1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
use std::collections::VecDeque;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::sync::Arc;
use std::time::{Duration, Instant};
use anyhow::anyhow;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::trace::Description;
use futures_util::TryFutureExt;
use mz_dyncfg::Config;
use mz_ore::cast::CastFrom;
use mz_ore::error::ErrorExt;
use mz_persist::indexed::encoding::BlobTraceUpdates;
use mz_persist::location::Blob;
use mz_persist_types::{Codec, Codec64};
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tokio::sync::mpsc::Sender;
use tokio::sync::{mpsc, oneshot, TryAcquireError};
use tracing::{debug, debug_span, error, trace, warn, Instrument, Span};
use crate::async_runtime::IsolatedRuntime;
use crate::batch::{BatchBuilderConfig, BatchBuilderInternal, PartDeletes};
use crate::cfg::MiB;
use crate::fetch::FetchBatchFilter;
use crate::internal::encoding::Schemas;
use crate::internal::gc::GarbageCollector;
use crate::internal::machine::Machine;
use crate::internal::maintenance::RoutineMaintenance;
use crate::internal::metrics::ShardMetrics;
use crate::internal::state::{HollowBatch, RunMeta, RunOrder, RunPart};
use crate::internal::trace::{ApplyMergeResult, FueledMergeRes};
use crate::iter::{CodecSort, Consolidator, StructuredSort};
use crate::{Metrics, PersistConfig, ShardId};
/// A request for compaction.
///
/// This is similar to FueledMergeReq, but intentionally a different type. If we
/// move compaction to an rpc server, this one will become a protobuf; the type
/// parameters will become names of codecs to look up in some registry.
#[derive(Debug, Clone)]
pub struct CompactReq<T> {
/// The shard the input and output batches belong to.
pub shard_id: ShardId,
/// A description for the output batch.
pub desc: Description<T>,
/// The updates to include in the output batch. Any data in these outside of
/// the output descriptions bounds should be ignored.
pub inputs: Vec<HollowBatch<T>>,
}
/// A response from compaction.
#[derive(Debug)]
pub struct CompactRes<T> {
/// The compacted batch.
pub output: HollowBatch<T>,
}
/// A snapshot of dynamic configs to make it easier to reason about an
/// individual run of compaction.
#[derive(Debug, Clone)]
pub struct CompactConfig {
pub(crate) compaction_memory_bound_bytes: usize,
pub(crate) compaction_yield_after_n_updates: usize,
pub(crate) version: semver::Version,
pub(crate) batch: BatchBuilderConfig,
}
impl CompactConfig {
/// Initialize the compaction config from Persist configuration.
pub fn new(value: &PersistConfig, shard_id: ShardId) -> Self {
let mut ret = CompactConfig {
compaction_memory_bound_bytes: value.dynamic.compaction_memory_bound_bytes(),
compaction_yield_after_n_updates: value.compaction_yield_after_n_updates,
version: value.build_version.clone(),
batch: BatchBuilderConfig::new(value, shard_id, true),
};
// Use compaction as a method of getting inline writes out of state, to
// make room for more inline writes. We could instead do this at the end
// of compaction by flushing out the batch, but doing it here based on
// the config allows BatchBuilder to do its normal pipelining of writes.
ret.batch.inline_writes_single_max_bytes = 0;
ret
}
}
/// A service for performing physical and logical compaction.
///
/// This will possibly be called over RPC in the future. Physical compaction is
/// merging adjacent batches. Logical compaction is advancing timestamps to a
/// new since and consolidating the resulting updates.
#[derive(Debug)]
pub struct Compactor<K, V, T, D> {
cfg: PersistConfig,
metrics: Arc<Metrics>,
sender: Sender<(
Instant,
CompactReq<T>,
Machine<K, V, T, D>,
oneshot::Sender<Result<ApplyMergeResult, anyhow::Error>>,
)>,
_phantom: PhantomData<fn() -> D>,
}
impl<K, V, T, D> Clone for Compactor<K, V, T, D> {
fn clone(&self) -> Self {
Compactor {
cfg: self.cfg.clone(),
metrics: Arc::clone(&self.metrics),
sender: self.sender.clone(),
_phantom: Default::default(),
}
}
}
/// In Compactor::compact_and_apply_background, the minimum amount of time to
/// allow a compaction request to run before timing it out. A request may be
/// given a timeout greater than this value depending on the inputs' size
pub(crate) const COMPACTION_MINIMUM_TIMEOUT: Config<Duration> = Config::new(
"persist_compaction_minimum_timeout",
Duration::from_secs(90),
"\
The minimum amount of time to allow a persist compaction request to run \
before timing it out (Materialize).",
);
pub(crate) const COMPACTION_USE_MOST_RECENT_SCHEMA: Config<bool> = Config::new(
"persist_compaction_use_most_recent_schema",
true,
"\
Use the most recent schema from all the Runs that are currently being \
compacted, instead of the schema on the current write handle (Materialize).
