fancy_regex/
vm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// Copyright 2016 The Fancy Regex Authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

//! Backtracking VM for implementing fancy regexes.
//!
//! Read <https://swtch.com/~rsc/regexp/regexp2.html> for a good introduction for how this works.
//!
//! The VM executes a sequence of instructions (a program) against an input string. It keeps track
//! of a program counter (PC) and an index into the string (IX). Execution can have one or more
//! threads.
//!
//! One of the basic instructions is `Lit`, which matches a string against the input. If it matches,
//! the PC advances to the next instruction and the IX to the position after the matched string.
//! If not, the current thread is stopped because it failed.
//!
//! If execution reaches an `End` instruction, the program is successful because a match was found.
//! If there are no more threads to execute, the program has failed to match.
//!
//! A very simple program for the regex `a`:
//!
//! ```text
//! 0: Lit("a")
//! 1: End
//! ```
//!
//! The `Split` instruction causes execution to split into two threads. The first thread is executed
//! with the current string index. If it fails, we reset the string index and resume execution with
//! the second thread. That is what "backtracking" refers to. In order to do that, we keep a stack
//! of threads (PC and IX) to try.
//!
//! Example program for the regex `ab|ac`:
//!
//! ```text
//! 0: Split(1, 4)
//! 1: Lit("a")
//! 2: Lit("b")
//! 3: Jmp(6)
//! 4: Lit("a")
//! 5: Lit("c")
//! 6: End
//! ```
//!
//! The `Jmp` instruction causes execution to jump to the specified instruction. In the example it
//! is needed to separate the two threads.
//!
//! Let's step through execution with that program for the input `ac`:
//!
//! 1. We're at PC 0 and IX 0
//! 2. `Split(1, 4)` means we save a thread with PC 4 and IX 0 for trying later
//! 3. Continue at `Lit("a")` which matches, so we advance IX to 1
//! 4. `Lit("b")` doesn't match at IX 1 (`"b" != "c"`), so the thread fails
//! 5. We continue with the previously saved thread at PC 4 and IX 0 (backtracking)
//! 6. Both `Lit("a")` and `Lit("c")` match and we reach `End` -> successful match (index 0 to 2)

use regex::Regex;
use std::collections::BTreeSet;
use std::usize;

use crate::error::RuntimeError;
use crate::prev_codepoint_ix;
use crate::Error;
use crate::Result;
use crate::{codepoint_len, RegexOptions};

/// Enable tracing of VM execution. Only for debugging/investigating.
const OPTION_TRACE: u32 = 1 << 0;
/// When iterating over all matches within a text (e.g. with `find_iter`), empty matches need to be
/// handled specially. If we kept matching at the same position, we'd never stop. So what we do
/// after we've had an empty match, is to advance the position where matching is attempted.
/// If `\G` is used in the pattern, that means it no longer matches. If we didn't tell the VM about
/// the fact that we skipped because of an empty match, it would still treat `\G` as matching. So
/// this option is for communicating that to the VM. Phew.
pub(crate) const OPTION_SKIPPED_EMPTY_MATCH: u32 = 1 << 1;

// TODO: make configurable
const MAX_STACK: usize = 1_000_000;

