fancy_regex/vm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
// Copyright 2016 The Fancy Regex Authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//! Backtracking VM for implementing fancy regexes.
//!
//! Read <https://swtch.com/~rsc/regexp/regexp2.html> for a good introduction for how this works.
//!
//! The VM executes a sequence of instructions (a program) against an input string. It keeps track
//! of a program counter (PC) and an index into the string (IX). Execution can have one or more
//! threads.
//!
//! One of the basic instructions is `Lit`, which matches a string against the input. If it matches,
//! the PC advances to the next instruction and the IX to the position after the matched string.
//! If not, the current thread is stopped because it failed.
//!
//! If execution reaches an `End` instruction, the program is successful because a match was found.
//! If there are no more threads to execute, the program has failed to match.
//!
//! A very simple program for the regex `a`:
//!
//! ```text
//! 0: Lit("a")
//! 1: End
//! ```
//!
//! The `Split` instruction causes execution to split into two threads. The first thread is executed
//! with the current string index. If it fails, we reset the string index and resume execution with
//! the second thread. That is what "backtracking" refers to. In order to do that, we keep a stack
//! of threads (PC and IX) to try.
//!
//! Example program for the regex `ab|ac`:
//!
//! ```text
//! 0: Split(1, 4)
//! 1: Lit("a")
//! 2: Lit("b")
//! 3: Jmp(6)
//! 4: Lit("a")
//! 5: Lit("c")
//! 6: End
//! ```
//!
//! The `Jmp` instruction causes execution to jump to the specified instruction. In the example it
//! is needed to separate the two threads.
//!
//! Let's step through execution with that program for the input `ac`:
//!
//! 1. We're at PC 0 and IX 0
//! 2. `Split(1, 4)` means we save a thread with PC 4 and IX 0 for trying later
//! 3. Continue at `Lit("a")` which matches, so we advance IX to 1
//! 4. `Lit("b")` doesn't match at IX 1 (`"b" != "c"`), so the thread fails
//! 5. We continue with the previously saved thread at PC 4 and IX 0 (backtracking)
//! 6. Both `Lit("a")` and `Lit("c")` match and we reach `End` -> successful match (index 0 to 2)
use regex::Regex;
use std::collections::BTreeSet;
use std::usize;
use crate::error::RuntimeError;
use crate::prev_codepoint_ix;
use crate::Error;
use crate::Result;
use crate::{codepoint_len, RegexOptions};
/// Enable tracing of VM execution. Only for debugging/investigating.
const OPTION_TRACE: u32 = 1 << 0;
/// When iterating over all matches within a text (e.g. with `find_iter`), empty matches need to be
/// handled specially. If we kept matching at the same position, we'd never stop. So what we do
/// after we've had an empty match, is to advance the position where matching is attempted.
/// If `\G` is used in the pattern, that means it no longer matches. If we didn't tell the VM about
/// the fact that we skipped because of an empty match, it would still treat `\G` as matching. So
/// this option is for communicating that to the VM. Phew.
pub(crate) const OPTION_SKIPPED_EMPTY_MATCH: u32 = 1 << 1;
// TODO: make configurable
const MAX_STACK: usize = 1_000_000;
/// Instruction of the VM.
#[derive(Debug, Clone)]
pub enum Insn {
/// Successful end of program
End,
/// Match any character (including newline)
Any,
/// Match any character (not including newline)
AnyNoNL,
/// Match the literal string at the current index
Lit(String), // should be cow?
/// Split execution into two threads. The two fields are positions of instructions. Execution
/// first tries the first thread. If that fails, the second position is tried.