",
);
impl<K, V, T, D> Compactor<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Ord + Codec64 + Send + Sync,
{
pub fn new(
cfg: PersistConfig,
metrics: Arc<Metrics>,
write_schemas: Schemas<K, V>,
gc: GarbageCollector<K, V, T, D>,
) -> Self {
let (compact_req_sender, mut compact_req_receiver) = mpsc::channel::<(
Instant,
CompactReq<T>,
Machine<K, V, T, D>,
oneshot::Sender<Result<ApplyMergeResult, anyhow::Error>>,
)>(cfg.compaction_queue_size);
let concurrency_limit = Arc::new(tokio::sync::Semaphore::new(
cfg.compaction_concurrency_limit,
));
// spin off a single task responsible for executing compaction requests.
// work is enqueued into the task through a channel
let _worker_handle = mz_ore::task::spawn(|| "PersistCompactionScheduler", async move {
while let Some((enqueued, req, machine, completer)) = compact_req_receiver.recv().await
{
assert_eq!(req.shard_id, machine.shard_id());
let metrics = Arc::clone(&machine.applier.metrics);
let permit = {
let inner = Arc::clone(&concurrency_limit);
// perform a non-blocking attempt to acquire a permit so we can
// record how often we're ever blocked on the concurrency limit
match inner.try_acquire_owned() {
Ok(permit) => permit,
Err(TryAcquireError::NoPermits) => {
metrics.compaction.concurrency_waits.inc();
Arc::clone(&concurrency_limit)
.acquire_owned()
.await
.expect("semaphore is never closed")
}
Err(TryAcquireError::Closed) => {
// should never happen in practice. the semaphore is
// never explicitly closed, nor will it close on Drop
warn!("semaphore for shard {} is closed", machine.shard_id());
continue;
}
}
};
metrics
.compaction
.queued_seconds
.inc_by(enqueued.elapsed().as_secs_f64());
let write_schemas = write_schemas.clone();
let compact_span =
debug_span!(parent: None, "compact::apply", shard_id=%machine.shard_id());
compact_span.follows_from(&Span::current());
let gc = gc.clone();
mz_ore::task::spawn(|| "PersistCompactionWorker", async move {
let res = Self::compact_and_apply(&machine, req, write_schemas)
.instrument(compact_span)
.await;
let res = res.map(|(res, maintenance)| {
maintenance.start_performing(&machine, &gc);
res
});
// we can safely ignore errors here, it's possible the caller
// wasn't interested in waiting and dropped their receiver
let _ = completer.send(res);
// moves `permit` into async scope so it can be dropped upon completion
drop(permit);
});
}
});
Compactor {
cfg,
metrics,
sender: compact_req_sender,
_phantom: PhantomData,
}
}
/// Enqueues a [CompactReq] to be consumed by the compaction background task when available.
///
/// Returns a receiver that indicates when compaction has completed. The receiver can be
/// safely dropped at any time if the caller does not wish to wait on completion.
pub fn compact_and_apply_background(
&self,
req: CompactReq<T>,
machine: &Machine<K, V, T, D>,
) -> Option<oneshot::Receiver<Result<ApplyMergeResult, anyhow::Error>>> {
// Run some initial heuristics to ignore some requests for compaction.
// We don't gain much from e.g. compacting two very small batches that
// were just written, but it does result in non-trivial blob traffic
// (especially in aggregate). This heuristic is something we'll need to
// tune over time.
let should_compact = req.inputs.len() >= self.cfg.dynamic.compaction_heuristic_min_inputs()
|| req.inputs.iter().map(|x| x.part_count()).sum::<usize>()
>= self.cfg.dynamic.compaction_heuristic_min_parts()
|| req.inputs.iter().map(|x| x.len).sum::<usize>()
>= self.cfg.dynamic.compaction_heuristic_min_updates();
if !should_compact {
self.metrics.compaction.skipped.inc();
return None;
}
let (compaction_completed_sender, compaction_completed_receiver) = oneshot::channel();
let new_compaction_sender = self.sender.clone();
self.metrics.compaction.requested.inc();
// NB: we intentionally pass along the input machine, as it ought to come from the
// writer that generated the compaction request / maintenance. this machine has a
// spine structure that generated the request, so it has a much better chance of
// merging and committing the result than a machine kept up-to-date through state
// diffs, which may have a different spine structure less amenable to merging.
