1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
//! The root of each single-threaded worker.

use std::rc::Rc;
use std::cell::{RefCell, RefMut};
use std::any::Any;
use std::str::FromStr;
use std::time::{Instant, Duration};
use std::collections::HashMap;
use std::collections::hash_map::Entry;
use std::sync::Arc;

use crate::communication::{Allocate, Exchangeable, Push, Pull};
use crate::communication::allocator::thread::{ThreadPusher, ThreadPuller};
use crate::scheduling::{Schedule, Scheduler, Activations};
use crate::progress::timestamp::{Refines};
use crate::progress::SubgraphBuilder;
use crate::progress::operate::Operate;
use crate::dataflow::scopes::Child;
use crate::logging::TimelyLogger;

/// Different ways in which timely's progress tracking can work.
///
/// These options drive some buffering and accumulation that timely
/// can do to try and trade volume of progress traffic against latency.
/// By accumulating updates longer, a smaller total volume of messages
/// are sent.
///
/// The `ProgressMode::Demand` variant is the most robust, and least
/// likely to lead to catastrophic performance. The `Eager` variant
/// is useful for getting the smallest latencies on systems with few
/// workers, but does risk saturating the system with progress messages
/// and should be used with care, or not at all.
///
/// If you are not certain which option to use, prefer `Demand`, and
/// perhaps monitor the progress messages through timely's logging
/// infrastructure to see if their volume is surprisingly high.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum ProgressMode {
    /// Eagerly transmit all progress updates produced by a worker.
    ///
    /// Progress messages are transmitted without consideration for the
    /// possibility that they may unblock other workers. This can result
    /// in a substantial volume of messages that do not result in a
    /// change to the lower bound of outstanding work.
    Eager,
    /// Delay transmission of progress updates until any could advance
    /// the global frontier of timestamps.
    ///
    /// As timely executes, the progress messages inform each worker of
    /// the outstanding work remaining in the system. As workers work,
    /// they produce changes to this outstanding work. This option
    /// delays the communication of those changes until they might
    /// possibly cause a change in the lower bound of all outstanding
    /// work.
    ///
    /// The most common case this remedies is when one worker transmits
    /// messages to other workers, that worker holds a capability for the
    /// operator and timestamp. Other workers will receive messages, and
    /// with this option will not immediately acknowledge receiving the
    /// messages, because the held capability is strictly prior to what
    /// the messages can affect. Once the capability is released, the
    /// progress messages are unblocked and transmitted, in accumulated
    /// form.
    Demand,
}

impl Default for ProgressMode {
    fn default() -> ProgressMode {
        ProgressMode::Demand
    }
}

impl FromStr for ProgressMode {
    type Err = String;

    fn from_str(s: &str) -> Result<ProgressMode, String> {
        match s {
            "eager" => Ok(ProgressMode::Eager),
            "demand" => Ok(ProgressMode::Demand),
            _ => Err(format!("unknown progress mode: {}", s)),
        }
    }
}

/// Worker configuration.
#[derive(Debug, Default, Clone)]
pub struct Config {
    /// The progress mode to use.
    pub(crate) progress_mode: ProgressMode,
    /// A map from parameter name to typed parameter values.
    registry: HashMap<String, Arc<dyn Any + Send + Sync>>,
}

impl Config {
    /// Installs options into a [getopts_dep::Options] struct that correspond
    /// to the parameters in the configuration.
    ///
    /// It is the caller's responsibility to ensure that the installed options
    /// do not conflict with any other options that may exist in `opts`, or
    /// that may be installed into `opts` in the future.
    ///
    /// This method is only available if the `getopts` feature is enabled, which
    /// it is by default.
    #[cfg(feature = "getopts")]
    pub fn install_options(opts: &mut getopts_dep::Options) {
        opts.optopt("", "progress-mode", "progress tracking mode (eager or demand)", "MODE");
    }