Split(usize, usize),
/// Jump to instruction at position
Jmp(usize),
/// Save the current string index into the specified slot
Save(usize),
/// Save `0` into the specified slot
Save0(usize),
/// Set the string index to the value that was saved in the specified slot
Restore(usize),
/// Repeat greedily (match as much as possible)
RepeatGr {
/// Minimum number of matches
lo: usize,
/// Maximum number of matches
hi: usize,
/// The instruction after the repeat
next: usize,
/// The slot for keeping track of the number of repetitions
repeat: usize,
},
/// Repeat non-greedily (prefer matching as little as possible)
RepeatNg {
/// Minimum number of matches
lo: usize,
/// Maximum number of matches
hi: usize,
/// The instruction after the repeat
next: usize,
/// The slot for keeping track of the number of repetitions
repeat: usize,
},
/// Repeat greedily and prevent infinite loops from empty matches
RepeatEpsilonGr {
/// Minimum number of matches
lo: usize,
/// The instruction after the repeat
next: usize,
/// The slot for keeping track of the number of repetitions
repeat: usize,
/// The slot for saving the previous IX to check if we had an empty match
check: usize,
},
/// Repeat non-greedily and prevent infinite loops from empty matches
RepeatEpsilonNg {
/// Minimum number of matches
lo: usize,
/// The instruction after the repeat
next: usize,
/// The slot for keeping track of the number of repetitions
repeat: usize,
/// The slot for saving the previous IX to check if we had an empty match
check: usize,
},
/// Negative look-around failed
FailNegativeLookAround,
/// Set IX back by the specified number of characters
GoBack(usize),
/// Back reference to a group number to check
Backref(usize),
/// Begin of atomic group
BeginAtomic,
/// End of atomic group
EndAtomic,
/// Delegate matching to the regex crate for a fixed size
DelegateSized(Box<Regex>, usize),
/// Delegate matching to the regex crate
Delegate {
/// The regex
inner: Box<Regex>,
/// The same regex but matching an additional character on the left.
///
/// E.g. if `inner` is `^\b`, `inner1` is `^(?s:.)\b`. Why do we need this? Because `\b`
/// needs to know the previous character to work correctly. Let's say we're currently at the
/// second character of the string `xy`. Should `\b` match there? No. But if we'd run `^\b`
/// against `y`, it would match (incorrect). To do the right thing, we run `^(?s:.)\b`
/// against `xy`, which does not match.
///
/// We only need this for regexes that "look left", i.e. need to know what the previous
/// character was.
inner1: Option<Box<Regex>>,
/// The first group number that this regex captures (if it contains groups)
start_group: usize,
/// The last group number
end_group: usize,
},
/// Anchor to match at the position where the previous match ended
ContinueFromPreviousMatchEnd,
/// Continue only if the specified capture group has already been populated as part of the match
BackrefExistsCondition(usize),
}
/// Sequence of instructions for the VM to execute.
#[derive(Debug, Clone)]
pub struct Prog {
/// Instructions of the program
pub body: Vec<Insn>,
n_saves: usize,
}
impl Prog {
pub(crate) fn new(body: Vec<Insn>, n_saves: usize) -> Prog {
Prog { body, n_saves }
}
#[doc(hidden)]
pub(crate) fn debug_print(&self) {
for (i, insn) in self.body.iter().enumerate() {
println!("{:3}: {:?}", i, insn);
}
}
}
#[derive(Debug)]
struct Branch {
pc: usize,
ix: usize,
nsave: usize,
}
#[derive(Debug)]
struct Save {
slot: usize,
value: usize,
}
struct State {
/// Saved values indexed by slot. Mostly indices to s, but can be repeat values etc.
/// Always contains the saves of the current state.
saves: Vec<usize>,
/// Stack of backtrack branches.
stack: Vec<Branch>,
/// Old saves (slot, value)
oldsave: Vec<Save>,
/// Number of saves at the end of `oldsave` that need to be restored to `saves` on pop
nsave: usize,
explicit_sp: usize,
/// Maximum size of the stack. If the size would be exceeded during execution, a `StackOverflow`
/// error is raised.
max_stack: usize,
options: u32,
}
// Each element in the stack conceptually represents the entire state
// of the machine: the pc (index into prog), the index into the
// string, and the entire vector of saves. However, copying the save
// vector on every push/pop would be inefficient, so instead we use a
// copy-on-write approach for each slot within the save vector. The
// top `nsave` elements in `oldsave` represent the delta from the
// current machine state to the top of stack.