let send = new_compaction_sender.try_send((
Instant::now(),
req,
machine.clone(),
compaction_completed_sender,
));
if let Err(_) = send {
self.metrics.compaction.dropped.inc();
return None;
}
Some(compaction_completed_receiver)
}
pub(crate) async fn compact_and_apply(
machine: &Machine<K, V, T, D>,
req: CompactReq<T>,
write_schemas: Schemas<K, V>,
) -> Result<(ApplyMergeResult, RoutineMaintenance), anyhow::Error> {
let metrics = Arc::clone(&machine.applier.metrics);
metrics.compaction.started.inc();
let start = Instant::now();
// pick a timeout for our compaction request proportional to the amount
// of data that must be read (with a minimum set by PersistConfig)
let total_input_bytes = req
.inputs
.iter()
.map(|batch| batch.encoded_size_bytes())
.sum::<usize>();
let timeout = Duration::max(
// either our minimum timeout
COMPACTION_MINIMUM_TIMEOUT.get(&machine.applier.cfg),
// or 1s per MB of input data
Duration::from_secs(u64::cast_from(total_input_bytes / MiB)),
);
// always use most recent schema from all the Runs we're compacting to prevent Compactors
// created before the schema was evolved, from trying to "de-evolve" a Part.
let compaction_schema_id = req
.inputs
.iter()
.flat_map(|batch| batch.run_meta.iter())
.filter_map(|run_meta| run_meta.schema)
// It's an invariant that SchemaIds are ordered.
.max();
let maybe_compaction_schema = match compaction_schema_id {
Some(id) => machine
.get_schema(id)
.map(|(key_schema, val_schema)| (id, key_schema, val_schema)),
None => None,
};
let use_most_recent_schema = COMPACTION_USE_MOST_RECENT_SCHEMA.get(&machine.applier.cfg);
let compaction_schema = match maybe_compaction_schema {
Some((id, key_schema, val_schema)) if use_most_recent_schema => {
metrics.compaction.schema_selection.recent_schema.inc();
Schemas {
id: Some(id),
key: Arc::new(key_schema),
val: Arc::new(val_schema),
}
}
Some(_) => {
metrics.compaction.schema_selection.disabled.inc();
write_schemas
}
None => {
metrics.compaction.schema_selection.no_schema.inc();
write_schemas
}
};
trace!(
"compaction request for {}MBs ({} bytes), with timeout of {}s, and schema {:?}.",
total_input_bytes / MiB,
total_input_bytes,
timeout.as_secs_f64(),
compaction_schema.id,
);
let compact_span = debug_span!("compact::consolidate");
let res = tokio::time::timeout(
timeout,
// Compaction is cpu intensive, so be polite and spawn it on the isolated runtime.
machine
.isolated_runtime
.spawn_named(
|| "persist::compact::consolidate",
Self::compact(
CompactConfig::new(&machine.applier.cfg, machine.shard_id()),
Arc::clone(&machine.applier.state_versions.blob),
Arc::clone(&metrics),
Arc::clone(&machine.applier.shard_metrics),
Arc::clone(&machine.isolated_runtime),
req,
compaction_schema,
)
.instrument(compact_span),
)
.map_err(|e| anyhow!(e)),
)
.await;
let res = match res {
Ok(res) => res,
Err(err) => {
metrics.compaction.timed_out.inc();
Err(anyhow!(err))
}
};
metrics
.compaction
.seconds
.inc_by(start.elapsed().as_secs_f64());
match res {
Ok(Ok(res)) => {
let res = FueledMergeRes { output: res.output };
let (apply_merge_result, maintenance) = machine.merge_res(&res).await;
match &apply_merge_result {
ApplyMergeResult::AppliedExact => {
metrics.compaction.applied.inc();
metrics.compaction.applied_exact_match.inc();
machine.applier.shard_metrics.compaction_applied.inc();
Ok((apply_merge_result, maintenance))
}
ApplyMergeResult::AppliedSubset => {
metrics.compaction.applied.inc();
metrics.compaction.applied_subset_match.inc();
machine.applier.shard_metrics.compaction_applied.inc();
Ok((apply_merge_result, maintenance))
}
ApplyMergeResult::NotAppliedNoMatch
| ApplyMergeResult::NotAppliedInvalidSince
| ApplyMergeResult::NotAppliedTooManyUpdates => {
if let ApplyMergeResult::NotAppliedTooManyUpdates = &apply_merge_result {
metrics.compaction.not_applied_too_many_updates.inc();
}
metrics.compaction.noop.inc();
let mut part_deletes = PartDeletes::default();
for part in res.output.parts {
part_deletes.add(&part);
}
let () = part_deletes
.delete(
machine.applier.state_versions.blob.as_ref(),
machine.shard_id(),
machine
.applier
.cfg
.dynamic
.gc_blob_delete_concurrency_limit(),
&*metrics,
&metrics.retries.external.compaction_noop_delete,
)
.await;
Ok((apply_merge_result, maintenance))
}
}
}
Ok(Err(err)) | Err(err) => {
metrics.compaction.failed.inc();
debug!(
"compaction for {} failed: {}",
machine.shard_id(),
err.display_with_causes()
);
Err(err)
}
}
}
/// Compacts input batches in bounded memory.
