tokio/runtime/time/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
// Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
// in the future, this will change to the reverse. For now, suppress this
// warning and generally stick with being explicit about unsafety.
#![allow(unused_unsafe)]
#![cfg_attr(not(feature = "rt"), allow(dead_code))]

//! Time driver.

mod entry;
pub(crate) use entry::TimerEntry;
use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION};

mod handle;
pub(crate) use self::handle::Handle;
use self::wheel::Wheel;

mod source;
pub(crate) use source::TimeSource;

mod wheel;

use crate::loom::sync::atomic::{AtomicBool, Ordering};
use crate::loom::sync::Mutex;
use crate::runtime::driver::{self, IoHandle, IoStack};
use crate::time::error::Error;
use crate::time::{Clock, Duration};
use crate::util::WakeList;

use crate::loom::sync::atomic::AtomicU64;
use std::fmt;
use std::{num::NonZeroU64, ptr::NonNull};

struct AtomicOptionNonZeroU64(AtomicU64);

// A helper type to store the `next_wake`.
impl AtomicOptionNonZeroU64 {
    fn new(val: Option<NonZeroU64>) -> Self {
        Self(AtomicU64::new(val.map_or(0, NonZeroU64::get)))
    }

    fn store(&self, val: Option<NonZeroU64>) {
        self.0
            .store(val.map_or(0, NonZeroU64::get), Ordering::Relaxed);
    }

    fn load(&self) -> Option<NonZeroU64> {
        NonZeroU64::new(self.0.load(Ordering::Relaxed))
    }
}

/// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
///
/// A `Driver` instance tracks the state necessary for managing time and
/// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
///
/// It is expected that a single instance manages many individual [`Sleep`][sleep]
/// instances. The `Driver` implementation is thread-safe and, as such, is able
/// to handle callers from across threads.
///
/// After creating the `Driver` instance, the caller must repeatedly call `park`
/// or `park_timeout`. The time driver will perform no work unless `park` or
/// `park_timeout` is called repeatedly.
///
/// The driver has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
/// elapsed will be notified with an error. At this point, calling `poll` on the
/// [`Sleep`][sleep] instance will result in panic.
///
/// # Implementation
///
/// The time driver is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The implementation maintains six wheels arranged in a set of levels. As the
/// levels go up, the slots of the associated wheel represent larger intervals
/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
/// time equal to the wheel at the lower level. At level zero, each slot
/// represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// `Sleep` instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
///
/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
/// [sleep]: crate::time::Sleep
/// [timeout]: crate::time::Timeout
/// [interval]: crate::time::Interval
#[derive(Debug)]
pub(crate) struct Driver {
    /// Parker to delegate to.
    park: IoStack,
}

/// Timer state shared between `Driver`, `Handle`, and `Registration`.
struct Inner {
    /// The earliest time at which we promise to wake up without unparking.
    next_wake: AtomicOptionNonZeroU64,

    /// Sharded Timer wheels.
    wheels: Box<[Mutex<wheel::Wheel>]>,

    /// True if the driver is being shutdown.
    pub(super) is_shutdown: AtomicBool,

    // When `true`, a call to `park_timeout` should immediately return and time
    // should not advance. One reason for this to be `true` is if the task
    // passed to `Runtime::block_on` called `task::yield_now()`.
    //
    // While it may look racy, it only has any effect when the clock is paused
    // and pausing the clock is restricted to a single-threaded runtime.
    #[cfg(feature = "test-util")]
    did_wake: AtomicBool,
}

// ===== impl Driver =====

impl Driver {
    /// Creates a new `Driver` instance that uses `park` to block the current
    /// thread and `time_source` to get the current time and convert to ticks.
    ///
    /// Specifying the source of time is useful when testing.
    pub(crate) fn new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle) {
        assert!(shards > 0);

        let time_source = TimeSource::new(clock);
        let wheels: Vec<_> = (0..shards)
            .map(|_| Mutex::new(wheel::Wheel::new()))
            .collect();

        let handle = Handle {
            time_source,
            inner: Inner {
                next_wake: AtomicOptionNonZeroU64::new(None),
                wheels: wheels.into_boxed_slice(),
                is_shutdown: AtomicBool::new(false),
                #[cfg(feature = "test-util")]
                did_wake: AtomicBool::new(false),
            },
        };

        let driver = Driver { park };