    /// Instantiates a configuration based upon the parsed options in `matches`.
    ///
    /// The `matches` object must have been constructed from a
    /// [getopts_dep::Options] which contained at least the options installed by
    /// [Self::install_options].
    ///
    /// This method is only available if the `getopts` feature is enabled, which
    /// it is by default.
    #[cfg(feature = "getopts")]
    pub fn from_matches(matches: &getopts_dep::Matches) -> Result<Config, String> {
        let progress_mode = matches
            .opt_get_default("progress-mode", ProgressMode::Eager)?;
        Ok(Config::default().progress_mode(progress_mode))
    }

    /// Sets the progress mode to `progress_mode`.
    pub fn progress_mode(mut self, progress_mode: ProgressMode) -> Self {
        self.progress_mode = progress_mode;
        self
    }

    /// Sets a typed configuration parameter for the given `key`.
    ///
    /// It is recommended to install a single configuration struct using a key
    /// that uniquely identifies your project, to avoid clashes. For example,
    /// differential dataflow registers a configuration struct under the key
    /// "differential".
    ///
    /// # Examples
    /// ```rust
    /// let mut config = timely::Config::process(3);
    /// config.worker.set("example".to_string(), 7u64);
    /// timely::execute(config, |worker| {
    ///    use crate::timely::worker::AsWorker;
    ///    assert_eq!(worker.config().get::<u64>("example"), Some(&7));
    /// }).unwrap();
    /// ```
    pub fn set<T>(&mut self, key: String, val: T) -> &mut Self
    where
        T: Send + Sync + 'static,
    {
        self.registry.insert(key, Arc::new(val));
        self
    }

    /// Gets the value for configured parameter `key`.
    ///
    /// Returns `None` if `key` has not previously been set with
    /// [Config::set], or if the specified `T` does not match the `T`
    /// from the call to `set`.
    ///
    /// # Examples
    /// ```rust
    /// let mut config = timely::Config::process(3);
    /// config.worker.set("example".to_string(), 7u64);
    /// timely::execute(config, |worker| {
    ///    use crate::timely::worker::AsWorker;
    ///    assert_eq!(worker.config().get::<u64>("example"), Some(&7));
    /// }).unwrap();
    /// ```
    pub fn get<T: 'static>(&self, key: &str) -> Option<&T> {
        self.registry.get(key).and_then(|val| val.downcast_ref())
    }
}

/// Methods provided by the root Worker.
///
/// These methods are often proxied by child scopes, and this trait provides access.
pub trait AsWorker : Scheduler {
    /// Returns the worker configuration parameters.
    fn config(&self) -> &Config;
    /// Index of the worker among its peers.
    fn index(&self) -> usize;
    /// Number of peer workers.
    fn peers(&self) -> usize;
    /// Allocates a new channel from a supplied identifier and address.
    ///
    /// The identifier is used to identify the underlying channel and route
    /// its data. It should be distinct from other identifiers passed used
    /// for allocation, but can otherwise be arbitrary.
    ///
    /// The address should specify a path to an operator that should be
    /// scheduled in response to the receipt of records on the channel.
    /// Most commonly, this would be the address of the *target* of the
    /// channel.
    fn allocate<T: Exchangeable>(&mut self, identifier: usize, address: Rc<[usize]>) -> (Vec<Box<dyn Push<T>>>, Box<dyn Pull<T>>);
    /// Constructs a pipeline channel from the worker to itself.
    ///
    /// By default this method uses the native channel allocation mechanism, but the expectation is
    /// that this behavior will be overridden to be more efficient.
    fn pipeline<T: 'static>(&mut self, identifier: usize, address: Rc<[usize]>) -> (ThreadPusher<T>, ThreadPuller<T>);

