mz_compute/sink/materialized_view.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
use std::any::Any;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::pin;
use std::rc::Rc;
use std::sync::Arc;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::{Collection, Hashable};
use futures::StreamExt;
use mz_compute_types::dyncfgs::ENABLE_MATERIALIZED_VIEW_SINK_V2;
use mz_compute_types::sinks::{ComputeSinkDesc, MaterializedViewSinkConnection};
use mz_ore::cast::CastFrom;
use mz_persist_client::batch::{Batch, ProtoBatch};
use mz_persist_client::cache::PersistClientCache;
use mz_persist_client::operators::shard_source::SnapshotMode;
use mz_persist_client::Diagnostics;
use mz_persist_types::codec_impls::UnitSchema;
use mz_repr::{Diff, GlobalId, Row, Timestamp};
use mz_storage_types::controller::CollectionMetadata;
use mz_storage_types::errors::DataflowError;
use mz_storage_types::sources::SourceData;
use mz_timely_util::builder_async::{Event, OperatorBuilder as AsyncOperatorBuilder};
use timely::container::CapacityContainerBuilder;
use timely::dataflow::channels::pact::{Exchange, Pipeline};
use timely::dataflow::operators::{probe, Broadcast, Capability, CapabilitySet, Inspect};
use timely::dataflow::{Scope, Stream};
use timely::progress::{Antichain, Timestamp as TimelyTimestamp};
use timely::PartialOrder;
use tokio::sync::watch;
use tracing::trace;
use crate::compute_state::ComputeState;
use crate::render::sinks::SinkRender;
use crate::render::StartSignal;
use crate::sink::correction::Correction;
use crate::sink::materialized_view_v2;
use crate::sink::refresh::apply_refresh;
impl<G> SinkRender<G> for MaterializedViewSinkConnection<CollectionMetadata>
where
G: Scope<Timestamp = Timestamp>,
{
fn render_sink(
&self,
compute_state: &mut ComputeState,
sink: &ComputeSinkDesc<CollectionMetadata>,
sink_id: GlobalId,
as_of: Antichain<Timestamp>,
start_signal: StartSignal,
mut ok_collection: Collection<G, Row, Diff>,
mut err_collection: Collection<G, DataflowError, Diff>,
_ct_times: Option<Collection<G, (), Diff>>,
) -> Option<Rc<dyn Any>> {
// Attach a probe reporting the compute frontier.
// The `apply_refresh` operator can round up frontiers, making it impossible to accurately
// track the progress of the computation, so we need to attach the probe before it.
let mut probe = probe::Handle::default();
ok_collection = ok_collection.probe_with(&mut probe);
let collection_state = compute_state.expect_collection_mut(sink_id);
collection_state.compute_probe = Some(probe);
// If a `RefreshSchedule` was specified, round up timestamps.
if let Some(refresh_schedule) = &sink.refresh_schedule {
ok_collection = apply_refresh(ok_collection, refresh_schedule.clone());
err_collection = apply_refresh(err_collection, refresh_schedule.clone());
}
if sink.up_to != Antichain::default() {
unimplemented!(
"UP TO is not supported for persist sinks yet, and shouldn't have been accepted during parsing/planning"
)
}
if ENABLE_MATERIALIZED_VIEW_SINK_V2.get(&compute_state.worker_config) {
let token = materialized_view_v2::persist_sink(
sink_id,
&self.storage_metadata,
ok_collection,
err_collection,
as_of,
compute_state,
start_signal,
);
Some(token)
} else {
persist_sink(
sink_id,
&self.storage_metadata,
ok_collection,
err_collection,
as_of,
compute_state,
start_signal,
)
}
}
}
pub(crate) fn persist_sink<G>(
sink_id: GlobalId,
target: &CollectionMetadata,
ok_collection: Collection<G, Row, Diff>,
err_collection: Collection<G, DataflowError, Diff>,
as_of: Antichain<Timestamp>,
compute_state: &mut ComputeState,
start_signal: StartSignal,
) -> Option<Rc<dyn Any>>
where
G: Scope<Timestamp = Timestamp>,
{
let desired_oks = ok_collection.inner;
let desired_errs = err_collection.inner;
// There is no guarantee that `as_of` is beyond the persist shard's since. If it isn't,
// instantiating a `persist_source` with it would panic. So instead we leave it to
// `persist_source` to select an appropriate `as_of`. We only care about times beyond the
// current shard upper anyway.