/// Instruction of the VM.
#[derive(Debug, Clone)]
pub enum Insn {
    /// Successful end of program
    End,
    /// Match any character (including newline)
    Any,
    /// Match any character (not including newline)
    AnyNoNL,
    /// Match the literal string at the current index
    Lit(String), // should be cow?
    /// Split execution into two threads. The two fields are positions of instructions. Execution
    /// first tries the first thread. If that fails, the second position is tried.
    Split(usize, usize),
    /// Jump to instruction at position
    Jmp(usize),
    /// Save the current string index into the specified slot
    Save(usize),
    /// Save `0` into the specified slot
    Save0(usize),
    /// Set the string index to the value that was saved in the specified slot
    Restore(usize),
    /// Repeat greedily (match as much as possible)
    RepeatGr {
        /// Minimum number of matches
        lo: usize,
        /// Maximum number of matches
        hi: usize,
        /// The instruction after the repeat
        next: usize,
        /// The slot for keeping track of the number of repetitions
        repeat: usize,
    },
    /// Repeat non-greedily (prefer matching as little as possible)
    RepeatNg {
        /// Minimum number of matches
        lo: usize,
        /// Maximum number of matches
        hi: usize,
        /// The instruction after the repeat
        next: usize,
        /// The slot for keeping track of the number of repetitions
        repeat: usize,
    },
    /// Repeat greedily and prevent infinite loops from empty matches
    RepeatEpsilonGr {
        /// Minimum number of matches
        lo: usize,
        /// The instruction after the repeat
        next: usize,
        /// The slot for keeping track of the number of repetitions
        repeat: usize,
        /// The slot for saving the previous IX to check if we had an empty match
        check: usize,
    },
    /// Repeat non-greedily and prevent infinite loops from empty matches
    RepeatEpsilonNg {
        /// Minimum number of matches
        lo: usize,
        /// The instruction after the repeat
        next: usize,
        /// The slot for keeping track of the number of repetitions
        repeat: usize,
        /// The slot for saving the previous IX to check if we had an empty match
        check: usize,
    },
    /// Negative look-around failed
    FailNegativeLookAround,
    /// Set IX back by the specified number of characters
    GoBack(usize),
    /// Back reference to a group number to check
    Backref(usize),
    /// Begin of atomic group
    BeginAtomic,
    /// End of atomic group
    EndAtomic,
    /// Delegate matching to the regex crate for a fixed size
    DelegateSized(Box<Regex>, usize),
    /// Delegate matching to the regex crate
    Delegate {
        /// The regex
        inner: Box<Regex>,
        /// The same regex but matching an additional character on the left.
        ///
        /// E.g. if `inner` is `^\b`, `inner1` is `^(?s:.)\b`. Why do we need this? Because `\b`
        /// needs to know the previous character to work correctly. Let's say we're currently at the
        /// second character of the string `xy`. Should `\b` match there? No. But if we'd run `^\b`
        /// against `y`, it would match (incorrect). To do the right thing, we run `^(?s:.)\b`
        /// against `xy`, which does not match.
        ///
        /// We only need this for regexes that "look left", i.e. need to know what the previous
        /// character was.
        inner1: Option<Box<Regex>>,
        /// The first group number that this regex captures (if it contains groups)
        start_group: usize,
        /// The last group number
        end_group: usize,
    },
    /// Anchor to match at the position where the previous match ended
    ContinueFromPreviousMatchEnd,
    /// Continue only if the specified capture group has already been populated as part of the match
    BackrefExistsCondition(usize),
}

/// Sequence of instructions for the VM to execute.
#[derive(Debug, Clone)]
pub struct Prog {
    /// Instructions of the program
    pub body: Vec<Insn>,
    n_saves: usize,
}

impl Prog {
    pub(crate) fn new(body: Vec<Insn>, n_saves: usize) -> Prog {
        Prog { body, n_saves }
    }

    #[doc(hidden)]
    pub(crate) fn debug_print(&self) {
        for (i, insn) in self.body.iter().enumerate() {
            println!("{:3}: {:?}", i, insn);
        }
    }
}

#[derive(Debug)]
struct Branch {
    pc: usize,
    ix: usize,
    nsave: usize,
}

#[derive(Debug)]
struct Save {
    slot: usize,
    value: usize,
}

struct State {
    /// Saved values indexed by slot. Mostly indices to s, but can be repeat values etc.
    /// Always contains the saves of the current state.
    saves: Vec<usize>,
    /// Stack of backtrack branches.
    stack: Vec<Branch>,
    /// Old saves (slot, value)
    oldsave: Vec<Save>,
    /// Number of saves at the end of `oldsave` that need to be restored to `saves` on pop
    nsave: usize,
    explicit_sp: usize,
    /// Maximum size of the stack. If the size would be exceeded during execution, a `StackOverflow`
    /// error is raised.
    max_stack: usize,
    options: u32,
}

// Each element in the stack conceptually represents the entire state
// of the machine: the pc (index into prog), the index into the
// string, and the entire vector of saves. However, copying the save
// vector on every push/pop would be inefficient, so instead we use a
// copy-on-write approach for each slot within the save vector. The
// top `nsave` elements in `oldsave` represent the delta from the
// current machine state to the top of stack.

impl State {
    fn new(n_saves: usize, max_stack: usize, options: u32) -> State {
        State {
            saves: vec![usize::MAX; n_saves],
            stack: Vec::new(),
            oldsave: Vec::new(),
            nsave: 0,
            explicit_sp: n_saves,
            max_stack,
            options,
        }
    }

    // push a backtrack branch
    fn push(&mut self, pc: usize, ix: usize) -> Result<()> {
        if self.stack.len() < self.max_stack {
            let nsave = self.nsave;
            self.stack.push(Branch { pc, ix, nsave });
            self.nsave = 0;
            self.trace_stack("push");
            Ok(())
        } else {
            Err(Error::RuntimeError(RuntimeError::StackOverflow))
        }
    }