    /// Allocates a new worker-unique identifier.
    fn new_identifier(&mut self) -> usize;
    /// The next worker-unique identifier to be allocated.
    fn peek_identifier(&self) -> usize;
    /// Provides access to named logging streams.
    fn log_register(&self) -> ::std::cell::RefMut<crate::logging_core::Registry<crate::logging::WorkerIdentifier>>;
    /// Provides access to the timely logging stream.
    fn logging(&self) -> Option<crate::logging::TimelyLogger> { self.log_register().get("timely") }
}

/// A `Worker` is the entry point to a timely dataflow computation. It wraps a `Allocate`,
/// and has a list of dataflows that it manages.
pub struct Worker<A: Allocate> {
    config: Config,
    timer: Instant,
    paths: Rc<RefCell<HashMap<usize, Rc<[usize]>>>>,
    allocator: Rc<RefCell<A>>,
    identifiers: Rc<RefCell<usize>>,
    // dataflows: Rc<RefCell<Vec<Wrapper>>>,
    dataflows: Rc<RefCell<HashMap<usize, Wrapper>>>,
    dataflow_counter: Rc<RefCell<usize>>,
    logging: Rc<RefCell<crate::logging_core::Registry<crate::logging::WorkerIdentifier>>>,

    activations: Rc<RefCell<Activations>>,
    active_dataflows: Vec<usize>,

    // Temporary storage for channel identifiers during dataflow construction.
    // These are then associated with a dataflow once constructed.
    temp_channel_ids: Rc<RefCell<Vec<usize>>>,
}

impl<A: Allocate> AsWorker for Worker<A> {
    fn config(&self) -> &Config { &self.config }
    fn index(&self) -> usize { self.allocator.borrow().index() }
    fn peers(&self) -> usize { self.allocator.borrow().peers() }
    fn allocate<D: Exchangeable>(&mut self, identifier: usize, address: Rc<[usize]>) -> (Vec<Box<dyn Push<D>>>, Box<dyn Pull<D>>) {
        if address.is_empty() { panic!("Unacceptable address: Length zero"); }
        let mut paths = self.paths.borrow_mut();
        paths.insert(identifier, address);
        self.temp_channel_ids.borrow_mut().push(identifier);
        self.allocator.borrow_mut().allocate(identifier)
    }
    fn pipeline<T: 'static>(&mut self, identifier: usize, address: Rc<[usize]>) -> (ThreadPusher<T>, ThreadPuller<T>) {
        if address.is_empty() { panic!("Unacceptable address: Length zero"); }
        let mut paths = self.paths.borrow_mut();
        paths.insert(identifier, address);
        self.temp_channel_ids.borrow_mut().push(identifier);
        self.allocator.borrow_mut().pipeline(identifier)
    }

    fn new_identifier(&mut self) -> usize { self.new_identifier() }
    fn peek_identifier(&self) -> usize { self.peek_identifier() }
    fn log_register(&self) -> RefMut<crate::logging_core::Registry<crate::logging::WorkerIdentifier>> {
        self.log_register()
    }
}

impl<A: Allocate> Scheduler for Worker<A> {
    fn activations(&self) -> Rc<RefCell<Activations>> {
        self.activations.clone()
    }
}

impl<A: Allocate> Worker<A> {
    /// Allocates a new `Worker` bound to a channel allocator.
    pub fn new(config: Config, c: A) -> Worker<A> {
        let now = Instant::now();
        let index = c.index();
        Worker {
            config,
            timer: now,
            paths:  Default::default(),
            allocator: Rc::new(RefCell::new(c)),
            identifiers:  Default::default(),
            dataflows: Default::default(),
            dataflow_counter:  Default::default(),
            logging: Rc::new(RefCell::new(crate::logging_core::Registry::new(now, index))),
            activations: Rc::new(RefCell::new(Activations::new(now))),
            active_dataflows: Default::default(),
            temp_channel_ids:  Default::default(),
        }
    }