///
/// The memory bound is broken into pieces:
/// 1. in-progress work
/// 2. fetching parts from runs
/// 3. additional in-flight requests to Blob
///
/// 1. In-progress work is bounded by 2 * [BatchBuilderConfig::blob_target_size]. This
/// usage is met at two mutually exclusive moments:
/// * When reading in a part, we hold the columnar format in memory while writing its
/// contents into a heap.
/// * When writing a part, we hold a temporary updates buffer while encoding/writing
/// it into a columnar format for Blob.
///
/// 2. When compacting runs, only 1 part from each one is held in memory at a time.
/// Compaction will determine an appropriate number of runs to compact together
/// given the memory bound and accounting for the reservation in (1). A minimum
/// of 2 * [BatchBuilderConfig::blob_target_size] of memory is expected, to be
/// able to at least have the capacity to compact two runs together at a time,
/// and more runs will be compacted together if more memory is available.
///
/// 3. If there is excess memory after accounting for (1) and (2), we increase the
/// number of outstanding parts we can keep in-flight to Blob.
pub async fn compact(
cfg: CompactConfig,
blob: Arc<dyn Blob>,
metrics: Arc<Metrics>,
shard_metrics: Arc<ShardMetrics>,
isolated_runtime: Arc<IsolatedRuntime>,
req: CompactReq<T>,
write_schemas: Schemas<K, V>,
) -> Result<CompactRes<T>, anyhow::Error> {
let () = Self::validate_req(&req)?;
// We introduced a fast-path optimization in https://github.com/MaterializeInc/materialize/pull/15363
// but had to revert it due to a very scary bug. Here we count how many of our compaction reqs
// could be eligible for the optimization to better understand whether it's worth trying to
// reintroduce it.
let mut single_nonempty_batch = None;
for batch in &req.inputs {
if batch.len > 0 {
match single_nonempty_batch {
None => single_nonempty_batch = Some(batch),
Some(_previous_nonempty_batch) => {
single_nonempty_batch = None;
break;
}
}
}
}
if let Some(single_nonempty_batch) = single_nonempty_batch {
if single_nonempty_batch.run_splits.len() == 0
&& single_nonempty_batch.desc.since() != &Antichain::from_elem(T::minimum())
{
metrics.compaction.fast_path_eligible.inc();
}
}
// compaction needs memory enough for at least 2 runs and 2 in-progress parts
assert!(cfg.compaction_memory_bound_bytes >= 4 * cfg.batch.blob_target_size);
// reserve space for the in-progress part to be held in-mem representation and columnar
let in_progress_part_reserved_memory_bytes = 2 * cfg.batch.blob_target_size;
// then remaining memory will go towards pulling down as many runs as we can
let run_reserved_memory_bytes =
cfg.compaction_memory_bound_bytes - in_progress_part_reserved_memory_bytes;
let mut all_parts = vec![];
let mut all_run_splits = vec![];
let mut all_run_meta = vec![];
let mut len = 0;
for (runs, run_chunk_max_memory_usage) in
Self::chunk_runs(&req, &cfg, metrics.as_ref(), run_reserved_memory_bytes)
{
metrics.compaction.chunks_compacted.inc();
metrics
.compaction
.runs_compacted
.inc_by(u64::cast_from(runs.len()));
// given the runs we actually have in our batch, we might have extra memory
// available. we reserved enough space to always have 1 in-progress part in
// flight, but if we have excess, we can use it to increase our write parallelism
let extra_outstanding_parts = (run_reserved_memory_bytes
.saturating_sub(run_chunk_max_memory_usage))
/ cfg.batch.blob_target_size;
let mut run_cfg = cfg.clone();
run_cfg.batch.batch_builder_max_outstanding_parts = 1 + extra_outstanding_parts;
let batch = Self::compact_runs(
&run_cfg,
&req.shard_id,
&req.desc,
runs,
Arc::clone(&blob),
Arc::clone(&metrics),
Arc::clone(&shard_metrics),
Arc::clone(&isolated_runtime),
write_schemas.clone(),
)
.await?;
let (parts, run_splits, run_meta, updates) =
(batch.parts, batch.run_splits, batch.run_meta, batch.len);
assert!(
(updates == 0 && parts.len() == 0) || (updates > 0 && parts.len() > 0),
"updates={}, parts={}",
updates,
parts.len(),
);
if updates == 0 {
continue;
}
// merge together parts and runs from each compaction round.