let source_as_of = None;
let (persist_oks, persist_errs, token) = mz_storage_operators::persist_source::persist_source(
&mut desired_oks.scope(),
sink_id,
Arc::clone(&compute_state.persist_clients),
&compute_state.txns_ctx,
&compute_state.worker_config,
target.clone(),
source_as_of,
SnapshotMode::Include,
Antichain::new(), // we want all updates
None, // no MFP
compute_state.dataflow_max_inflight_bytes(),
start_signal,
|error| panic!("compute_persist_sink: {error}"),
);
Some(Rc::new((
install_desired_into_persist(
sink_id,
target,
desired_oks,
desired_errs,
persist_oks,
persist_errs,
as_of,
compute_state,
),
token,
)))
}
/// Continuously writes the difference between `persist_stream` and
/// `desired_stream` into persist, such that the persist shard is made to
/// contain the same updates as `desired_stream`. This is done via a multi-stage
/// operator graph:
///
/// 1. `mint_batch_descriptions` emits new batch descriptions whenever the
/// frontier of `persist_stream` advances *and `persist_frontier`* is less
/// than `desired_frontier`. A batch description is a pair of `(lower,
/// upper)` that tells write operators which updates to write and in the end
/// tells the append operator what frontiers to use when calling
/// `append`/`compare_and_append`. This is a single-worker operator.
/// 2. `write_batches` writes the difference between `desired_stream` and
/// `persist_stream` to persist as batches and sends those batches along.
/// This does not yet append the batches to the persist shard, the update are
/// only uploaded/prepared to be appended to a shard. Also: we only write
/// updates for batch descriptions that we learned about from
/// `mint_batch_descriptions`.
/// 3. `append_batches` takes as input the minted batch descriptions and written
/// batches. Whenever the frontiers sufficiently advance, we take a batch
/// description and all the batches that belong to it and append it to the
/// persist shard.
///
/// Note that `mint_batch_descriptions` inspects the frontier of
/// `desired_collection`, and passes the data through to `write_batches`.
/// This is done to avoid a clone of the underlying data so that both
/// operators can have the collection as input.
///
fn install_desired_into_persist<G>(
sink_id: GlobalId,
target: &CollectionMetadata,
desired_oks: Stream<G, (Row, Timestamp, Diff)>,
desired_errs: Stream<G, (DataflowError, Timestamp, Diff)>,
persist_oks: Stream<G, (Row, Timestamp, Diff)>,
persist_errs: Stream<G, (DataflowError, Timestamp, Diff)>,
as_of: Antichain<Timestamp>,
compute_state: &mut crate::compute_state::ComputeState,
) -> Option<Rc<dyn Any>>
where
G: Scope<Timestamp = Timestamp>,
{
let persist_clients = Arc::clone(&compute_state.persist_clients);
let shard_id = target.data_shard;
let operator_name = format!("persist_sink {}", sink_id);
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
initial as_of: {:?}",
as_of
);
}
let (batch_descriptions, desired_oks, desired_errs, mint_token) = mint_batch_descriptions(
sink_id,
operator_name.clone(),
target,
&desired_oks,
&desired_errs,
as_of,
Arc::clone(&persist_clients),
compute_state,
);
let (written_batches, write_token) = write_batches(
sink_id.clone(),
operator_name.clone(),
target,
&batch_descriptions,
&desired_oks,
&desired_errs,
&persist_oks,
&persist_errs,
Arc::clone(&persist_clients),
compute_state.read_only_rx.clone(),
);
let append_token = append_batches(
sink_id.clone(),
operator_name,
target,
&batch_descriptions,
&written_batches,
persist_clients,
compute_state.read_only_rx.clone(),
);
let token = Rc::new((mint_token, write_token, append_token));
Some(token)
}
/// Whenever the frontier advances, this mints a new batch description (lower
/// and upper) that writers should use for writing the next set of batches to
/// persist.
///
/// Only one of the workers does this, meaning there will only be one
/// description in the stream, even in case of multiple timely workers. Use
/// `broadcast()` to, ahem, broadcast, the one description to all downstream
/// write operators/workers.
///
/// This also keeps the shared frontier that is stored in `compute_state` in
/// sync with the upper of the persist shard.
fn mint_batch_descriptions<G>(
sink_id: GlobalId,
operator_name: String,
target: &CollectionMetadata,
desired_oks: &Stream<G, (Row, Timestamp, Diff)>,
desired_errs: &Stream<G, (DataflowError, Timestamp, Diff)>,
as_of: Antichain<Timestamp>,
persist_clients: Arc<PersistClientCache>,
compute_state: &mut crate::compute_state::ComputeState,
) -> (
Stream<G, (Antichain<Timestamp>, Antichain<Timestamp>)>,
Stream<G, (Row, Timestamp, Diff)>,
Stream<G, (DataflowError, Timestamp, Diff)>,
Rc<dyn Any>,
)
where
G: Scope<Timestamp = Timestamp>,
{
let scope = desired_oks.scope();
// Only attempt to write from this frontier onward, as our data are not necessarily
// correct for times not greater or equal to this frontier.