    /// Performs one step of the computation.
    ///
    /// A step gives each dataflow operator a chance to run, and is the
    /// main way to ensure that a computation proceeds.
    ///
    /// # Examples
    ///
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     use timely::dataflow::operators::{ToStream, Inspect};
    ///
    ///     worker.dataflow::<usize,_,_>(|scope| {
    ///         (0 .. 10)
    ///             .to_stream(scope)
    ///             .inspect(|x| println!("{:?}", x));
    ///     });
    ///
    ///     worker.step();
    /// });
    /// ```
    pub fn step(&mut self) -> bool {
        self.step_or_park(Some(Duration::from_secs(0)))
    }

    /// Performs one step of the computation.
    ///
    /// A step gives each dataflow operator a chance to run, and is the
    /// main way to ensure that a computation proceeds.
    ///
    /// This method takes an optional timeout and may park the thread until
    /// there is work to perform or until this timeout expires. A value of
    /// `None` allows the worker to park indefinitely, whereas a value of
    /// `Some(Duration::new(0, 0))` will return without parking the thread.
    ///
    /// # Examples
    ///
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     use std::time::Duration;
    ///     use timely::dataflow::operators::{ToStream, Inspect};
    ///
    ///     worker.dataflow::<usize,_,_>(|scope| {
    ///         (0 .. 10)
    ///             .to_stream(scope)
    ///             .inspect(|x| println!("{:?}", x));
    ///     });
    ///
    ///     worker.step_or_park(Some(Duration::from_secs(1)));
    /// });
    /// ```
    pub fn step_or_park(&mut self, duration: Option<Duration>) -> bool {

        {   // Process channel events. Activate responders.
            let mut allocator = self.allocator.borrow_mut();
            allocator.receive();
            let events = allocator.events().clone();
            let mut borrow = events.borrow_mut();
            let paths = self.paths.borrow();
            borrow.sort_unstable();
            borrow.dedup();
            for channel in borrow.drain(..) {
                // Consider tracking whether a channel
                // in non-empty, and only activating
                // on the basis of non-empty channels.
                // TODO: This is a sloppy way to deal
                // with channels that may not be alloc'd.
                if let Some(path) = paths.get(&channel) {
                    self.activations
                        .borrow_mut()
                        .activate(&path[..]);
                }
            }
        }

        // Organize activations.
        self.activations
            .borrow_mut()
            .advance();

        // Consider parking only if we have no pending events, some dataflows, and a non-zero duration.
        let empty_for = self.activations.borrow().empty_for();
        // Determine the minimum park duration, where `None` are an absence of a constraint.
        let delay = match (duration, empty_for) {
            (Some(x), Some(y)) => Some(std::cmp::min(x,y)),
            (x, y) => x.or(y),
        };

        if delay != Some(Duration::new(0,0)) {

            // Log parking and flush log.
            if let Some(l) = self.logging().as_mut() {
                l.log(crate::logging::ParkEvent::park(delay));
                l.flush();
            }

            self.allocator
                .borrow()
                .await_events(delay);

            // Log return from unpark.
            self.logging().as_mut().map(|l| l.log(crate::logging::ParkEvent::unpark()));
        }
        else {   // Schedule active dataflows.

            let active_dataflows = &mut self.active_dataflows;
            self.activations
                .borrow_mut()
                .for_extensions(&[], |index| active_dataflows.push(index));

            let mut dataflows = self.dataflows.borrow_mut();
            for index in active_dataflows.drain(..) {
                // Step dataflow if it exists, remove if not incomplete.
                if let Entry::Occupied(mut entry) = dataflows.entry(index) {
                    // TODO: This is a moment at which a scheduling decision is being made.
                    let incomplete = entry.get_mut().step();
                    if !incomplete {
                        let mut paths = self.paths.borrow_mut();
                        for channel in entry.get_mut().channel_ids.drain(..) {
                            paths.remove(&channel);
                        }
                        entry.remove_entry();
                    }
                }
            }
        }