impl State {
fn new(n_saves: usize, max_stack: usize, options: u32) -> State {
State {
saves: vec![usize::MAX; n_saves],
stack: Vec::new(),
oldsave: Vec::new(),
nsave: 0,
explicit_sp: n_saves,
max_stack,
options,
}
}
// push a backtrack branch
fn push(&mut self, pc: usize, ix: usize) -> Result<()> {
if self.stack.len() < self.max_stack {
let nsave = self.nsave;
self.stack.push(Branch { pc, ix, nsave });
self.nsave = 0;
self.trace_stack("push");
Ok(())
} else {
Err(Error::RuntimeError(RuntimeError::StackOverflow))
}
}
// pop a backtrack branch
fn pop(&mut self) -> (usize, usize) {
for _ in 0..self.nsave {
let Save { slot, value } = self.oldsave.pop().unwrap();
self.saves[slot] = value;
}
let Branch { pc, ix, nsave } = self.stack.pop().unwrap();
self.nsave = nsave;
self.trace_stack("pop");
(pc, ix)
}
fn save(&mut self, slot: usize, val: usize) {
for i in 0..self.nsave {
// could avoid this iteration with some overhead; worth it?
if self.oldsave[self.oldsave.len() - i - 1].slot == slot {
// already saved, just update
self.saves[slot] = val;
return;
}
}
self.oldsave.push(Save {
slot,
value: self.saves[slot],
});
self.nsave += 1;
self.saves[slot] = val;
if self.options & OPTION_TRACE != 0 {
println!("saves: {:?}", self.saves);
}
}
fn get(&self, slot: usize) -> usize {
self.saves[slot]
}
// push a value onto the explicit stack; note: the entire contents of
// the explicit stack is saved and restored on backtrack.
fn stack_push(&mut self, val: usize) {
if self.saves.len() == self.explicit_sp {
self.saves.push(self.explicit_sp + 1);
}
let explicit_sp = self.explicit_sp;
let sp = self.get(explicit_sp);
if self.saves.len() == sp {
self.saves.push(val);
} else {
self.save(sp, val);
}
self.save(explicit_sp, sp + 1);
}
// pop a value from the explicit stack
fn stack_pop(&mut self) -> usize {
let explicit_sp = self.explicit_sp;
let sp = self.get(explicit_sp) - 1;
let result = self.get(sp);
self.save(explicit_sp, sp);
result
}
/// Get the current number of backtrack branches
fn backtrack_count(&self) -> usize {
self.stack.len()
}
/// Discard backtrack branches that were pushed since the call to `backtrack_count`.
///
/// What we want:
/// * Keep the current `saves` as they are
/// * Only keep `count` backtrack branches on `stack`, discard the rest
/// * Keep the first `oldsave` for each slot, discard the rest (multiple pushes might have
/// happened with saves to the same slot)
fn backtrack_cut(&mut self, count: usize) {
if self.stack.len() == count {
// no backtrack branches to discard, all good
return;
}
// start and end indexes of old saves for the branch we're cutting to
let (oldsave_start, oldsave_end) = {
let mut end = self.oldsave.len() - self.nsave;
for &Branch { nsave, .. } in &self.stack[count + 1..] {
end -= nsave;
}
let start = end - self.stack[count].nsave;
(start, end)
};
let mut saved = BTreeSet::new();
// keep all the old saves of our branch (they're all for different slots)
for &Save { slot, .. } in &self.oldsave[oldsave_start..oldsave_end] {
saved.insert(slot);
}
let mut oldsave_ix = oldsave_end;
// for other old saves, keep them only if they're for a slot that we haven't saved yet
for ix in oldsave_end..self.oldsave.len() {
let Save { slot, .. } = self.oldsave[ix];
let new_slot = saved.insert(slot);
if new_slot {
// put the save we want to keep (ix) after the ones we already have (oldsave_ix)
// note that it's fine if the indexes are the same (then swapping is a no-op)
self.oldsave.swap(oldsave_ix, ix);
oldsave_ix += 1;
}
}
self.stack.truncate(count);
self.oldsave.truncate(oldsave_ix);
self.nsave = oldsave_ix - oldsave_start;
}
#[inline]
fn trace_stack(&self, operation: &str) {
if self.options & OPTION_TRACE != 0 {
println!("stack after {}: {:?}", operation, self.stack);
}
}
}
fn codepoint_len_at(s: &str, ix: usize) -> usize {
codepoint_len(s.as_bytes()[ix])
}
#[inline]
fn matches_literal(s: &str, ix: usize, end: usize, literal: &str) -> bool {
// Compare as bytes because the literal might be a single byte char whereas ix
// points to a multibyte char. Comparing with str would result in an error like
// "byte index N is not a char boundary".
end <= s.len() && &s.as_bytes()[ix..end] == literal.as_bytes()
}
/// Run the program with trace printing for debugging.
pub fn run_trace(prog: &Prog, s: &str, pos: usize) -> Result<Option<Vec<usize>>> {
run(prog, s, pos, OPTION_TRACE, &RegexOptions::default())
}
/// Run the program with default options.
pub fn run_default(prog: &Prog, s: &str, pos: usize) -> Result<Option<Vec<usize>>> {
run(prog, s, pos, 0, &RegexOptions::default())
}
/// Run the program with options.