let write_lower_bound = as_of;
let persist_location = target.persist_location.clone();
let shard_id = target.data_shard;
let target_relation_desc = target.relation_desc.clone();
// Only one worker is responsible for determining batch descriptions. All
// workers must write batches with the same description, to ensure that they
// can be combined into one batch that gets appended to Consensus state.
let hashed_id = sink_id.hashed();
let active_worker = usize::cast_from(hashed_id) % scope.peers() == scope.index();
// Only the "active" operator will mint batches. All other workers have an
// empty frontier. It's necessary to insert all of these into
// `compute_state.sink_write_frontier` below so we properly clear out
// default frontiers of non-active workers.
let shared_frontier = Rc::new(RefCell::new(if active_worker {
Antichain::from_elem(TimelyTimestamp::minimum())
} else {
Antichain::new()
}));
let collection = compute_state.expect_collection_mut(sink_id);
collection.sink_write_frontier = Some(Rc::clone(&shared_frontier));
let mut mint_op =
AsyncOperatorBuilder::new(format!("{} mint_batch_descriptions", operator_name), scope);
let (output, output_stream) = mint_op.new_output::<CapacityContainerBuilder<_>>();
let (desired_oks_output, desired_oks_output_stream) =
mint_op.new_output::<CapacityContainerBuilder<_>>();
let (desired_errs_output, desired_errs_output_stream) =
mint_op.new_output::<CapacityContainerBuilder<_>>();
// The `desired` inputs drive both the description output and their respective passthrough
// output.
let mut desired_oks_input =
mint_op.new_input_for_many(desired_oks, Pipeline, [&output, &desired_oks_output]);
let mut desired_errs_input =
mint_op.new_input_for_many(desired_errs, Pipeline, [&output, &desired_errs_output]);
let shutdown_button = mint_op.build(move |capabilities| async move {
// Non-active workers should just pass the data through.
if !active_worker {
// The description output is entirely driven by the active worker, so we drop
// its capability here. The data-passthrough outputs just uses the data
// capabilities.
drop(capabilities);
loop {
tokio::select! {
Some(event) = desired_oks_input.next() => {
if let Event::Data([_, cap], mut data) = event {
desired_oks_output
.give_container(&cap, &mut data);
}
}
Some(event) = desired_errs_input.next() => {
if let Event::Data([_, cap], mut data) = event {
desired_errs_output
.give_container(&cap, &mut data);
}
}
// All inputs are exhausted, so we can shut down.
else => return,
}
}
}
// The data-passthrough outputs will use the data capabilities, so we drop
// their capabilities here.
let [desc_cap, _, _]: [_; 3] = capabilities.try_into().expect("one capability per output");
let mut cap_set = CapabilitySet::from_elem(desc_cap);
// TODO(aljoscha): We need to figure out what to do with error
// results from these calls.
let persist_client = persist_clients
.open(persist_location)
.await
.expect("could not open persist client");
let mut write = persist_client
.open_writer::<SourceData, (), Timestamp, Diff>(
shard_id,
Arc::new(target_relation_desc),
Arc::new(UnitSchema),
Diagnostics {
shard_name: sink_id.to_string(),
handle_purpose: format!(
"compute::persist_sink::mint_batch_descriptions {}",
sink_id
),
},
)
.await
.expect("could not open persist shard");
let mut current_persist_frontier = write.upper().clone();
// Advance the persist shard's upper to at least our write lower
// bound.
if PartialOrder::less_than(¤t_persist_frontier, &write_lower_bound) {
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
advancing to write_lower_bound: {:?}",
write_lower_bound
);
}
let empty_updates: &[((SourceData, ()), Timestamp, Diff)] = &[];
// It's fine if we don't succeed here. This just means that
// someone else already advanced the persist frontier further,
// which is great!
let res = write
.append(
empty_updates,
current_persist_frontier.clone(),
write_lower_bound.clone(),
)
.await
.expect("invalid usage");
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
advancing to write_lower_bound result: {:?}",
res
);
}
current_persist_frontier.clone_from(&write_lower_bound);
}
// The current input frontiers.
let mut desired_oks_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
let mut desired_errs_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
let mut persist_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
// The persist_frontier as it was when we last ran through our minting logic.