        // Clean up, indicate if dataflows remain.
        self.logging.borrow_mut().flush();
        self.allocator.borrow_mut().release();
        !self.dataflows.borrow().is_empty()
    }

    /// Calls `self.step()` as long as `func` evaluates to `true`.
    ///
    /// This method will continually execute even if there is not work
    /// for the worker to perform. Consider using the similar method
    /// `Self::step_or_park_while(duration)` to allow the worker to yield
    /// control if that is appropriate.
    ///
    /// # Examples
    ///
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     use timely::dataflow::operators::{ToStream, Inspect, Probe};
    ///
    ///     let probe =
    ///     worker.dataflow::<usize,_,_>(|scope| {
    ///         (0 .. 10)
    ///             .to_stream(scope)
    ///             .inspect(|x| println!("{:?}", x))
    ///             .probe()
    ///     });
    ///
    ///     worker.step_while(|| probe.less_than(&0));
    /// });
    /// ```
    pub fn step_while<F: FnMut()->bool>(&mut self, func: F) {
        self.step_or_park_while(Some(Duration::from_secs(0)), func)
    }

    /// Calls `self.step_or_park(duration)` as long as `func` evaluates to `true`.
    ///
    /// This method may yield whenever there is no work to perform, as performed
    /// by `Self::step_or_park()`. Please consult the documentation for further
    /// information about that method and its behavior. In particular, the method
    /// can park the worker indefinitely, if no new work re-awakens the worker.
    ///
    /// # Examples
    ///
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     use timely::dataflow::operators::{ToStream, Inspect, Probe};
    ///
    ///     let probe =
    ///     worker.dataflow::<usize,_,_>(|scope| {
    ///         (0 .. 10)
    ///             .to_stream(scope)
    ///             .inspect(|x| println!("{:?}", x))
    ///             .probe()
    ///     });
    ///
    ///     worker.step_or_park_while(None, || probe.less_than(&0));
    /// });
    /// ```
    pub fn step_or_park_while<F: FnMut()->bool>(&mut self, duration: Option<Duration>, mut func: F) {
        while func() { self.step_or_park(duration); }
    }

    /// The index of the worker out of its peers.
    ///
    /// # Examples
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     let index = worker.index();
    ///     let peers = worker.peers();
    ///     let timer = worker.timer();
    ///
    ///     println!("{:?}\tWorker {} of {}", timer.elapsed(), index, peers);
    ///
    /// });
    /// ```
    pub fn index(&self) -> usize { self.allocator.borrow().index() }
    /// The total number of peer workers.
    ///
    /// # Examples
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     let index = worker.index();
    ///     let peers = worker.peers();
    ///     let timer = worker.timer();
    ///
    ///     println!("{:?}\tWorker {} of {}", timer.elapsed(), index, peers);
    ///
    /// });
    /// ```
    pub fn peers(&self) -> usize { self.allocator.borrow().peers() }

    /// A timer started at the initiation of the timely computation.
    ///
    /// # Examples
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     let index = worker.index();
    ///     let peers = worker.peers();
    ///     let timer = worker.timer();
    ///
    ///     println!("{:?}\tWorker {} of {}", timer.elapsed(), index, peers);
    ///
    /// });
    /// ```
    pub fn timer(&self) -> Instant { self.timer }

    /// Allocate a new worker-unique identifier.
    ///
    /// This method is public, though it is not expected to be widely used outside
    /// of the timely dataflow system.
    pub fn new_identifier(&mut self) -> usize {
        *self.identifiers.borrow_mut() += 1;
        *self.identifiers.borrow() - 1
    }

    /// The next worker-unique identifier to be allocated.
    pub fn peek_identifier(&self) -> usize {
        *self.identifiers.borrow()
    }

