parquet/util/bit_pack.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Vectorised bit-packing utilities
/// Macro that generates an unpack function taking the number of bits as a const generic
macro_rules! unpack_impl {
($t:ty, $bytes:literal, $bits:tt) => {
pub fn unpack<const NUM_BITS: usize>(input: &[u8], output: &mut [$t; $bits]) {
if NUM_BITS == 0 {
for out in output {
*out = 0;
}
return;
}
assert!(NUM_BITS <= $bytes * 8);
let mask = match NUM_BITS {
$bits => <$t>::MAX,
_ => ((1 << NUM_BITS) - 1),
};
assert!(input.len() >= NUM_BITS * $bytes);
let r = |output_idx: usize| {
<$t>::from_le_bytes(
input[output_idx * $bytes..output_idx * $bytes + $bytes]
.try_into()
.unwrap(),
)
};
seq_macro::seq!(i in 0..$bits {
let start_bit = i * NUM_BITS;
let end_bit = start_bit + NUM_BITS;
let start_bit_offset = start_bit % $bits;
let end_bit_offset = end_bit % $bits;
let start_byte = start_bit / $bits;
let end_byte = end_bit / $bits;
if start_byte != end_byte && end_bit_offset != 0 {
let val = r(start_byte);
let a = val >> start_bit_offset;
let val = r(end_byte);
let b = val << (NUM_BITS - end_bit_offset);
output[i] = a | (b & mask);
} else {
let val = r(start_byte);
output[i] = (val >> start_bit_offset) & mask;
}
});
}
};
}
/// Macro that generates unpack functions that accept num_bits as a parameter
macro_rules! unpack {
($name:ident, $t:ty, $bytes:literal, $bits:tt) => {
mod $name {
unpack_impl!($t, $bytes, $bits);
}
/// Unpack packed `input` into `output` with a bit width of `num_bits`
pub fn $name(input: &[u8], output: &mut [$t; $bits], num_bits: usize) {
// This will get optimised into a jump table
seq_macro::seq!(i in 0..=$bits {
if i == num_bits {
return $name::unpack::<i>(input, output);
}
});
unreachable!("invalid num_bits {}", num_bits);
}
};
}
unpack!(unpack8, u8, 1, 8);
unpack!(unpack16, u16, 2, 16);
unpack!(unpack32, u32, 4, 32);
unpack!(unpack64, u64, 8, 64);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic() {
let input = [0xFF; 4096];
for i in 0..=8 {
let mut output = [0; 8];
unpack8(&input, &mut output, i);
for (idx, out) in output.iter().enumerate() {
assert_eq!(out.trailing_ones() as usize, i, "out[{idx}] = {out}");
}
}
for i in 0..=16 {
let mut output = [0; 16];
unpack16(&input, &mut output, i);
for (idx, out) in output.iter().enumerate() {
assert_eq!(out.trailing_ones() as usize, i, "out[{idx}] = {out}");
}
}
for i in 0..=32 {
let mut output = [0; 32];
unpack32(&input, &mut output, i);
for (idx, out) in output.iter().enumerate() {
assert_eq!(out.trailing_ones() as usize, i, "out[{idx}] = {out}");
}
}
for i in 0..=64 {
let mut output = [0; 64];
unpack64(&input, &mut output, i);
for (idx, out) in output.iter().enumerate() {
assert_eq!(out.trailing_ones() as usize, i, "out[{idx}] = {out}");
}
}
}
}