// SUBTLE: As described below, we only mint new batch descriptions
// when the persist frontier moves. We therefore have to encode this
// one as an `Option<Antichain<T>>` where the change from `None` to
// `Some([minimum])` is also a change in the frontier. If we didn't
// do this, we would be stuck at `[minimum]`.
let mut emitted_persist_frontier: Option<Antichain<_>> = None;
// We go straight to the write handle to learn about the current upper
// and upper advancements. The "persist_oks" stream is lying to us! For
// example, when starting the persist_source with an as_of, the upper
// will jump to that as_of.
let mut current_upper = persist_frontier.clone();
let upper_stream = async_stream::stream!({
loop {
write.wait_for_upper_past(¤t_upper).await;
current_upper = write.shared_upper();
if current_upper.is_empty() {
// We are done! Report the final upper and then break out.
yield current_upper;
break;
} else {
yield current_upper.clone()
}
}
});
let mut upper_stream = pin::pin!(upper_stream);
loop {
tokio::select! {
Some(event) = desired_oks_input.next() => {
match event {
Event::Data([_, cap], mut data) => {
// Just passthrough the data.
desired_oks_output.give_container(&cap, &mut data);
continue;
}
Event::Progress(frontier) => {
desired_oks_frontier = frontier;
}
}
}
Some(event) = desired_errs_input.next() => {
match event {
Event::Data([_, cap], mut data) => {
// Just passthrough the data.
desired_errs_output.give_container(&cap, &mut data);
continue;
}
Event::Progress(frontier) => {
desired_errs_frontier = frontier;
}
}
}
// `StreamExt::next()` only borrows the stream, and the next-fut
// itself doesn't hold state. So the combination is cancel-safe.
Some(upper) = upper_stream.next() => {
persist_frontier = upper;
}
else => {
// All inputs are exhausted, so we can shut down.
return;
}
};
if PartialOrder::less_than(&*shared_frontier.borrow(), &persist_frontier) {
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
updating shared_frontier to {:?}",
persist_frontier,
);
}
// Share that we have finished processing all times less than the persist frontier.
// Advancing the sink upper communicates to the storage controller that it is
// permitted to compact our target storage collection up to the new upper. So we
// must be careful to not advance the sink upper beyond our read frontier.
shared_frontier.borrow_mut().clear();
shared_frontier
.borrow_mut()
.extend(persist_frontier.iter().cloned());
}
// We only mint new batch desriptions when:
// 1. the desired frontier is past the persist frontier
// 2. the persist frontier has moved since we last emitted a
// batch
//
// That last point is _subtle_: If we emitted new batch
// descriptions whenever the desired frontier moves but the
// persist frontier doesn't move, we would mint overlapping
// batch descriptions, which would lead to errors when trying to
// appent batches based on them.
//
// We never use the same lower frontier twice.
// We only emit new batches when the persist frontier moves.
// A batch description that we mint for a given `lower` will
// either succeed in being appended, in which case the
// persist frontier moves. Or it will fail because the
// persist frontier got moved by someone else, in which case
// we also won't mint a new batch description for the same
// frontier.
let desired_frontier = desired_oks_frontier.meet(&desired_errs_frontier);
if PartialOrder::less_than(&persist_frontier, &desired_frontier)
&& (emitted_persist_frontier.is_none()
|| PartialOrder::less_than(
emitted_persist_frontier.as_ref().unwrap(),
&persist_frontier,
))
{
let batch_description = (persist_frontier.to_owned(), desired_frontier.to_owned());
let lower = batch_description.0.first().unwrap();
let batch_ts = batch_description.0.first().unwrap().clone();
let cap = cap_set
.try_delayed(&batch_ts)
.ok_or_else(|| {
format!(
"minter cannot delay {:?} to {:?}. \
Likely because we already emitted a \
batch description and delayed.",
cap_set, lower
)
})
.unwrap();
trace!(
"persist_sink {sink_id}/{shard_id}: \
new batch_description: {:?}",
batch_description
);
output.give(&cap, batch_description);
// WIP: We downgrade our capability so that downstream
// operators (writer and appender) can know when all the
// writers have had a chance to write updates to persist for
// a given batch. Just stepping forward feels a bit icky,
// though.
let new_batch_frontier = Antichain::from_elem(batch_ts.step_forward());
trace!(
"persist_sink {sink_id}/{shard_id}: \
downgrading to {:?}",
new_batch_frontier
);
let res = cap_set.try_downgrade(new_batch_frontier.iter());
match res {
Ok(_) => (),
Err(e) => panic!("in minter: {:?}", e),
}
emitted_persist_frontier.replace(persist_frontier.clone());
}
}
});
if sink_id.is_user() {
output_stream.inspect(|d| trace!("batch_description: {:?}", d));
}
let token = Rc::new(shutdown_button.press_on_drop());
(
output_stream,
desired_oks_output_stream,
desired_errs_output_stream,
token,
)
}
/// Writes `desired_stream - persist_stream` to persist, but only for updates
/// that fall into batch a description that we get via `batch_descriptions`.
