triomphe/
thin_arc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
use core::ffi::c_void;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::iter::{ExactSizeIterator, Iterator};
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::ops::Deref;
use core::ptr;
use core::usize;

use super::{Arc, ArcInner, HeaderSliceWithLength, HeaderWithLength};

/// A "thin" `Arc` containing dynamically sized data
///
/// This is functionally equivalent to `Arc<(H, [T])>`
///
/// When you create an `Arc` containing a dynamically sized type
/// like `HeaderSlice<H, [T]>`, the `Arc` is represented on the stack
/// as a "fat pointer", where the length of the slice is stored
/// alongside the `Arc`'s pointer. In some situations you may wish to
/// have a thin pointer instead, perhaps for FFI compatibility
/// or space efficiency.
///
/// Note that we use `[T; 0]` in order to have the right alignment for `T`.
///
/// `ThinArc` solves this by storing the length in the allocation itself,
/// via `HeaderSliceWithLength`.
#[repr(transparent)]
pub struct ThinArc<H, T> {
    ptr: ptr::NonNull<ArcInner<HeaderSliceWithLength<H, [T; 0]>>>,
    phantom: PhantomData<(H, T)>,
}

unsafe impl<H: Sync + Send, T: Sync + Send> Send for ThinArc<H, T> {}
unsafe impl<H: Sync + Send, T: Sync + Send> Sync for ThinArc<H, T> {}

// Synthesize a fat pointer from a thin pointer.
//
// See the comment around the analogous operation in from_header_and_iter.
fn thin_to_thick<H, T>(
    thin: *mut ArcInner<HeaderSliceWithLength<H, [T; 0]>>,
) -> *mut ArcInner<HeaderSliceWithLength<H, [T]>> {
    let len = unsafe { (*thin).data.header.length };
    let fake_slice = ptr::slice_from_raw_parts_mut(thin as *mut T, len);

    fake_slice as *mut ArcInner<HeaderSliceWithLength<H, [T]>>
}

impl<H, T> ThinArc<H, T> {
    /// Temporarily converts |self| into a bonafide Arc and exposes it to the
    /// provided callback. The refcount is not modified.
    #[inline]
    pub fn with_arc<F, U>(&self, f: F) -> U
    where
        F: FnOnce(&Arc<HeaderSliceWithLength<H, [T]>>) -> U,
    {
        // Synthesize transient Arc, which never touches the refcount of the ArcInner.
        let transient = unsafe {
            ManuallyDrop::new(Arc {
                p: ptr::NonNull::new_unchecked(thin_to_thick(self.ptr.as_ptr())),
                phantom: PhantomData,
            })
        };

        // Expose the transient Arc to the callback, which may clone it if it wants
        // and forward the result to the user
        f(&transient)
    }

    /// Creates a `ThinArc` for a HeaderSlice using the given header struct and
    /// iterator to generate the slice.
    pub fn from_header_and_iter<I>(header: H, items: I) -> Self
    where
        I: Iterator<Item = T> + ExactSizeIterator,
    {
        let header = HeaderWithLength::new(header, items.len());
        Arc::into_thin(Arc::from_header_and_iter(header, items))
    }

    /// Creates a `ThinArc` for a HeaderSlice using the given header struct and
    /// a slice to copy.
    pub fn from_header_and_slice(header: H, items: &[T]) -> Self
    where
        T: Copy,
    {
        let header = HeaderWithLength::new(header, items.len());
        Arc::into_thin(Arc::from_header_and_slice(header, items))
    }

    /// Returns the address on the heap of the ThinArc itself -- not the T
    /// within it -- for memory reporting.
    #[inline]
    pub fn ptr(&self) -> *const c_void {
        self.ptr.as_ptr() as *const ArcInner<T> as *const c_void
    }

    /// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
    /// reporting.
    #[inline]
    pub fn heap_ptr(&self) -> *const c_void {
        self.ptr()
    }

    /// # Safety
    ///
    /// Constructs an ThinArc from a raw pointer.
    ///
    /// The raw pointer must have been previously returned by a call to
    /// ThinArc::into_raw.
    ///
    /// The user of from_raw has to make sure a specific value of T is only dropped once.
    ///
    /// This function is unsafe because improper use may lead to memory unsafety,
    /// even if the returned ThinArc is never accessed.
    #[inline]
    pub unsafe fn from_raw(ptr: *const c_void) -> Self {
        Self {
            ptr: ptr::NonNull::new_unchecked(ptr as *mut c_void).cast(),
            phantom: PhantomData,
        }
    }

    /// Consume ThinArc and returned the wrapped pointer.
    #[inline]
    pub fn into_raw(self) -> *const c_void {
        let this = ManuallyDrop::new(self);
        this.ptr.cast().as_ptr()
    }

    /// Provides a raw pointer to the data.
    /// The counts are not affected in any way and the ThinArc is not consumed.
    /// The pointer is valid for as long as there are strong counts in the ThinArc.
    #[inline]
    pub fn as_ptr(&self) -> *const c_void {
        self.ptr()
    }
}

impl<H, T> Deref for ThinArc<H, T> {
    type Target = HeaderSliceWithLength<H, [T]>;