#[allow(clippy::cognitive_complexity)]
pub(crate) fn run(
prog: &Prog,
s: &str,
pos: usize,
option_flags: u32,
options: &RegexOptions,
) -> Result<Option<Vec<usize>>> {
let mut state = State::new(prog.n_saves, MAX_STACK, option_flags);
if option_flags & OPTION_TRACE != 0 {
println!("pos\tinstruction");
}
let mut backtrack_count = 0;
let mut pc = 0;
let mut ix = pos;
loop {
// break from this loop to fail, causes stack to pop
'fail: loop {
if option_flags & OPTION_TRACE != 0 {
println!("{}\t{} {:?}", ix, pc, prog.body[pc]);
}
match prog.body[pc] {
Insn::End => {
// save of end position into slot 1 is now done
// with an explicit group; we might want to
// optimize that.
//state.saves[1] = ix;
if option_flags & OPTION_TRACE != 0 {
println!("saves: {:?}", state.saves);
}
if let Some(&slot1) = state.saves.get(1) {
// With some features like keep out (\K), the match start can be after
// the match end. Cap the start to <= end.
if state.get(0) > slot1 {
state.save(0, slot1);
}
}
return Ok(Some(state.saves));
}
Insn::Any => {
if ix < s.len() {
ix += codepoint_len_at(s, ix);
} else {
break 'fail;
}
}
Insn::AnyNoNL => {
if ix < s.len() && s.as_bytes()[ix] != b'\n' {
ix += codepoint_len_at(s, ix);
} else {
break 'fail;
}
}
Insn::Lit(ref val) => {
let ix_end = ix + val.len();
if !matches_literal(s, ix, ix_end, val) {
break 'fail;
}
ix = ix_end;
}
Insn::Split(x, y) => {
state.push(y, ix)?;
pc = x;
continue;
}
Insn::Jmp(target) => {
pc = target;
continue;
}
Insn::Save(slot) => state.save(slot, ix),
Insn::Save0(slot) => state.save(slot, 0),
Insn::Restore(slot) => ix = state.get(slot),
Insn::RepeatGr {
lo,
hi,
next,
repeat,
} => {
let repcount = state.get(repeat);
if repcount == hi {
pc = next;
continue;
}
state.save(repeat, repcount + 1);
if repcount >= lo {
state.push(next, ix)?;
}
}
Insn::RepeatNg {
lo,
hi,
next,
repeat,
} => {
let repcount = state.get(repeat);
if repcount == hi {
pc = next;
continue;
}
state.save(repeat, repcount + 1);
if repcount >= lo {
state.push(pc + 1, ix)?;
pc = next;
continue;
}
}
Insn::RepeatEpsilonGr {
lo,
next,
repeat,
check,
} => {
let repcount = state.get(repeat);
if repcount > lo && state.get(check) == ix {
// prevent zero-length match on repeat
break 'fail;
}
state.save(repeat, repcount + 1);
if repcount >= lo {
state.save(check, ix);
state.push(next, ix)?;
}
}
Insn::RepeatEpsilonNg {
lo,
next,
repeat,
check,
} => {
let repcount = state.get(repeat);
if repcount > lo && state.get(check) == ix {
// prevent zero-length match on repeat
break 'fail;
}
state.save(repeat, repcount + 1);
if repcount >= lo {
state.save(check, ix);
state.push(pc + 1, ix)?;
pc = next;
continue;
}
}
Insn::GoBack(count) => {
for _ in 0..count {
if ix == 0 {
break 'fail;
}
ix = prev_codepoint_ix(s, ix);
}
}
Insn::FailNegativeLookAround => {
// Reaching this instruction means that the body of the
// look-around matched. Because it's a *negative* look-around,
// that means the look-around itself should fail (not match).