/// This forwards a `HollowBatch` for any batch of updates that was written.
fn write_batches<G>(
sink_id: GlobalId,
operator_name: String,
target: &CollectionMetadata,
batch_descriptions: &Stream<G, (Antichain<Timestamp>, Antichain<Timestamp>)>,
desired_oks: &Stream<G, (Row, Timestamp, Diff)>,
desired_errs: &Stream<G, (DataflowError, Timestamp, Diff)>,
persist_oks: &Stream<G, (Row, Timestamp, Diff)>,
persist_errs: &Stream<G, (DataflowError, Timestamp, Diff)>,
persist_clients: Arc<PersistClientCache>,
mut read_only: watch::Receiver<bool>,
) -> (Stream<G, ProtoBatch>, Rc<dyn Any>)
where
G: Scope<Timestamp = Timestamp>,
{
let persist_location = target.persist_location.clone();
let shard_id = target.data_shard;
let target_relation_desc = target.relation_desc.clone();
let scope = desired_oks.scope();
let worker_index = scope.index();
let mut write_op = AsyncOperatorBuilder::new(format!("{} write_batches", operator_name), scope);
let (output, output_stream) = write_op.new_output();
let mut descriptions_input =
write_op.new_input_for(&batch_descriptions.broadcast(), Pipeline, &output);
let mut desired_oks_input = write_op.new_input_for(
desired_oks,
Exchange::new(move |(row, _, _): &(Row, _, _)| row.hashed()),
&output,
);
let mut desired_errs_input = write_op.new_input_for(
desired_errs,
Exchange::new(move |(error, _, _): &(DataflowError, _, _)| error.hashed()),
&output,
);
// These inputs are disconnected so that the persist frontier is not taken into account when
// determining downstream implications. We're only interested in the frontier to know when we
// are ready to write out new data (when the corrections have "settled"). But the persist
// frontier must not hold back the downstream frontier, otherwise the `append_batches` operator
// would never append batches because it waits for its input frontier to advance before it does
// so. The input frontier would never advance if we don't write new updates to persist, leading
// to a Catch-22-type situation.
let mut persist_oks_input = write_op.new_disconnected_input(
persist_oks,
Exchange::new(move |(row, _, _): &(Row, _, _)| row.hashed()),
);
let mut persist_errs_input = write_op.new_disconnected_input(
persist_errs,
Exchange::new(move |(error, _, _): &(DataflowError, _, _)| error.hashed()),
);
// This operator accepts the current and desired update streams for a `persist` shard.
// It attempts to write out updates, starting from the current's upper frontier, that
// will cause the changes of desired to be committed to persist.
let shutdown_button = write_op.build(move |_capabilities| async move {
// TODO(aljoscha): We need to figure out what to do with error results from these calls.
let persist_client = persist_clients
.open(persist_location)
.await
.expect("could not open persist client");
let sink_metrics = persist_client.metrics().sink.clone();
let sink_worker_metrics = sink_metrics.for_worker(worker_index);
// Contains `desired - persist`, reflecting the updates we would like to commit
// to `persist` in order to "correct" it to track `desired`. These collections are
// only modified by updates received from either the `desired` or `persist` inputs.
let mut correction_oks = Correction::new(sink_metrics.clone(), sink_worker_metrics.clone());
let mut correction_errs = Correction::new(sink_metrics, sink_worker_metrics);
// Contains descriptions of batches for which we know that we can
// write data. We got these from the "centralized" operator that
// determines batch descriptions for all writers.
//
// `Antichain` does not implement `Ord`, so we cannot use a `BTreeMap`. We need to search
// through the map, so we cannot use the `mz_ore` wrapper either.
#[allow(clippy::disallowed_types)]
let mut in_flight_batches = std::collections::HashMap::<
(Antichain<Timestamp>, Antichain<Timestamp>),
Capability<Timestamp>,
>::new();
let mut write = persist_client
.open_writer::<SourceData, (), Timestamp, Diff>(
shard_id,
Arc::new(target_relation_desc),
Arc::new(UnitSchema),
Diagnostics {
shard_name: sink_id.to_string(),
handle_purpose: format!("compute::persist_sink::write_batches {}", sink_id),
},
)
.await
.expect("could not open persist shard");
// The current input frontiers.
let mut batch_descriptions_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
let mut desired_oks_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
let mut desired_errs_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
let mut persist_oks_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
let mut persist_errs_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
loop {
tokio::select! {
Some(event) = descriptions_input.next() => {
match event {
Event::Data(cap, data) => {
// Ingest new batch descriptions.
for description in data {
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
write_batches: \
new_description: {:?}, \
desired_frontier: {:?}, \
batch_descriptions_frontier: {:?}, \
persist_frontier: {:?}",
description,
desired_oks_frontier.meet(&desired_errs_frontier),
batch_descriptions_frontier,
persist_oks_frontier.meet(&persist_errs_frontier),
);
}
let existing = in_flight_batches.insert(
description.clone(),
cap.delayed(description.0.first().unwrap()),
);
assert!(
existing.is_none(),
"write_batches: sink {} got more than one \
batch for description {:?}, in-flight: {:?}",
sink_id,
description,
in_flight_batches
);
}
continue;
}
Event::Progress(frontier) => {
batch_descriptions_frontier = frontier;
}
}
}
Some(event) = desired_oks_input.next() => {
match event {
Event::Data(_cap, data) => {
// Extract desired rows as positive contributions to `correction_oks`.
