parquet/encodings/encoding/dict_encoder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------
// Dictionary encoding
use bytes::Bytes;
use crate::basic::{Encoding, Type};
use crate::data_type::private::ParquetValueType;
use crate::data_type::DataType;
use crate::encodings::encoding::{Encoder, PlainEncoder};
use crate::encodings::rle::RleEncoder;
use crate::errors::Result;
use crate::schema::types::ColumnDescPtr;
use crate::util::bit_util::num_required_bits;
use crate::util::interner::{Interner, Storage};
#[derive(Debug)]
struct KeyStorage<T: DataType> {
uniques: Vec<T::T>,
/// size of unique values (keys) in the dictionary, in bytes.
size_in_bytes: usize,
type_length: usize,
}
impl<T: DataType> Storage for KeyStorage<T> {
type Key = u64;
type Value = T::T;
fn get(&self, idx: Self::Key) -> &Self::Value {
&self.uniques[idx as usize]
}
fn push(&mut self, value: &Self::Value) -> Self::Key {
let (base_size, num_elements) = value.dict_encoding_size();
let unique_size = match T::get_physical_type() {
Type::BYTE_ARRAY => base_size + num_elements,
Type::FIXED_LEN_BYTE_ARRAY => self.type_length,
_ => base_size,
};
self.size_in_bytes += unique_size;
let key = self.uniques.len() as u64;
self.uniques.push(value.clone());
key
}
fn estimated_memory_size(&self) -> usize {
self.size_in_bytes + self.uniques.capacity() * std::mem::size_of::<T::T>()
}
}
/// Dictionary encoder.
/// The dictionary encoding builds a dictionary of values encountered in a given column.
/// The dictionary page is written first, before the data pages of the column chunk.
///
/// Dictionary page format: the entries in the dictionary - in dictionary order -
/// using the plain encoding.
///
/// Data page format: the bit width used to encode the entry ids stored as 1 byte
/// (max bit width = 32), followed by the values encoded using RLE/Bit packed described
/// above (with the given bit width).
pub struct DictEncoder<T: DataType> {
interner: Interner<KeyStorage<T>>,
/// The buffered indices
indices: Vec<u64>,
}
impl<T: DataType> DictEncoder<T> {
/// Creates new dictionary encoder.
pub fn new(desc: ColumnDescPtr) -> Self {
let storage = KeyStorage {
uniques: vec![],
size_in_bytes: 0,
type_length: desc.type_length() as usize,
};
Self {
interner: Interner::new(storage),
indices: vec![],
}
}
/// Returns true if dictionary entries are sorted, false otherwise.
pub fn is_sorted(&self) -> bool {
// Sorting is not supported currently.
false
}
/// Returns number of unique values (keys) in the dictionary.
pub fn num_entries(&self) -> usize {
self.interner.storage().uniques.len()
}
/// Returns size of unique values (keys) in the dictionary, in bytes.
pub fn dict_encoded_size(&self) -> usize {
self.interner.storage().size_in_bytes
}
/// Writes out the dictionary values with PLAIN encoding in a byte buffer, and return
/// the result.
pub fn write_dict(&self) -> Result<Bytes> {
let mut plain_encoder = PlainEncoder::<T>::new();
plain_encoder.put(&self.interner.storage().uniques)?;
plain_encoder.flush_buffer()
}
/// Writes out the dictionary values with RLE encoding in a byte buffer, and return
/// the result.
pub fn write_indices(&mut self) -> Result<Bytes> {
let buffer_len = self.estimated_data_encoded_size();
let mut buffer = Vec::with_capacity(buffer_len);
buffer.push(self.bit_width());
// Write bit width in the first byte
let mut encoder = RleEncoder::new_from_buf(self.bit_width(), buffer);
for index in &self.indices {
encoder.put(*index)
}
self.indices.clear();
Ok(encoder.consume().into())
}
fn put_one(&mut self, value: &T::T) {
self.indices.push(self.interner.intern(value));
}
#[inline]
fn bit_width(&self) -> u8 {
num_required_bits(self.num_entries().saturating_sub(1) as u64)
}
}
impl<T: DataType> Encoder<T> for DictEncoder<T> {
fn put(&mut self, values: &[T::T]) -> Result<()> {
self.indices.reserve(values.len());
for i in values {
self.put_one(i)
}
Ok(())
}
// Performance Note:
// As far as can be seen these functions are rarely called and as such we can hint to the
// compiler that they dont need to be folded into hot locations in the final output.
fn encoding(&self) -> Encoding {
Encoding::PLAIN_DICTIONARY
}
/// Returns an estimate of the data page size in bytes
///
/// This includes:
/// <already_written_encoded_byte_size> + <estimated_encoded_size_of_unflushed_bytes>
fn estimated_data_encoded_size(&self) -> usize {
let bit_width = self.bit_width();
RleEncoder::max_buffer_size(bit_width, self.indices.len())
}
fn flush_buffer(&mut self) -> Result<Bytes> {
self.write_indices()
}
/// Returns the estimated total memory usage
///
/// For this encoder, the indices are unencoded bytes (refer to [`Self::write_indices`]).
fn estimated_memory_size(&self) -> usize {
self.interner.storage().size_in_bytes + self.indices.len() * std::mem::size_of::<usize>()
}
}