// But before, we need to discard all the states that have
// been pushed with the look-around, because we don't want to
// explore them.
loop {
let (popped_pc, _) = state.pop();
if popped_pc == pc + 1 {
// We've reached the state that would jump us to
// after the look-around (in case the look-around
// succeeded). That means we popped enough states.
break;
}
}
break 'fail;
}
Insn::Backref(slot) => {
let lo = state.get(slot);
if lo == usize::MAX {
// Referenced group hasn't matched, so the backref doesn't match either
break 'fail;
}
let hi = state.get(slot + 1);
if hi == usize::MAX {
// Referenced group hasn't matched, so the backref doesn't match either
break 'fail;
}
let ref_text = &s[lo..hi];
let ix_end = ix + ref_text.len();
if !matches_literal(s, ix, ix_end, ref_text) {
break 'fail;
}
ix = ix_end;
}
Insn::BackrefExistsCondition(group) => {
let lo = state.get(group * 2);
if lo == usize::MAX {
// Referenced group hasn't matched, so the backref doesn't match either
break 'fail;
}
}
Insn::BeginAtomic => {
let count = state.backtrack_count();
state.stack_push(count);
}
Insn::EndAtomic => {
let count = state.stack_pop();
state.backtrack_cut(count);
}
Insn::DelegateSized(ref inner, size) => {
if inner.is_match(&s[ix..]) {
// We could analyze for ascii-only, and ix += size in
// that case. Unlikely to be speed-limiting though.
for _ in 0..size {
ix += codepoint_len_at(s, ix);
}
} else {
break 'fail;
}
}
Insn::Delegate {
ref inner,
ref inner1,
start_group,
end_group,
} => {
// Note: Why can't we use `find_at` or `captures_read_at` here instead of the
// `inner1` regex? We only want to match at the current location, so our regexes
// need to have an anchor: `^foo` (without `^`, it would match `foo` anywhere).
// But regex like `^foo` won't match in `bar foo` with `find_at(s, 4)` because
// `^` only matches at the beginning of the text.
let re = match *inner1 {
Some(ref inner1) if ix > 0 => {
ix = prev_codepoint_ix(s, ix);
inner1
}
_ => inner,
};
if start_group == end_group {
// No groups, so we can use `find` which is faster than `captures_read`
match re.find(&s[ix..]) {
Some(m) => ix += m.end(),
_ => break 'fail,
}
} else {
let mut locations = re.capture_locations();
if let Some(m) = re.captures_read(&mut locations, &s[ix..]) {
for i in 0..(end_group - start_group) {
let slot = (start_group + i) * 2;
if let Some((start, end)) = locations.get(i + 1) {
state.save(slot, ix + start);
state.save(slot + 1, ix + end);
} else {
state.save(slot, usize::MAX);
state.save(slot + 1, usize::MAX);
}
}
ix += m.end();
} else {
break 'fail;
}
}
}
Insn::ContinueFromPreviousMatchEnd => {
if ix > pos || option_flags & OPTION_SKIPPED_EMPTY_MATCH != 0 {
break 'fail;
}
}
}
pc += 1;
}
if option_flags & OPTION_TRACE != 0 {
println!("fail");
}
// "break 'fail" goes here
if state.stack.is_empty() {
return Ok(None);
}
backtrack_count += 1;
if backtrack_count > options.backtrack_limit {
return Err(Error::RuntimeError(RuntimeError::BacktrackLimitExceeded));
}
let (newpc, newix) = state.pop();
pc = newpc;
ix = newix;
}
}
#[cfg(test)]
mod tests {
use super::*;
use quickcheck::{quickcheck, Arbitrary, Gen};
#[test]
fn state_push_pop() {
let mut state = State::new(1, MAX_STACK, 0);
state.push(0, 0).unwrap();
state.push(1, 1).unwrap();
assert_eq!(state.pop(), (1, 1));
assert_eq!(state.pop(), (0, 0));
assert!(state.stack.is_empty());
state.push(2, 2).unwrap();
assert_eq!(state.pop(), (2, 2));
assert!(state.stack.is_empty());
}
#[test]
fn state_save_override() {
let mut state = State::new(1, MAX_STACK, 0);
state.save(0, 10);
state.push(0, 0).unwrap();