// parts are appended onto our existing vec, and then we shift
// the latest run offsets to account for prior parts.
//
// e.g. if we currently have 3 parts and 2 runs (including the implicit one from 0):
// parts: [k0, k1, k2]
// runs: [ 1 ]
//
// and we merge in another result with 2 parts and 2 runs:
// parts: [k3, k4]
// runs: [ 1]
//
// we our result will contain 5 parts and 4 runs:
// parts: [k0, k1, k2, k3, k4]
// runs: [ 1 3 4 ]
let run_offset = all_parts.len();
if all_parts.len() > 0 {
all_run_splits.push(run_offset);
}
all_run_splits.extend(run_splits.iter().map(|run_start| run_start + run_offset));
all_run_meta.extend(run_meta);
all_parts.extend(parts);
len += updates;
}
Ok(CompactRes {
output: HollowBatch::new(
req.desc.clone(),
all_parts,
len,
all_run_meta,
all_run_splits,
),
})
}
/// Sorts and groups all runs from the inputs into chunks, each of which has been determined
/// to consume no more than `run_reserved_memory_bytes` at a time, unless the input parts
/// were written with a different target size than this build. Uses [Self::order_runs] to
/// determine the order in which runs are selected.
fn chunk_runs<'a>(
req: &'a CompactReq<T>,
cfg: &CompactConfig,
metrics: &Metrics,
run_reserved_memory_bytes: usize,
) -> Vec<(
Vec<(&'a Description<T>, &'a RunMeta, &'a [RunPart<T>])>,
usize,
)> {
let ordered_runs = Self::order_runs(req, cfg.batch.expected_order);
let mut ordered_runs = ordered_runs.iter().peekable();
let mut chunks = vec![];
let mut current_chunk = vec![];
let mut current_chunk_max_memory_usage = 0;
while let Some((desc, meta, run)) = ordered_runs.next() {
let run_greatest_part_size = run
.iter()
.map(|x| x.max_part_bytes())
.max()
.unwrap_or(cfg.batch.blob_target_size);
current_chunk.push((*desc, *meta, *run));
current_chunk_max_memory_usage += run_greatest_part_size;
if let Some((_next_desc, _next_meta, next_run)) = ordered_runs.peek() {
let next_run_greatest_part_size = next_run
.iter()
.map(|x| x.max_part_bytes())
.max()
.unwrap_or(cfg.batch.blob_target_size);
// if we can fit the next run in our chunk without going over our reserved memory, we should do so
if current_chunk_max_memory_usage + next_run_greatest_part_size
<= run_reserved_memory_bytes
{
continue;
}
// NB: There's an edge case where we cannot fit at least 2 runs into a chunk
// with our reserved memory. This could happen if blobs were written with a
// larger target size than the current build. When this happens, we violate
// our memory requirement and force chunks to be at least length 2, so that we
// can be assured runs are merged and converge over time.
if current_chunk.len() == 1 {
// in the steady state we expect this counter to be 0, and would only
// anticipate it being temporarily nonzero if we changed target blob size
// or our memory requirement calculations
metrics.compaction.memory_violations.inc();
continue;
}
}
chunks.push((
std::mem::take(&mut current_chunk),
current_chunk_max_memory_usage,
));
current_chunk_max_memory_usage = 0;
}
chunks
}
/// With bounded memory where we cannot compact all runs/parts together, the groupings
/// in which we select runs to compact together will affect how much we're able to
/// consolidate updates.
///
/// This approach orders the input runs by cycling through each batch, selecting the
/// head element until all are consumed. It assumes that it is generally more effective
/// to prioritize compacting runs from different batches, rather than runs from within
/// a single batch.
///
/// ex.