    /// Access to named loggers.
    ///
    /// # Examples
    ///
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     worker.log_register()
    ///           .insert::<timely::logging::TimelyEvent,_>("timely", |time, data|
    ///               println!("{:?}\t{:?}", time, data)
    ///           );
    /// });
    /// ```
    pub fn log_register(&self) -> ::std::cell::RefMut<crate::logging_core::Registry<crate::logging::WorkerIdentifier>> {
        self.logging.borrow_mut()
    }

    /// Construct a new dataflow.
    ///
    /// # Examples
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     // We must supply the timestamp type here, although
    ///     // it would generally be determined by type inference.
    ///     worker.dataflow::<usize,_,_>(|scope| {
    ///
    ///         // uses of `scope` to build dataflow
    ///
    ///     });
    /// });
    /// ```
    pub fn dataflow<T, R, F>(&mut self, func: F) -> R
    where
        T: Refines<()>,
        F: FnOnce(&mut Child<Self, T>)->R,
    {
        let logging = self.logging.borrow_mut().get("timely");
        self.dataflow_core("Dataflow", logging, Box::new(()), |_, child| func(child))
    }

    /// Construct a new dataflow with a (purely cosmetic) name.
    ///
    /// # Examples
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     // We must supply the timestamp type here, although
    ///     // it would generally be determined by type inference.
    ///     worker.dataflow_named::<usize,_,_>("Some Dataflow", |scope| {
    ///
    ///         // uses of `scope` to build dataflow
    ///
    ///     });
    /// });
    /// ```
    pub fn dataflow_named<T, R, F>(&mut self, name: &str, func: F) -> R
    where
        T: Refines<()>,
        F: FnOnce(&mut Child<Self, T>)->R,
    {
        let logging = self.logging.borrow_mut().get("timely");
        self.dataflow_core(name, logging, Box::new(()), |_, child| func(child))
    }

    /// Construct a new dataflow with specific configurations.
    ///
    /// This method constructs a new dataflow, using a name, logger, and additional
    /// resources specified as argument. The name is cosmetic, the logger is used to
    /// handle events generated by the dataflow, and the additional resources are kept
    /// alive for as long as the dataflow is alive (use case: shared library bindings).
    ///
    /// # Examples
    /// ```
    /// timely::execute_from_args(::std::env::args(), |worker| {
    ///
    ///     // We must supply the timestamp type here, although
    ///     // it would generally be determined by type inference.
    ///     worker.dataflow_core::<usize,_,_,_>(
    ///         "dataflow X",           // Dataflow name
    ///         None,                   // Optional logger
    ///         37,                     // Any resources
    ///         |resources, scope| {    // Closure
    ///
    ///             // uses of `resources`, `scope`to build dataflow
    ///
    ///         }
    ///     );
    /// });
    /// ```
    pub fn dataflow_core<T, R, F, V>(&mut self, name: &str, mut logging: Option<TimelyLogger>, mut resources: V, func: F) -> R
    where
        T: Refines<()>,
        F: FnOnce(&mut V, &mut Child<Self, T>)->R,
        V: Any+'static,
    {
        let dataflow_index = self.allocate_dataflow_index();
        let addr = vec![dataflow_index].into();
        let identifier = self.new_identifier();

        let progress_logging = self.logging.borrow_mut().get("timely/progress");
        let subscope = SubgraphBuilder::new_from(addr, logging.clone(), progress_logging.clone(), name);
        let subscope = RefCell::new(subscope);

        let result = {
            let mut builder = Child {
                subgraph: &subscope,
                parent: self.clone(),
                logging: logging.clone(),
                progress_logging,
            };
            func(&mut resources, &mut builder)
        };

        let mut operator = subscope.into_inner().build(self);

        if let Some(l) = logging.as_mut() {
            l.log(crate::logging::OperatesEvent {
                id: identifier,
                addr: operator.path().to_vec(),
                name: operator.name().to_string(),
            });
            l.flush();
        }

        operator.get_internal_summary();
        operator.set_external_summary();

