1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Optimizer implementation for `CREATE INDEX` statements.
//!
//! Note that, in contrast to other optimization pipelines, timestamp selection is not part of
//! index optimization. Instead users are expected to separately set the as-of on the optimized
//! `DataflowDescription` received from `GlobalLirPlan::unapply`. Reasons for choosing to exclude
//! timestamp selection from the index optimization pipeline are:
//!
//! (a) Indexes don't support non-empty `until` frontiers, so they don't provide opportunity for
//! optimizations based on the selected timestamp.
//! (b) We want to generate dataflow plans early during environment bootstrapping, before we have
//! access to all information required for timestamp selection.
//!
//! None of this is set in stone though. If we find an opportunity for optimizing indexes based on
//! their timestamps, we'll want to make timestamp selection part of the index optimization again
//! and find a different approach to bootstrapping.
//!
//! See also MaterializeInc/materialize#22940.
use std::sync::Arc;
use std::time::{Duration, Instant};
use mz_compute_types::dataflows::IndexDesc;
use mz_compute_types::plan::Plan;
use mz_repr::explain::trace_plan;
use mz_repr::GlobalId;
use mz_sql::names::QualifiedItemName;
use mz_sql::optimizer_metrics::OptimizerMetrics;
use mz_transform::dataflow::DataflowMetainfo;
use mz_transform::normalize_lets::normalize_lets;
use mz_transform::notice::{IndexAlreadyExists, IndexKeyEmpty};
use mz_transform::typecheck::{empty_context, SharedContext as TypecheckContext};
use mz_transform::TransformCtx;
use crate::optimize::dataflows::{
prep_relation_expr, prep_scalar_expr, ComputeInstanceSnapshot, DataflowBuilder, ExprPrepStyle,
};
use crate::optimize::{
trace_plan, LirDataflowDescription, MirDataflowDescription, Optimize, OptimizeMode,
OptimizerCatalog, OptimizerConfig, OptimizerError,
};
pub struct Optimizer {
/// A typechecking context to use throughout the optimizer pipeline.
typecheck_ctx: TypecheckContext,
/// A snapshot of the catalog state.
catalog: Arc<dyn OptimizerCatalog>,
/// A snapshot of the cluster that will run the dataflows.
compute_instance: ComputeInstanceSnapshot,
/// A durable GlobalId to be used with the exported index arrangement.
exported_index_id: GlobalId,
/// Optimizer config.
config: OptimizerConfig,
/// Optimizer metrics.
metrics: OptimizerMetrics,
/// The time spent performing optimization so far.
duration: Duration,
}
impl Optimizer {
pub fn new(
catalog: Arc<dyn OptimizerCatalog>,
compute_instance: ComputeInstanceSnapshot,
exported_index_id: GlobalId,
config: OptimizerConfig,
metrics: OptimizerMetrics,
) -> Self {
Self {
typecheck_ctx: empty_context(),
catalog,
compute_instance,
exported_index_id,
config,
metrics,
duration: Default::default(),
}
}
}
/// A wrapper of index parts needed to start the optimization process.
pub struct Index {
name: QualifiedItemName,
on: GlobalId,
keys: Vec<mz_expr::MirScalarExpr>,
}
impl Index {
/// Construct a new [`Index`]. Arguments are recorded as-is.
pub fn new(name: QualifiedItemName, on: GlobalId, keys: Vec<mz_expr::MirScalarExpr>) -> Self {
Self { name, on, keys }
}
}
/// The (sealed intermediate) result after:
///
/// 1. embedding an [`Index`] into a [`MirDataflowDescription`],
/// 2. transitively inlining referenced views, and
/// 3. jointly optimizing the `MIR` plans in the [`MirDataflowDescription`].
#[derive(Clone, Debug)]
pub struct GlobalMirPlan {
df_desc: MirDataflowDescription,
df_meta: DataflowMetainfo,
}
impl GlobalMirPlan {
pub fn df_desc(&self) -> &MirDataflowDescription {
&self.df_desc
}
}
/// The (final) result after MIR ⇒ LIR lowering and optimizing the resulting
/// `DataflowDescription` with `LIR` plans.