/// ```text
/// inputs output
/// b0 runs=[A, B]
/// b1 runs=[C] output=[A, C, D, B, E, F]
/// b2 runs=[D, E, F]
/// ```
fn order_runs(
req: &CompactReq<T>,
target_order: RunOrder,
) -> Vec<(&Description<T>, &RunMeta, &[RunPart<T>])> {
let total_number_of_runs = req
.inputs
.iter()
.map(|x| x.run_splits.len() + 1)
.sum::<usize>();
let mut batch_runs: VecDeque<_> = req
.inputs
.iter()
.map(|batch| (&batch.desc, batch.runs()))
.collect();
let mut ordered_runs = Vec::with_capacity(total_number_of_runs);
while let Some((desc, mut runs)) = batch_runs.pop_front() {
if let Some((meta, run)) = runs.next() {
let same_order = meta.order.unwrap_or(RunOrder::Codec) == target_order;
if same_order {
ordered_runs.push((desc, meta, run));
} else {
// The downstream consolidation step will handle a length-N run that's not in
// the desired order by splitting it up into N length-1 runs. This preserves
// correctness, but it means that we may end up needing to iterate through
// many more parts concurrently than expected, increasing memory use. Instead,
// we break up those runs before they're grouped together to be passed to
// consolidation.
// The downside is that this breaks the usual property that compaction produces
// fewer runs than it takes in. This should generally be resolved by future
// runs of compaction.
for part in run {
ordered_runs.push((desc, meta, std::slice::from_ref(part)));
}
}
batch_runs.push_back((desc, runs));
}
}
ordered_runs
}
/// Compacts runs together. If the input runs are sorted, a single run will be created as output.
///
/// Maximum possible memory usage is `(# runs + 2) * [crate::PersistConfig::blob_target_size]`
async fn compact_runs<'a>(
// note: 'a cannot be elided due to https://github.com/rust-lang/rust/issues/63033
cfg: &'a CompactConfig,
shard_id: &'a ShardId,
desc: &'a Description<T>,
runs: Vec<(&'a Description<T>, &'a RunMeta, &'a [RunPart<T>])>,
blob: Arc<dyn Blob>,
metrics: Arc<Metrics>,
shard_metrics: Arc<ShardMetrics>,
isolated_runtime: Arc<IsolatedRuntime>,
write_schemas: Schemas<K, V>,
) -> Result<HollowBatch<T>, anyhow::Error> {
// TODO: Figure out a more principled way to allocate our memory budget.
// Currently, we give any excess budget to write parallelism. If we had
// to pick between 100% towards writes vs 100% towards reads, then reads
// is almost certainly better, but the ideal is probably somewhere in
// between the two.
//
// For now, invent some some extra budget out of thin air for prefetch.
let prefetch_budget_bytes = 2 * cfg.batch.blob_target_size;
let mut timings = Timings::default();
let mut batch = BatchBuilderInternal::<K, V, T, D>::new(
cfg.batch.clone(),
Arc::clone(&metrics),
write_schemas.clone(),
Arc::clone(&shard_metrics),
metrics.compaction.batch.clone(),
desc.lower().clone(),
Arc::clone(&blob),
Arc::clone(&isolated_runtime),
shard_id.clone(),
cfg.version.clone(),
desc.since().clone(),
Some(desc.upper().clone()),
);
// Duplicating a large codepath here during the migration.
// TODO(database-issues#7188): dedup once the migration is complete.
if cfg.batch.expected_order == RunOrder::Structured {
// If we're not writing down the record metadata, we must always use the old compaction
// order. (Since that's the default when the metadata's not present.)
let mut consolidator = Consolidator::new(
format!(
"{}[lower={:?},upper={:?}]",
shard_id,
desc.lower().elements(),
desc.upper().elements()
),
*shard_id,
StructuredSort::<K, V, T, D>::new(write_schemas.clone()),
blob,
Arc::clone(&metrics),
shard_metrics,
metrics.read.compaction.clone(),
FetchBatchFilter::Compaction {
since: desc.since().clone(),
},
prefetch_budget_bytes,
);
for (desc, meta, parts) in runs {
consolidator.enqueue_run(desc, meta, parts.iter().cloned());
}
let remaining_budget = consolidator.start_prefetches();
if remaining_budget.is_none() {
metrics.compaction.not_all_prefetched.inc();
}
loop {
let mut chunks = vec![];
let mut total_bytes = 0;
// We attempt to pull chunks out of the consolidator that match our target size,
// but it's possible that we may get smaller chunks... for example, if not all
// parts have been fetched yet. Loop until we've got enough data to justify flushing
// it out to blob (or we run out of data.)
while total_bytes < cfg.batch.blob_target_size {
let fetch_start = Instant::now();
let Some(chunk) = consolidator
.next_chunk(
cfg.compaction_yield_after_n_updates,
cfg.batch.blob_target_size - total_bytes,
)
.await?