    // pop a backtrack branch
    fn pop(&mut self) -> (usize, usize) {
        for _ in 0..self.nsave {
            let Save { slot, value } = self.oldsave.pop().unwrap();
            self.saves[slot] = value;
        }
        let Branch { pc, ix, nsave } = self.stack.pop().unwrap();
        self.nsave = nsave;
        self.trace_stack("pop");
        (pc, ix)
    }

    fn save(&mut self, slot: usize, val: usize) {
        for i in 0..self.nsave {
            // could avoid this iteration with some overhead; worth it?
            if self.oldsave[self.oldsave.len() - i - 1].slot == slot {
                // already saved, just update
                self.saves[slot] = val;
                return;
            }
        }
        self.oldsave.push(Save {
            slot,
            value: self.saves[slot],
        });
        self.nsave += 1;
        self.saves[slot] = val;

        if self.options & OPTION_TRACE != 0 {
            println!("saves: {:?}", self.saves);
        }
    }

    fn get(&self, slot: usize) -> usize {
        self.saves[slot]
    }

    // push a value onto the explicit stack; note: the entire contents of
    // the explicit stack is saved and restored on backtrack.
    fn stack_push(&mut self, val: usize) {
        if self.saves.len() == self.explicit_sp {
            self.saves.push(self.explicit_sp + 1);
        }
        let explicit_sp = self.explicit_sp;
        let sp = self.get(explicit_sp);
        if self.saves.len() == sp {
            self.saves.push(val);
        } else {
            self.save(sp, val);
        }
        self.save(explicit_sp, sp + 1);
    }

    // pop a value from the explicit stack
    fn stack_pop(&mut self) -> usize {
        let explicit_sp = self.explicit_sp;
        let sp = self.get(explicit_sp) - 1;
        let result = self.get(sp);
        self.save(explicit_sp, sp);
        result
    }

    /// Get the current number of backtrack branches
    fn backtrack_count(&self) -> usize {
        self.stack.len()
    }

    /// Discard backtrack branches that were pushed since the call to `backtrack_count`.
    ///
    /// What we want:
    /// * Keep the current `saves` as they are
    /// * Only keep `count` backtrack branches on `stack`, discard the rest
    /// * Keep the first `oldsave` for each slot, discard the rest (multiple pushes might have
    ///   happened with saves to the same slot)
    fn backtrack_cut(&mut self, count: usize) {
        if self.stack.len() == count {
            // no backtrack branches to discard, all good
            return;
        }
        // start and end indexes of old saves for the branch we're cutting to
        let (oldsave_start, oldsave_end) = {
            let mut end = self.oldsave.len() - self.nsave;
            for &Branch { nsave, .. } in &self.stack[count + 1..] {
                end -= nsave;
            }
            let start = end - self.stack[count].nsave;
            (start, end)
        };
        let mut saved = BTreeSet::new();
        // keep all the old saves of our branch (they're all for different slots)
        for &Save { slot, .. } in &self.oldsave[oldsave_start..oldsave_end] {
            saved.insert(slot);
        }
        let mut oldsave_ix = oldsave_end;
        // for other old saves, keep them only if they're for a slot that we haven't saved yet
        for ix in oldsave_end..self.oldsave.len() {
            let Save { slot, .. } = self.oldsave[ix];
            let new_slot = saved.insert(slot);
            if new_slot {
                // put the save we want to keep (ix) after the ones we already have (oldsave_ix)
                // note that it's fine if the indexes are the same (then swapping is a no-op)
                self.oldsave.swap(oldsave_ix, ix);
                oldsave_ix += 1;
            }
        }
        self.stack.truncate(count);
        self.oldsave.truncate(oldsave_ix);
        self.nsave = oldsave_ix - oldsave_start;
    }

    #[inline]
    fn trace_stack(&self, operation: &str) {
        if self.options & OPTION_TRACE != 0 {
            println!("stack after {}: {:?}", operation, self.stack);
        }
    }
}

fn codepoint_len_at(s: &str, ix: usize) -> usize {
    codepoint_len(s.as_bytes()[ix])
}

#[inline]
fn matches_literal(s: &str, ix: usize, end: usize, literal: &str) -> bool {
    // Compare as bytes because the literal might be a single byte char whereas ix
    // points to a multibyte char. Comparing with str would result in an error like
    // "byte index N is not a char boundary".
    end <= s.len() && &s.as_bytes()[ix..end] == literal.as_bytes()
}