if sink_id.is_user() && !data.is_empty() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
updates: {:?}, \
in-flight-batches: {:?}, \
desired_frontier: {:?}, \
batch_descriptions_frontier: {:?}, \
persist_frontier: {:?}",
data,
in_flight_batches,
desired_oks_frontier.meet(&desired_errs_frontier),
batch_descriptions_frontier,
persist_oks_frontier.meet(&persist_errs_frontier),
);
}
correction_oks.insert(data);
continue;
}
Event::Progress(frontier) => {
desired_oks_frontier = frontier;
}
}
}
Some(event) = desired_errs_input.next() => {
match event {
Event::Data(_cap, data) => {
// Extract desired rows as positive contributions to `correction_errs`.
if sink_id.is_user() && !data.is_empty() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
updates: {:?}, \
in-flight-batches: {:?}, \
desired_frontier: {:?}, \
batch_descriptions_frontier: {:?}, \
persist_frontier: {:?}",
data,
in_flight_batches,
desired_oks_frontier.meet(&desired_errs_frontier),
batch_descriptions_frontier,
persist_oks_frontier.meet(&persist_errs_frontier),
);
}
correction_errs.insert(data);
continue;
}
Event::Progress(frontier) => {
desired_errs_frontier = frontier;
}
}
}
Some(event) = persist_oks_input.next() => {
match event {
Event::Data(_cap, data) => {
// Extract persist rows as negative contributions to `correction_oks`.
correction_oks.insert_negated(data);
continue;
}
Event::Progress(frontier) => {
persist_oks_frontier = frontier;
}
}
}
Some(event) = persist_errs_input.next() => {
match event {
Event::Data(_cap, data) => {
// Extract persist rows as negative contributions to `correction_errs`.
correction_errs.insert_negated(data);
continue;
}
Event::Progress(frontier) => {
persist_errs_frontier = frontier;
}
}
}
_it_changed = read_only.changed() => {
// We might have to append some batches that we stashed
// while in read-only mode.
}
else => {
// All inputs are exhausted, so we can shut down.
return;
}
}
let desired_frontier = desired_oks_frontier.meet(&desired_errs_frontier);
let persist_frontier = persist_oks_frontier.meet(&persist_errs_frontier);
trace!(
"persist_sink {sink_id}/{shard_id}: \
in-flight batches: {:?}, \
batch_descriptions_frontier: {:?}, \
desired_frontier: {:?} \
persist_frontier: {:?}",
in_flight_batches,
batch_descriptions_frontier,
desired_frontier,
persist_frontier,
);
// Advance all updates to `persist`'s frontier.
correction_oks.advance_by(&persist_frontier);
correction_errs.advance_by(&persist_frontier);
// Discard batch descriptions whose upper is already not beyond the
// persist frontier. Those have no chance of being applied to the
// shard succesfully.
let persist_upper = write.shared_upper();
in_flight_batches
.retain(|(lower, _upper), _cap| PartialOrder::less_equal(&persist_upper, lower));
if read_only.borrow().clone() {
// We are not allowed to do writes, so go back to the beginning
// of the loop.
//
// We are bailing here and not earlier to make sure that we keep
// our corrections buffers up to date, which will potentially
// consolidate things out, and to make sure that we weed out
// batches that we can never apply.
continue;
}
// We can write updates for a given batch description when
// a) the batch is not beyond `batch_descriptions_frontier`,
// and b) we know that we have seen all updates that would
// fall into the batch, from `desired_frontier`.