        (driver, handle)
    }

    pub(crate) fn park(&mut self, handle: &driver::Handle) {
        self.park_internal(handle, None);
    }

    pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) {
        self.park_internal(handle, Some(duration));
    }

    pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) {
        let handle = rt_handle.time();

        if handle.is_shutdown() {
            return;
        }

        handle.inner.is_shutdown.store(true, Ordering::SeqCst);

        // Advance time forward to the end of time.

        handle.process_at_time(0, u64::MAX);

        self.park.shutdown(rt_handle);
    }

    fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) {
        let handle = rt_handle.time();
        assert!(!handle.is_shutdown());

        // Finds out the min expiration time to park.
        let expiration_time = (0..rt_handle.time().inner.get_shard_size())
            .filter_map(|id| {
                let lock = rt_handle.time().inner.lock_sharded_wheel(id);
                lock.next_expiration_time()
            })
            .min();

        rt_handle
            .time()
            .inner
            .next_wake
            .store(next_wake_time(expiration_time));

        match expiration_time {
            Some(when) => {
                let now = handle.time_source.now(rt_handle.clock());
                // Note that we effectively round up to 1ms here - this avoids
                // very short-duration microsecond-resolution sleeps that the OS
                // might treat as zero-length.
                let mut duration = handle
                    .time_source
                    .tick_to_duration(when.saturating_sub(now));

                if duration > Duration::from_millis(0) {
                    if let Some(limit) = limit {
                        duration = std::cmp::min(limit, duration);
                    }

                    self.park_thread_timeout(rt_handle, duration);
                } else {
                    self.park.park_timeout(rt_handle, Duration::from_secs(0));
                }
            }
            None => {
                if let Some(duration) = limit {
                    self.park_thread_timeout(rt_handle, duration);
                } else {
                    self.park.park(rt_handle);
                }
            }
        }

        // Process pending timers after waking up
        handle.process(rt_handle.clock());
    }

    cfg_test_util! {
        fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
            let handle = rt_handle.time();
            let clock = rt_handle.clock();

            if clock.can_auto_advance() {
                self.park.park_timeout(rt_handle, Duration::from_secs(0));

                // If the time driver was woken, then the park completed
                // before the "duration" elapsed (usually caused by a
                // yield in `Runtime::block_on`). In this case, we don't
                // advance the clock.
                if !handle.did_wake() {
                    // Simulate advancing time
                    if let Err(msg) = clock.advance(duration) {
                        panic!("{}", msg);
                    }
                }
            } else {
                self.park.park_timeout(rt_handle, duration);
            }
        }
    }

    cfg_not_test_util! {
        fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
            self.park.park_timeout(rt_handle, duration);
        }
    }
}

// Helper function to turn expiration_time into next_wake_time.
// Since the `park_timeout` will round up to 1ms for avoiding very
// short-duration microsecond-resolution sleeps, we do the same here.
// The conversion is as follows
// None => None
// Some(0) => Some(1)
// Some(i) => Some(i)
fn next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64> {
    expiration_time.and_then(|v| {
        if v == 0 {
            NonZeroU64::new(1)
        } else {
            NonZeroU64::new(v)
        }
    })
}

impl Handle {
    /// Runs timer related logic, and returns the next wakeup time
    pub(self) fn process(&self, clock: &Clock) {
        let now = self.time_source().now(clock);
        // For fairness, randomly select one to start.
        let shards = self.inner.get_shard_size();
        let start = crate::runtime::context::thread_rng_n(shards);
        self.process_at_time(start, now);
    }

    pub(self) fn process_at_time(&self, start: u32, now: u64) {
        let shards = self.inner.get_shard_size();

        let expiration_time = (start..shards + start)
            .filter_map(|i| self.process_at_sharded_time(i, now))
            .min();

        self.inner.next_wake.store(next_wake_time(expiration_time));
    }

    // Returns the next wakeup time of this shard.
    pub(self) fn process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64> {
        let mut waker_list = WakeList::new();
        let mut lock = self.inner.lock_sharded_wheel(id);

        if now < lock.elapsed() {
            // Time went backwards! This normally shouldn't happen as the Rust language
            // guarantees that an Instant is monotonic, but can happen when running
            // Linux in a VM on a Windows host due to std incorrectly trusting the
            // hardware clock to be monotonic.
            //
            // See <https://github.com/tokio-rs/tokio/issues/3619> for more information.
            now = lock.elapsed();
        }

        while let Some(entry) = lock.poll(now) {
            debug_assert!(unsafe { entry.is_pending() });

            // SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
            if let Some(waker) = unsafe { entry.fire(Ok(())) } {
                waker_list.push(waker);

                if !waker_list.can_push() {
                    // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
                    drop(lock);

                    waker_list.wake_all();

                    lock = self.inner.lock_sharded_wheel(id);
                }
            }
        }
        let next_wake_up = lock.poll_at();
        drop(lock);

        waker_list.wake_all();
        next_wake_up
    }

    /// Removes a registered timer from the driver.
    ///
    /// The timer will be moved to the cancelled state. Wakers will _not_ be
    /// invoked. If the timer is already completed, this function is a no-op.
    ///
    /// This function always acquires the driver lock, even if the entry does
    /// not appear to be registered.
    ///
    /// SAFETY: The timer must not be registered with some other driver, and
    /// `add_entry` must not be called concurrently.
    pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
        unsafe {
            let mut lock = self.inner.lock_sharded_wheel(entry.as_ref().shard_id());

            if entry.as_ref().might_be_registered() {
                lock.remove(entry);
            }

            entry.as_ref().handle().fire(Ok(()));
        }
    }

    /// Removes and re-adds an entry to the driver.
    ///
    /// SAFETY: The timer must be either unregistered, or registered with this
    /// driver. No other threads are allowed to concurrently manipulate the
    /// timer at all (the current thread should hold an exclusive reference to
    /// the `TimerEntry`)
    pub(self) unsafe fn reregister(
        &self,
        unpark: &IoHandle,
        new_tick: u64,
        entry: NonNull<TimerShared>,
    ) {
        let waker = unsafe {
            let mut lock = self.inner.lock_sharded_wheel(entry.as_ref().shard_id());

            // We may have raced with a firing/deregistration, so check before
            // deregistering.
            if unsafe { entry.as_ref().might_be_registered() } {
                lock.remove(entry);
            }

            // Now that we have exclusive control of this entry, mint a handle to reinsert it.
            let entry = entry.as_ref().handle();

            if self.is_shutdown() {
                unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
            } else {
                entry.set_expiration(new_tick);

                // Note: We don't have to worry about racing with some other resetting
                // thread, because add_entry and reregister require exclusive control of
                // the timer entry.
                match unsafe { lock.insert(entry) } {
                    Ok(when) => {
                        if self
                            .inner
                            .next_wake
                            .load()
                            .map(|next_wake| when < next_wake.get())
                            .unwrap_or(true)
                        {
                            unpark.unpark();
                        }

                        None
                    }
                    Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe {
                        entry.fire(Ok(()))
                    },
                }
            }

            // Must release lock before invoking waker to avoid the risk of deadlock.
        };

        // The timer was fired synchronously as a result of the reregistration.
        // Wake the waker; this is needed because we might reset _after_ a poll,
        // and otherwise the task won't be awoken to poll again.
        if let Some(waker) = waker {
            waker.wake();
        }
    }

    cfg_test_util! {
        fn did_wake(&self) -> bool {
            self.inner.did_wake.swap(false, Ordering::SeqCst)
        }
    }
}

// ===== impl Inner =====

impl Inner {
    /// Locks the driver's sharded wheel structure.
    pub(super) fn lock_sharded_wheel(
        &self,
        shard_id: u32,
    ) -> crate::loom::sync::MutexGuard<'_, Wheel> {
        let index = shard_id % (self.wheels.len() as u32);
        // Safety: This modulo operation ensures that the index is not out of bounds.
        unsafe { self.wheels.get_unchecked(index as usize).lock() }
    }

    // Check whether the driver has been shutdown
    pub(super) fn is_shutdown(&self) -> bool {
        self.is_shutdown.load(Ordering::SeqCst)
    }

    // Gets the number of shards.
    fn get_shard_size(&self) -> u32 {
        self.wheels.len() as u32
    }
}

impl fmt::Debug for Inner {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Inner").finish()
    }
}

#[cfg(test)]
mod tests;