    #[inline]
    fn deref(&self) -> &Self::Target {
        unsafe { &(*thin_to_thick(self.ptr.as_ptr())).data }
    }
}

impl<H, T> Clone for ThinArc<H, T> {
    #[inline]
    fn clone(&self) -> Self {
        ThinArc::with_arc(self, |a| Arc::into_thin(a.clone()))
    }
}

impl<H, T> Drop for ThinArc<H, T> {
    #[inline]
    fn drop(&mut self) {
        let _ = Arc::from_thin(ThinArc {
            ptr: self.ptr,
            phantom: PhantomData,
        });
    }
}

impl<H, T> Arc<HeaderSliceWithLength<H, [T]>> {
    /// Converts an `Arc` into a `ThinArc`. This consumes the `Arc`, so the refcount
    /// is not modified.
    #[inline]
    pub fn into_thin(a: Self) -> ThinArc<H, T> {
        let a = ManuallyDrop::new(a);
        assert_eq!(
            a.header.length,
            a.slice.len(),
            "Length needs to be correct for ThinArc to work"
        );
        let fat_ptr: *mut ArcInner<HeaderSliceWithLength<H, [T]>> = a.ptr();
        let thin_ptr = fat_ptr as *mut [usize] as *mut usize;
        ThinArc {
            ptr: unsafe {
                ptr::NonNull::new_unchecked(
                    thin_ptr as *mut ArcInner<HeaderSliceWithLength<H, [T; 0]>>,
                )
            },
            phantom: PhantomData,
        }
    }

    /// Converts a `ThinArc` into an `Arc`. This consumes the `ThinArc`, so the refcount
    /// is not modified.
    #[inline]
    pub fn from_thin(a: ThinArc<H, T>) -> Self {
        let a = ManuallyDrop::new(a);
        let ptr = thin_to_thick(a.ptr.as_ptr());
        unsafe {
            Arc {
                p: ptr::NonNull::new_unchecked(ptr),
                phantom: PhantomData,
            }
        }
    }
}

impl<H: PartialEq, T: PartialEq> PartialEq for ThinArc<H, T> {
    #[inline]
    fn eq(&self, other: &ThinArc<H, T>) -> bool {
        ThinArc::with_arc(self, |a| ThinArc::with_arc(other, |b| *a == *b))
    }
}

impl<H: Eq, T: Eq> Eq for ThinArc<H, T> {}

impl<H: Hash, T: Hash> Hash for ThinArc<H, T> {
    fn hash<HSR: Hasher>(&self, state: &mut HSR) {
        ThinArc::with_arc(self, |a| a.hash(state))
    }
}

impl<H: fmt::Debug, T: fmt::Debug> fmt::Debug for ThinArc<H, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<H, T> fmt::Pointer for ThinArc<H, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self.ptr(), f)
    }
}

#[cfg(test)]
mod tests {
    use crate::{Arc, HeaderWithLength, ThinArc};
    use alloc::vec;
    use core::clone::Clone;
    use core::ops::Drop;
    use core::sync::atomic;
    use core::sync::atomic::Ordering::{Acquire, SeqCst};

    #[derive(PartialEq)]
    struct Canary(*mut atomic::AtomicUsize);

    impl Drop for Canary {
        fn drop(&mut self) {
            unsafe {
                (*self.0).fetch_add(1, SeqCst);
            }
        }
    }

    #[test]
    fn empty_thin() {
        let header = HeaderWithLength::new(100u32, 0);
        let x = Arc::from_header_and_iter(header, core::iter::empty::<i32>());
        let y = Arc::into_thin(x.clone());
        assert_eq!(y.header.header, 100);
        assert!(y.slice.is_empty());
        assert_eq!(x.header.header, 100);
        assert!(x.slice.is_empty());
    }

    #[test]
    fn thin_assert_padding() {
        #[derive(Clone, Default)]
        #[repr(C)]
        struct Padded {
            i: u16,
        }

        // The header will have more alignment than `Padded`
        let header = HeaderWithLength::new(0i32, 2);
        let items = vec![Padded { i: 0xdead }, Padded { i: 0xbeef }];
        let a = ThinArc::from_header_and_iter(header, items.into_iter());
        assert_eq!(a.slice.len(), 2);
        assert_eq!(a.slice[0].i, 0xdead);
        assert_eq!(a.slice[1].i, 0xbeef);
    }

    #[test]
    #[allow(clippy::redundant_clone, clippy::eq_op)]
    fn slices_and_thin() {
        let mut canary = atomic::AtomicUsize::new(0);
        let c = Canary(&mut canary as *mut atomic::AtomicUsize);
        let v = vec![5, 6];
        let header = HeaderWithLength::new(c, v.len());
        {
            let x = Arc::into_thin(Arc::from_header_and_slice(header, &v));
            let y = ThinArc::with_arc(&x, |q| q.clone());
            let _ = y.clone();
            let _ = x == x;
            Arc::from_thin(x.clone());
        }
        assert_eq!(canary.load(Acquire), 1);
    }

    #[test]
    #[allow(clippy::redundant_clone, clippy::eq_op)]
    fn iter_and_thin() {
        let mut canary = atomic::AtomicUsize::new(0);
        let c = Canary(&mut canary as *mut atomic::AtomicUsize);
        let v = vec![5, 6];
        let header = HeaderWithLength::new(c, v.len());
        {
            let x = Arc::into_thin(Arc::from_header_and_iter(header, v.into_iter()));
            let y = ThinArc::with_arc(&x, |q| q.clone());
            let _ = y.clone();
            let _ = x == x;
            Arc::from_thin(x.clone());
        }
        assert_eq!(canary.load(Acquire), 1);
    }

    #[test]
    fn into_raw_and_from_raw() {
        let mut canary = atomic::AtomicUsize::new(0);
        let c = Canary(&mut canary as *mut atomic::AtomicUsize);
        let v = vec![5, 6];
        let header = HeaderWithLength::new(c, v.len());
        {
            type ThinArcCanary = ThinArc<Canary, u32>;
            let x: ThinArcCanary = Arc::into_thin(Arc::from_header_and_iter(header, v.into_iter()));
            let ptr = x.as_ptr();

            assert_eq!(x.into_raw(), ptr);

            let _x = unsafe { ThinArcCanary::from_raw(ptr) };
        }
        assert_eq!(canary.load(Acquire), 1);
    }
}