let ready_batches = in_flight_batches
.keys()
.filter(|(lower, upper)| {
!PartialOrder::less_equal(&batch_descriptions_frontier, lower)
&& !PartialOrder::less_than(&desired_frontier, upper)
&& !PartialOrder::less_than(&persist_frontier, lower)
})
.cloned()
.collect::<Vec<_>>();
trace!(
"persist_sink {sink_id}/{shard_id}: \
ready batches: {:?}",
ready_batches,
);
for batch_description in ready_batches.into_iter() {
let cap = in_flight_batches.remove(&batch_description).unwrap();
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
emitting done batch: {:?}, cap: {:?}",
batch_description,
cap
);
}
let (batch_lower, batch_upper) = batch_description;
let to_append_oks = correction_oks.updates_within(&batch_lower, &batch_upper);
let to_append_errs = correction_errs.updates_within(&batch_lower, &batch_upper);
let update_count = to_append_oks.len() + to_append_errs.len();
if update_count > 0 {
let oks = to_append_oks.map(|(d, t, r)| ((SourceData(Ok(d)), ()), t, r));
let errs = to_append_errs.map(|(d, t, r)| ((SourceData(Err(d)), ()), t, r));
let batch = write
.batch(oks.chain(errs), batch_lower, batch_upper)
.await
.expect("invalid usage");
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
wrote batch from worker {}: ({:?}, {:?})",
worker_index,
batch.lower(),
batch.upper()
);
}
output.give(&cap, batch.into_transmittable_batch());
}
}
}
});
if sink_id.is_user() {
output_stream.inspect(|d| trace!("batch: {:?}", d));
}
let token = Rc::new(shutdown_button.press_on_drop());
(output_stream, token)
}
/// Fuses written batches together and appends them to persist using one
/// `compare_and_append` call. Writing only happens for batch descriptions where
/// we know that no future batches will arrive, that is, for those batch
/// descriptions that are not beyond the frontier of both the
/// `batch_descriptions` and `batches` inputs.
///
/// To avoid contention over the persist shard, we route all batches to a single worker.
/// This worker may also batch up individual records sent by the upstream operator, as
/// a way to coalesce what would otherwise be many tiny batches into fewer, larger ones.
fn append_batches<G>(
sink_id: GlobalId,
operator_name: String,
target: &CollectionMetadata,
batch_descriptions: &Stream<G, (Antichain<Timestamp>, Antichain<Timestamp>)>,
batches: &Stream<G, ProtoBatch>,
persist_clients: Arc<PersistClientCache>,
mut read_only: watch::Receiver<bool>,
) -> Rc<dyn Any>
where
G: Scope<Timestamp = Timestamp>,
{
let scope = batch_descriptions.scope();
let persist_location = target.persist_location.clone();
let shard_id = target.data_shard;
let target_relation_desc = target.relation_desc.clone();
let operator_name = format!("{} append_batches", operator_name);
let mut append_op = AsyncOperatorBuilder::new(operator_name, scope.clone());
let hashed_id = sink_id.hashed();
let active_worker = usize::cast_from(hashed_id) % scope.peers() == scope.index();
// This operator wants to completely control the frontier on it's output
// because it's used to track the latest persist frontier. We update this
// when we either append to persist successfully or when we learn about a
// new current frontier because a `compare_and_append` failed. That's why
// input capability tracking is not connected to the output.
let mut descriptions_input =
append_op.new_disconnected_input(batch_descriptions, Exchange::new(move |_| hashed_id));
let mut batches_input =
append_op.new_disconnected_input(batches, Exchange::new(move |_| hashed_id));
// This operator accepts the batch descriptions and tokens that represent
// written batches. Written batches get appended to persist when we learn
// from our input frontiers that we have seen all batches for a given batch
// description.
let shutdown_button = append_op.build(move |_capabilities| async move {
if !active_worker {
return;
}
// Contains descriptions of batches for which we know that we can
// write data. We got these from the "centralized" operator that
// determines batch descriptions for all writers.
//
// `Antichain` does not implement `Ord`, so we cannot use a `BTreeSet`. We need to search
// through the set, so we cannot use the `mz_ore` wrapper either.
#[allow(clippy::disallowed_types)]
let mut in_flight_descriptions = std::collections::HashSet::<
(Antichain<Timestamp>, Antichain<Timestamp>)
>::new();
// We use iteration only for weeding out batches that no longer have a
// chance of being applied. Otherwise we only use insertion and
// deletion. We don't use iteration order for determining what batches
// get written in which order.
#[allow(clippy::disallowed_types)]
let mut in_flight_batches = std::collections::HashMap::<
(Antichain<Timestamp>, Antichain<Timestamp>),
Vec<Batch<SourceData, (), Timestamp, Diff>>,
>::new();
// TODO(aljoscha): We need to figure out what to do with error results from these calls.
let persist_client = persist_clients
.open(persist_location)
.await
.expect("could not open persist client");
let mut write = persist_client
.open_writer::<SourceData, (), Timestamp, Diff>(
shard_id,
Arc::new(target_relation_desc),
Arc::new(UnitSchema),
Diagnostics {
shard_name: sink_id.to_string(),
handle_purpose: format!("persist_sink::append_batches {}", sink_id),
},
)
.await
.expect("could not open persist shard");
// The current input frontiers.
let mut batch_description_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
let mut batches_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
loop {
tokio::select! {
Some(event) = descriptions_input.next() => {
match event {
Event::Data(_cap, data) => {
// Ingest new batch descriptions.