#[derive(Clone, Debug)]
pub struct GlobalLirPlan {
df_desc: LirDataflowDescription,
df_meta: DataflowMetainfo,
}
impl GlobalLirPlan {
pub fn df_desc(&self) -> &LirDataflowDescription {
&self.df_desc
}
pub fn df_meta(&self) -> &DataflowMetainfo {
&self.df_meta
}
}
impl Optimize<Index> for Optimizer {
type To = GlobalMirPlan;
fn optimize(&mut self, index: Index) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
let on_entry = self.catalog.get_entry(&index.on);
let full_name = self
.catalog
.resolve_full_name(&index.name, on_entry.conn_id());
let on_desc = on_entry
.desc(&full_name)
.expect("can only create indexes on items with a valid description");
let mut df_builder = {
let compute = self.compute_instance.clone();
DataflowBuilder::new(&*self.catalog, compute).with_config(&self.config)
};
let mut df_desc = MirDataflowDescription::new(full_name.to_string());
df_builder.import_into_dataflow(&index.on, &mut df_desc, &self.config.features)?;
df_builder.maybe_reoptimize_imported_views(&mut df_desc, &self.config)?;
let index_desc = IndexDesc {
on_id: index.on,
key: index.keys.clone(),
};
df_desc.export_index(self.exported_index_id, index_desc, on_desc.typ().clone());
// Prepare expressions in the assembled dataflow.
let style = ExprPrepStyle::Index;
df_desc.visit_children(
|r| prep_relation_expr(r, style),
|s| prep_scalar_expr(s, style),
)?;
// Construct TransformCtx for global optimization.
let mut df_meta = DataflowMetainfo::default();
let mut transform_ctx = TransformCtx::global(
&df_builder,
&mz_transform::EmptyStatisticsOracle, // TODO: wire proper stats
&self.config.features,
&self.typecheck_ctx,
&mut df_meta,
);
// Run global optimization.
mz_transform::optimize_dataflow(&mut df_desc, &mut transform_ctx, false)?;
if self.config.mode == OptimizeMode::Explain {
// Collect the list of indexes used by the dataflow at this point.
trace_plan!(at: "global", &df_meta.used_indexes(&df_desc));
}
// Emit a notice if we are trying to create an empty index.
if index.keys.is_empty() {
df_meta.push_optimizer_notice_dedup(IndexKeyEmpty);
}
// Emit a notice for each available index identical to the one we are
// currently optimizing.
for (index_id, idx) in df_builder
.indexes_on(index.on)
.filter(|(_id, idx)| idx.keys.as_ref() == &index.keys)
{
df_meta.push_optimizer_notice_dedup(IndexAlreadyExists {
index_id,
index_key: idx.keys.to_vec(),
index_on_id: idx.on,
exported_index_id: self.exported_index_id,
});
}
self.duration += time.elapsed();
// Return the (sealed) plan at the end of this optimization step.
Ok(GlobalMirPlan { df_desc, df_meta })
}
}
impl Optimize<GlobalMirPlan> for Optimizer {
type To = GlobalLirPlan;
fn optimize(&mut self, plan: GlobalMirPlan) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
let GlobalMirPlan {
mut df_desc,
df_meta,
} = plan;
// Ensure all expressions are normalized before finalizing.
for build in df_desc.objects_to_build.iter_mut() {
normalize_lets(&mut build.plan.0, &self.config.features)?
}
// Finalize the dataflow. This includes:
// - MIR ⇒ LIR lowering
// - LIR ⇒ LIR transforms
let df_desc = Plan::finalize_dataflow(df_desc, &self.config.features)?;
// Trace the pipeline output under `optimize`.
trace_plan(&df_desc);
self.duration += time.elapsed();
self.metrics
.observe_e2e_optimization_time("index", self.duration);
// Return the plan at the end of this `optimize` step.
Ok(GlobalLirPlan { df_desc, df_meta })
}
}
impl GlobalLirPlan {
/// Unwraps the parts of the final result of the optimization pipeline.
pub fn unapply(self) -> (LirDataflowDescription, DataflowMetainfo) {
(self.df_desc, self.df_meta)
}
}