state.save(0, 20);
assert_eq!(state.pop(), (0, 0));
assert_eq!(state.get(0), 10);
}
#[test]
fn state_save_override_twice() {
let mut state = State::new(1, MAX_STACK, 0);
state.save(0, 10);
state.push(0, 0).unwrap();
state.save(0, 20);
state.push(1, 1).unwrap();
state.save(0, 30);
assert_eq!(state.get(0), 30);
assert_eq!(state.pop(), (1, 1));
assert_eq!(state.get(0), 20);
assert_eq!(state.pop(), (0, 0));
assert_eq!(state.get(0), 10);
}
#[test]
fn state_explicit_stack() {
let mut state = State::new(1, MAX_STACK, 0);
state.stack_push(11);
state.stack_push(12);
state.push(100, 101).unwrap();
state.stack_push(13);
assert_eq!(state.stack_pop(), 13);
state.stack_push(14);
assert_eq!(state.pop(), (100, 101));
// Note: 14 is not there because it was pushed as part of the backtrack branch
assert_eq!(state.stack_pop(), 12);
assert_eq!(state.stack_pop(), 11);
}
#[test]
fn state_backtrack_cut_simple() {
let mut state = State::new(2, MAX_STACK, 0);
state.save(0, 1);
state.save(1, 2);
let count = state.backtrack_count();
state.push(0, 0).unwrap();
state.save(0, 3);
assert_eq!(state.backtrack_count(), 1);
state.backtrack_cut(count);
assert_eq!(state.backtrack_count(), 0);
assert_eq!(state.get(0), 3);
assert_eq!(state.get(1), 2);
}
#[test]
fn state_backtrack_cut_complex() {
let mut state = State::new(2, MAX_STACK, 0);
state.save(0, 1);
state.save(1, 2);
state.push(0, 0).unwrap();
state.save(0, 3);
let count = state.backtrack_count();
state.push(1, 1).unwrap();
state.save(0, 4);
state.push(2, 2).unwrap();
state.save(1, 5);
assert_eq!(state.backtrack_count(), 3);
state.backtrack_cut(count);
assert_eq!(state.backtrack_count(), 1);
assert_eq!(state.get(0), 4);
assert_eq!(state.get(1), 5);
state.pop();
assert_eq!(state.backtrack_count(), 0);
// Check that oldsave were set correctly
assert_eq!(state.get(0), 1);
assert_eq!(state.get(1), 2);
}
#[derive(Clone, Debug)]
enum Operation {
Push,
Pop,
Save(usize, usize),
}
impl Arbitrary for Operation {
fn arbitrary(g: &mut Gen) -> Self {
match g.choose(&[0, 1, 2]) {
Some(0) => Operation::Push,
Some(1) => Operation::Pop,
_ => Operation::Save(
*g.choose(&[0usize, 1, 2, 3, 4]).unwrap(),
usize::arbitrary(g),
),
}
}
}
fn check_saves_for_operations(operations: Vec<Operation>) -> bool {
let slots = operations
.iter()
.map(|o| match o {
&Operation::Save(slot, _) => slot + 1,
_ => 0,
})
.max()
.unwrap_or(0);
if slots == 0 {
// No point checking if there's no save instructions
return true;
}
// Stack with the complete VM state (including saves)
let mut stack = Vec::new();
let mut saves = vec![usize::MAX; slots];
let mut state = State::new(slots, MAX_STACK, 0);
let mut expected = Vec::new();
let mut actual = Vec::new();
for operation in operations {
match operation {
Operation::Push => {
// We're not checking pc and ix later, so don't bother
// putting in random values.
stack.push((0, 0, saves.clone()));
state.push(0, 0).unwrap();
}
Operation::Pop => {
// Note that because we generate the operations randomly
// there might be more pops than pushes. So ignore a pop
// if the stack was empty.
if let Some((_, _, previous_saves)) = stack.pop() {
saves = previous_saves;
state.pop();
}
}
Operation::Save(slot, value) => {
saves[slot] = value;
state.save(slot, value);
}
}
// Remember state of saves for checking later
expected.push(saves.clone());
let mut actual_saves = vec![usize::MAX; slots];
for i in 0..slots {
actual_saves[i] = state.get(i);
}
actual.push(actual_saves);
}
expected == actual
}
quickcheck! {
fn state_save_quickcheck(operations: Vec<Operation>) -> bool {
check_saves_for_operations(operations)
}
}
}