/// Run the program with trace printing for debugging.
pub fn run_trace(prog: &Prog, s: &str, pos: usize) -> Result<Option<Vec<usize>>> {
    run(prog, s, pos, OPTION_TRACE, &RegexOptions::default())
}

/// Run the program with default options.
pub fn run_default(prog: &Prog, s: &str, pos: usize) -> Result<Option<Vec<usize>>> {
    run(prog, s, pos, 0, &RegexOptions::default())
}

/// Run the program with options.
#[allow(clippy::cognitive_complexity)]
pub(crate) fn run(
    prog: &Prog,
    s: &str,
    pos: usize,
    option_flags: u32,
    options: &RegexOptions,
) -> Result<Option<Vec<usize>>> {
    let mut state = State::new(prog.n_saves, MAX_STACK, option_flags);
    if option_flags & OPTION_TRACE != 0 {
        println!("pos\tinstruction");
    }
    let mut backtrack_count = 0;
    let mut pc = 0;
    let mut ix = pos;
    loop {
        // break from this loop to fail, causes stack to pop
        'fail: loop {
            if option_flags & OPTION_TRACE != 0 {
                println!("{}\t{} {:?}", ix, pc, prog.body[pc]);
            }
            match prog.body[pc] {
                Insn::End => {
                    // save of end position into slot 1 is now done
                    // with an explicit group; we might want to
                    // optimize that.
                    //state.saves[1] = ix;
                    if option_flags & OPTION_TRACE != 0 {
                        println!("saves: {:?}", state.saves);
                    }
                    if let Some(&slot1) = state.saves.get(1) {
                        // With some features like keep out (\K), the match start can be after
                        // the match end. Cap the start to <= end.
                        if state.get(0) > slot1 {
                            state.save(0, slot1);
                        }
                    }
                    return Ok(Some(state.saves));
                }
                Insn::Any => {
                    if ix < s.len() {
                        ix += codepoint_len_at(s, ix);
                    } else {
                        break 'fail;
                    }
                }
                Insn::AnyNoNL => {
                    if ix < s.len() && s.as_bytes()[ix] != b'\n' {
                        ix += codepoint_len_at(s, ix);
                    } else {
                        break 'fail;
                    }
                }
                Insn::Lit(ref val) => {
                    let ix_end = ix + val.len();
                    if !matches_literal(s, ix, ix_end, val) {
                        break 'fail;
                    }
                    ix = ix_end;
                }
                Insn::Split(x, y) => {
                    state.push(y, ix)?;
                    pc = x;
                    continue;
                }
                Insn::Jmp(target) => {
                    pc = target;
                    continue;
                }
                Insn::Save(slot) => state.save(slot, ix),
                Insn::Save0(slot) => state.save(slot, 0),
                Insn::Restore(slot) => ix = state.get(slot),
                Insn::RepeatGr {
                    lo,
                    hi,
                    next,
                    repeat,
                } => {
                    let repcount = state.get(repeat);
                    if repcount == hi {
                        pc = next;
                        continue;
                    }
                    state.save(repeat, repcount + 1);
                    if repcount >= lo {
                        state.push(next, ix)?;
                    }
                }
                Insn::RepeatNg {
                    lo,
                    hi,
                    next,
                    repeat,
                } => {
                    let repcount = state.get(repeat);
                    if repcount == hi {
                        pc = next;
                        continue;
                    }
                    state.save(repeat, repcount + 1);
                    if repcount >= lo {
                        state.push(pc + 1, ix)?;
                        pc = next;
                        continue;
                    }
                }
                Insn::RepeatEpsilonGr {
                    lo,
                    next,
                    repeat,
                    check,
                } => {
                    let repcount = state.get(repeat);
                    if repcount > lo && state.get(check) == ix {
                        // prevent zero-length match on repeat
                        break 'fail;
                    }
                    state.save(repeat, repcount + 1);
                    if repcount >= lo {
                        state.save(check, ix);
                        state.push(next, ix)?;
                    }
                }
                Insn::RepeatEpsilonNg {
                    lo,
                    next,
                    repeat,
                    check,
                } => {
                    let repcount = state.get(repeat);
                    if repcount > lo && state.get(check) == ix {
                        // prevent zero-length match on repeat
                        break 'fail;
                    }
                    state.save(repeat, repcount + 1);
                    if repcount >= lo {
                        state.save(check, ix);
                        state.push(pc + 1, ix)?;
                        pc = next;
                        continue;
                    }
                }
                Insn::GoBack(count) => {
                    for _ in 0..count {
                        if ix == 0 {
                            break 'fail;
                        }
                        ix = prev_codepoint_ix(s, ix);
