,
"mismatched relation types: {message}\n got {got}\nexpected {expected}"
)?;
for diff in diffs {
diff.humanize(humanizer, f)?;
}
}
BadConstantRow {
source: _,
got,
expected,
} => {
let expected = columns_pretty(expected, humanizer);
writeln!(
f,
"bad constant row\n got {got}\nexpected row of type {expected}"
)?
}
BadProject {
source: _,
got,
input_type,
} => {
let input_type = columns_pretty(input_type, humanizer);
writeln!(
f,
"projection of non-existant columns {got:?} from type {input_type}"
)?
}
BadJoinEquivalence {
source: _,
got,
message,
} => {
let got = columns_pretty(got, humanizer);
writeln!(f, "bad join equivalence {got}: {message}")?
}
BadTopKGroupKey {
source: _,
k,
input_type,
} => {
let input_type = columns_pretty(input_type, humanizer);
writeln!(
f,
"TopK group key component references invalid column {k} in columns: {input_type}"
)?
}
BadTopKOrdering {
source: _,
order,
input_type,
} => {
let col = order.column;
let num_cols = input_type.len();
let are = if num_cols == 1 { "is" } else { "are" };
let s = if num_cols == 1 { "" } else { "s" };
let input_type = columns_pretty(input_type, humanizer);
// TODO(cloud#8196)
let mode = HumanizedExplain::new(false);
let order = mode.expr(order, None);
writeln!(
f,
"TopK ordering {order} references invalid column {col}\nthere {are} {num_cols} column{s}: {input_type}")?
}
BadLetRecBindings { source: _ } => {
writeln!(f, "LetRec ids and definitions don't line up")?
}
Shadowing { source: _, id } => writeln!(f, "id {id} is shadowed")?,
Recursion { error } => writeln!(f, "{error}")?,
}
Ok(())
}
}