        let mut temp_channel_ids = self.temp_channel_ids.borrow_mut();
        let channel_ids = temp_channel_ids.drain(..).collect::<Vec<_>>();

        let wrapper = Wrapper {
            logging,
            identifier,
            operate: Some(Box::new(operator)),
            resources: Some(Box::new(resources)),
            channel_ids,
        };
        self.dataflows.borrow_mut().insert(dataflow_index, wrapper);

        result

    }

    /// Drops an identified dataflow.
    ///
    /// This method removes the identified dataflow, which will no longer be scheduled.
    /// Various other resources will be cleaned up, though the method is currently in
    /// public beta rather than expected to work. Please report all crashes and unmet
    /// expectations!
    pub fn drop_dataflow(&mut self, dataflow_identifier: usize) {
        if let Some(mut entry) = self.dataflows.borrow_mut().remove(&dataflow_identifier) {
            // Garbage collect channel_id to path information.
            let mut paths = self.paths.borrow_mut();
            for channel in entry.channel_ids.drain(..) {
                paths.remove(&channel);
            }
        }
    }

    /// Returns the next index to be used for dataflow construction.
    ///
    /// This identifier will appear in the address of contained operators, and can
    /// be used to drop the dataflow using `self.drop_dataflow()`.
    pub fn next_dataflow_index(&self) -> usize {
        *self.dataflow_counter.borrow()
    }

    /// List the current dataflow indices.
    pub fn installed_dataflows(&self) -> Vec<usize> {
        self.dataflows.borrow().keys().cloned().collect()
    }

    /// Returns `true` if there is at least one dataflow under management.
    pub fn has_dataflows(&self) -> bool {
        !self.dataflows.borrow().is_empty()
    }

    // Acquire a new distinct dataflow identifier.
    fn allocate_dataflow_index(&mut self) -> usize {
        *self.dataflow_counter.borrow_mut() += 1;
        *self.dataflow_counter.borrow() - 1
    }
}

impl<A: Allocate> Clone for Worker<A> {
    fn clone(&self) -> Self {
        Worker {
            config: self.config.clone(),
            timer: self.timer,
            paths: self.paths.clone(),
            allocator: self.allocator.clone(),
            identifiers: self.identifiers.clone(),
            dataflows: self.dataflows.clone(),
            dataflow_counter: self.dataflow_counter.clone(),
            logging: self.logging.clone(),
            activations: self.activations.clone(),
            active_dataflows: Vec::new(),
            temp_channel_ids: self.temp_channel_ids.clone(),
        }
    }
}

struct Wrapper {
    logging: Option<TimelyLogger>,
    identifier: usize,
    operate: Option<Box<dyn Schedule>>,
    resources: Option<Box<dyn Any>>,
    channel_ids: Vec<usize>,
}

impl Wrapper {
    /// Steps the dataflow, indicates if it remains incomplete.
    ///
    /// If the dataflow is incomplete, this call will drop it and its resources,
    /// dropping the dataflow first and then the resources (so that, e.g., shared
    /// library bindings will outlive the dataflow).
    fn step(&mut self) -> bool {

        // Perhaps log information about the start of the schedule call.
        if let Some(l) = self.logging.as_mut() {
            l.log(crate::logging::ScheduleEvent::start(self.identifier));
        }

        let incomplete = self.operate.as_mut().map(|op| op.schedule()).unwrap_or(false);
        if !incomplete {
            self.operate = None;
            self.resources = None;
        }

        // Perhaps log information about the stop of the schedule call.
        if let Some(l) = self.logging.as_mut() {
            l.log(crate::logging::ScheduleEvent::stop(self.identifier));
        }

        incomplete
    }
}

impl Drop for Wrapper {
    fn drop(&mut self) {
        if let Some(l) = self.logging.as_mut() {
            l.log(crate::logging::ShutdownEvent { id: self.identifier });
        }
        // ensure drop order
        self.operate = None;
        self.resources = None;
    }
}