else {
break;
};
timings.part_fetching += fetch_start.elapsed();
total_bytes += chunk.goodbytes();
chunks.push(chunk);
tokio::task::yield_now().await;
}
if chunks.is_empty() {
break;
}
// In the hopefully-common case of a single chunk, this will not copy.
let updates = BlobTraceUpdates::concat::<K, V>(
chunks,
write_schemas.key.as_ref(),
write_schemas.val.as_ref(),
&metrics.columnar,
)?;
batch.flush_many(updates).await?;
}
} else {
let mut consolidator = Consolidator::<T, D>::new(
format!(
"{}[lower={:?},upper={:?}]",
shard_id,
desc.lower().elements(),
desc.upper().elements()
),
*shard_id,
CodecSort::default(),
blob,
Arc::clone(&metrics),
shard_metrics,
metrics.read.compaction.clone(),
FetchBatchFilter::Compaction {
since: desc.since().clone(),
},
prefetch_budget_bytes,
);
for (desc, meta, parts) in runs {
consolidator.enqueue_run(desc, meta, parts.iter().cloned());
}
let remaining_budget = consolidator.start_prefetches();
if remaining_budget.is_none() {
metrics.compaction.not_all_prefetched.inc();
}
// Reuse the allocations for individual keys and values
let mut key_vec = vec![];
let mut val_vec = vec![];
loop {
let fetch_start = Instant::now();
let Some(updates) = consolidator.next().await? else {
break;
};
timings.part_fetching += fetch_start.elapsed();
for ((k, v), t, d) in updates.take(cfg.compaction_yield_after_n_updates) {
key_vec.clear();
key_vec.extend_from_slice(k);
val_vec.clear();
val_vec.extend_from_slice(v);
crate::batch::validate_schema(&write_schemas, &key_vec, &val_vec, None, None);
batch.add(&key_vec, &val_vec, &t, &d).await?;
}
tokio::task::yield_now().await;
}
}
let mut batch = batch.finish(desc.upper().clone()).await?;
// We use compaction as a method of getting inline writes out of state,
// to make room for more inline writes. This happens in
// `CompactConfig::new` by overriding the inline writes threshold
// config. This is a bit action-at-a-distance, so defensively detect if
// this breaks here and log and correct it if so.
let has_inline_parts = batch.batch.parts.iter().any(|x| x.is_inline());
if has_inline_parts {
error!(%shard_id, ?cfg, "compaction result unexpectedly had inline writes");
let () = batch
.flush_to_blob(
&cfg.batch,
&metrics.compaction.batch,
&isolated_runtime,
&write_schemas,
)
.await;
}
timings.record(&metrics);
Ok(batch.into_hollow_batch())
}
fn validate_req(req: &CompactReq<T>) -> Result<(), anyhow::Error> {
let mut frontier = req.desc.lower();
for input in req.inputs.iter() {
if PartialOrder::less_than(req.desc.since(), input.desc.since()) {
return Err(anyhow!(
"output since {:?} must be at or in advance of input since {:?}",
req.desc.since(),
input.desc.since()
));
}
if frontier != input.desc.lower() {
return Err(anyhow!(
"invalid merge of non-consecutive batches {:?} vs {:?}",
frontier,
input.desc.lower()
));
}
frontier = input.desc.upper();
}
if frontier != req.desc.upper() {
return Err(anyhow!(
"invalid merge of non-consecutive batches {:?} vs {:?}",
frontier,
req.desc.upper()
));
}
Ok(())
}
}
#[derive(Debug, Default)]
struct Timings {
part_fetching: Duration,
heap_population: Duration,
}
impl Timings {
fn record(self, metrics: &Metrics) {
// intentionally deconstruct so we don't forget to consider each field
let Timings {
part_fetching,
heap_population,
} = self;
metrics
.compaction
.steps
.part_fetch_seconds
.inc_by(part_fetching.as_secs_f64());
metrics
.compaction
.steps
.heap_population_seconds
.inc_by(heap_population.as_secs_f64());
}
}
#[cfg(test)]
mod tests {
use mz_dyncfg::ConfigUpdates;
use mz_persist_types::codec_impls::StringSchema;
use timely::order::Product;
use timely::progress::Antichain;
use crate::batch::BLOB_TARGET_SIZE;
use crate::tests::{all_ok, expect_fetch_part, new_test_client_cache};
use crate::PersistLocation;
use super::*;
// A regression test for a bug caught during development of materialize#13160 (never
// made it to main) where batches written by compaction would always have a
// since of the minimum timestamp.