for batch_description in data {
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
append_batches: sink {}, \
new description: {:?}, \
batch_description_frontier: {:?}",
sink_id,
batch_description,
batch_description_frontier
);
}
let is_new = in_flight_descriptions.insert(batch_description.clone());
assert!(
is_new,
"append_batches: sink {} got more than one batch \
for a given description in-flight: {:?}",
sink_id, in_flight_batches
);
}
continue;
}
Event::Progress(frontier) => {
batch_description_frontier = frontier;
}
}
}
Some(event) = batches_input.next() => {
match event {
Event::Data(_cap, data) => {
// Ingest new written batches
for batch in data {
let batch = write.batch_from_transmittable_batch(batch);
let batch_description = (batch.lower().clone(), batch.upper().clone());
let batches = in_flight_batches
.entry(batch_description)
.or_default();
batches.push(batch);
}
continue;
}
Event::Progress(frontier) => {
batches_frontier = frontier;
}
}
}
_it_changed = read_only.changed() => {
// We might have to append some batches that we stashed
// while in read-only mode.
}
else => {
// All inputs are exhausted, so we can shut down.
return;
}
};
// Only retain descriptions and batches that still have a chance of
// being applied.
let persist_upper = write.shared_upper();
in_flight_descriptions.retain(|(lower, _upper)| {
PartialOrder::less_equal(&persist_upper, lower)
});
for ((lower, _upper), batches) in in_flight_batches.iter_mut() {
if PartialOrder::less_equal(&persist_upper, lower) {
continue;
}
// We're not keeping this batch. Be nice and delete any data
// that has been written.
for batch in batches.drain(..) {
batch.delete().await;
}
}
// It's annoying that we're first iterating and doing the retain,
// but we can't do the batch deletion inside retain because we need
// async.
in_flight_batches.retain(|(lower, _upper), batches| {
if PartialOrder::less_equal(&persist_upper, lower) {
return true;
}
// We're not keeping this batch, make sure that the above loop
// cleared and deleted all the batches.
assert!(batches.is_empty());
false
});
if read_only.borrow().clone() {
// We are not allowed to do writes, so go back to the beginning
// of the loop.
//
// We are bailing here and not earlier to make sure that we weed
// out batches that we can never apply and that we keep reading
// our inputs.
continue;
}
// Peel off any batches that are not beyond the frontier
// anymore.
//
// It is correct to consider batches that are not beyond the
// `batches_frontier` because it is held back by the writer
// operator as long as a) the `batch_description_frontier` did
// not advance and b) as long as the `desired_frontier` has not
// advanced to the `upper` of a given batch description.
let mut done_batches = in_flight_descriptions
.iter()
.filter(|(lower, _upper)| !PartialOrder::less_equal(&batches_frontier, lower))
.cloned()
.collect::<Vec<_>>();
trace!(
"persist_sink {sink_id}/{shard_id}: \
append_batches: in_flight: {:?}, \
done: {:?}, \
batch_frontier: {:?}, \
batch_description_frontier: {:?}",
in_flight_descriptions,
done_batches,
batches_frontier,
batch_description_frontier
);
// Append batches in order, to ensure that their `lower` and
// `upper` lign up.
done_batches.sort_by(|a, b| {
if PartialOrder::less_than(a, b) {
Ordering::Less
} else if PartialOrder::less_than(b, a) {
Ordering::Greater
} else {
Ordering::Equal
}
});
for done_batch_metadata in done_batches.into_iter() {
in_flight_descriptions.remove(&done_batch_metadata);
let mut batches = in_flight_batches
.remove(&done_batch_metadata)
.unwrap_or_default();
trace!(
"persist_sink {sink_id}/{shard_id}: \
done batch: {:?}, {:?}",
done_batch_metadata,
batches
);
let (batch_lower, batch_upper) = done_batch_metadata;
let mut to_append = batches.iter_mut().collect::<Vec<_>>();
let result = write
.compare_and_append_batch(
&mut to_append[..],
batch_lower.clone(),
batch_upper.clone(),
)
.await
.expect("Invalid usage");
if sink_id.is_user() {
trace!(
"persist_sink {sink_id}/{shard_id}: \
append result for batch ({:?} -> {:?}): {:?}",
batch_lower,
batch_upper,
result
);
}
match result {
Ok(()) => {
// Nothing to do!
}
Err(mismatch) => {
// Clean up in case we didn't manage to append the
// batches to persist.
for batch in batches {
batch.delete().await;
}
trace!(
"persist_sink({}): invalid upper! \
Tried to append batch ({:?} -> {:?}) but upper \
is {:?}. This is not a problem, it just means \
someone else was faster than us. We will try \
again with a new batch description.",
sink_id,
batch_lower,
batch_upper,
mismatch.current,
);
}
}
}
}
});
let token = Rc::new(shutdown_button.press_on_drop());
token
}