#[mz_persist_proc::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn regression_minimum_since(dyncfgs: ConfigUpdates) {
let data = vec![
(("0".to_owned(), "zero".to_owned()), 0, 1),
(("0".to_owned(), "zero".to_owned()), 1, -1),
(("1".to_owned(), "one".to_owned()), 1, 1),
];
let cache = new_test_client_cache(&dyncfgs);
cache.cfg.set_config(&BLOB_TARGET_SIZE, 100);
let (mut write, _) = cache
.open(PersistLocation::new_in_mem())
.await
.expect("client construction failed")
.expect_open::<String, String, u64, i64>(ShardId::new())
.await;
let b0 = write
.expect_batch(&data[..1], 0, 1)
.await
.into_hollow_batch();
let b1 = write
.expect_batch(&data[1..], 1, 2)
.await
.into_hollow_batch();
let req = CompactReq {
shard_id: write.machine.shard_id(),
desc: Description::new(
b0.desc.lower().clone(),
b1.desc.upper().clone(),
Antichain::from_elem(10u64),
),
inputs: vec![b0, b1],
};
let schemas = Schemas {
id: None,
key: Arc::new(StringSchema),
val: Arc::new(StringSchema),
};
let res = Compactor::<String, String, u64, i64>::compact(
CompactConfig::new(&write.cfg, write.shard_id()),
Arc::clone(&write.blob),
Arc::clone(&write.metrics),
write.metrics.shards.shard(&write.machine.shard_id(), ""),
Arc::new(IsolatedRuntime::default()),
req.clone(),
schemas.clone(),
)
.await
.expect("compaction failed");
assert_eq!(res.output.desc, req.desc);
assert_eq!(res.output.len, 1);
assert_eq!(res.output.part_count(), 1);
let part = res.output.parts[0].expect_hollow_part();
let (part, updates) = expect_fetch_part(
write.blob.as_ref(),
&part.key.complete(&write.machine.shard_id()),
&write.metrics,
&schemas,
)
.await;
assert_eq!(part.desc, res.output.desc);
assert_eq!(updates, all_ok(&data, 10));
}
#[mz_persist_proc::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn compaction_partial_order(dyncfgs: ConfigUpdates) {
let data = vec![
(("0".to_owned(), "zero".to_owned()), Product::new(0, 10), 1),
(("1".to_owned(), "one".to_owned()), Product::new(10, 0), 1),
];
let cache = new_test_client_cache(&dyncfgs);
cache.cfg.set_config(&BLOB_TARGET_SIZE, 100);
let (mut write, _) = cache
.open(PersistLocation::new_in_mem())
.await
.expect("client construction failed")
.expect_open::<String, String, Product<u32, u32>, i64>(ShardId::new())
.await;
let b0 = write
.batch(
&data[..1],
Antichain::from_elem(Product::new(0, 0)),
Antichain::from_iter([Product::new(0, 11), Product::new(10, 0)]),
)
.await
.expect("invalid usage")
.into_hollow_batch();
let b1 = write
.batch(
&data[1..],
Antichain::from_iter([Product::new(0, 11), Product::new(10, 0)]),
Antichain::from_elem(Product::new(10, 1)),
)
.await
.expect("invalid usage")
.into_hollow_batch();
let req = CompactReq {
shard_id: write.machine.shard_id(),
desc: Description::new(
b0.desc.lower().clone(),
b1.desc.upper().clone(),
Antichain::from_elem(Product::new(10, 0)),
),
inputs: vec![b0, b1],
};
let schemas = Schemas {
id: None,
key: Arc::new(StringSchema),
val: Arc::new(StringSchema),
};
let res = Compactor::<String, String, Product<u32, u32>, i64>::compact(
CompactConfig::new(&write.cfg, write.shard_id()),
Arc::clone(&write.blob),
Arc::clone(&write.metrics),
write.metrics.shards.shard(&write.machine.shard_id(), ""),
Arc::new(IsolatedRuntime::default()),
req.clone(),
schemas.clone(),
)
.await
.expect("compaction failed");
assert_eq!(res.output.desc, req.desc);
assert_eq!(res.output.len, 2);
assert_eq!(res.output.part_count(), 1);
let part = res.output.parts[0].expect_hollow_part();
let (part, updates) = expect_fetch_part(
write.blob.as_ref(),
&part.key.complete(&write.machine.shard_id()),
&write.metrics,
&schemas,
)
.await;
assert_eq!(part.desc, res.output.desc);
assert_eq!(updates, all_ok(&data, Product::new(10, 0)));
}
}