                    }
                }
                Insn::FailNegativeLookAround => {
                    // Reaching this instruction means that the body of the
                    // look-around matched. Because it's a *negative* look-around,
                    // that means the look-around itself should fail (not match).
                    // But before, we need to discard all the states that have
                    // been pushed with the look-around, because we don't want to
                    // explore them.
                    loop {
                        let (popped_pc, _) = state.pop();
                        if popped_pc == pc + 1 {
                            // We've reached the state that would jump us to
                            // after the look-around (in case the look-around
                            // succeeded). That means we popped enough states.
                            break;
                        }
                    }
                    break 'fail;
                }
                Insn::Backref(slot) => {
                    let lo = state.get(slot);
                    if lo == usize::MAX {
                        // Referenced group hasn't matched, so the backref doesn't match either
                        break 'fail;
                    }
                    let hi = state.get(slot + 1);
                    if hi == usize::MAX {
                        // Referenced group hasn't matched, so the backref doesn't match either
                        break 'fail;
                    }
                    let ref_text = &s[lo..hi];
                    let ix_end = ix + ref_text.len();
                    if !matches_literal(s, ix, ix_end, ref_text) {
                        break 'fail;
                    }
                    ix = ix_end;
                }
                Insn::BackrefExistsCondition(group) => {
                    let lo = state.get(group * 2);
                    if lo == usize::MAX {
                        // Referenced group hasn't matched, so the backref doesn't match either
                        break 'fail;
                    }
                }
                Insn::BeginAtomic => {
                    let count = state.backtrack_count();
                    state.stack_push(count);
                }
                Insn::EndAtomic => {
                    let count = state.stack_pop();
                    state.backtrack_cut(count);
                }
                Insn::DelegateSized(ref inner, size) => {
                    if inner.is_match(&s[ix..]) {
                        // We could analyze for ascii-only, and ix += size in
                        // that case. Unlikely to be speed-limiting though.
                        for _ in 0..size {
                            ix += codepoint_len_at(s, ix);
                        }
                    } else {
                        break 'fail;
                    }
                }
                Insn::Delegate {
                    ref inner,
                    ref inner1,
                    start_group,
                    end_group,
                } => {
                    // Note: Why can't we use `find_at` or `captures_read_at` here instead of the
                    // `inner1` regex? We only want to match at the current location, so our regexes
                    // need to have an anchor: `^foo` (without `^`, it would match `foo` anywhere).
                    // But regex like `^foo` won't match in `bar foo` with `find_at(s, 4)` because
                    // `^` only matches at the beginning of the text.
                    let re = match *inner1 {
                        Some(ref inner1) if ix > 0 => {
                            ix = prev_codepoint_ix(s, ix);
                            inner1
                        }
                        _ => inner,
                    };
                    if start_group == end_group {
                        // No groups, so we can use `find` which is faster than `captures_read`
                        match re.find(&s[ix..]) {
                            Some(m) => ix += m.end(),
                            _ => break 'fail,
                        }
                    } else {
                        let mut locations = re.capture_locations();
                        if let Some(m) = re.captures_read(&mut locations, &s[ix..]) {
                            for i in 0..(end_group - start_group) {
                                let slot = (start_group + i) * 2;
                                if let Some((start, end)) = locations.get(i + 1) {
                                    state.save(slot, ix + start);
                                    state.save(slot + 1, ix + end);
                                } else {
                                    state.save(slot, usize::MAX);
                                    state.save(slot + 1, usize::MAX);
                                }
                            }
                            ix += m.end();
                        } else {
                            break 'fail;
                        }
                    }
                }
                Insn::ContinueFromPreviousMatchEnd => {
                    if ix > pos || option_flags & OPTION_SKIPPED_EMPTY_MATCH != 0 {
                        break 'fail;
                    }
                }
            }
            pc += 1;
        }
        if option_flags & OPTION_TRACE != 0 {
            println!("fail");
        }
        // "break 'fail" goes here
        if state.stack.is_empty() {
            return Ok(None);
        }

        backtrack_count += 1;
        if backtrack_count > options.backtrack_limit {
            return Err(Error::RuntimeError(RuntimeError::BacktrackLimitExceeded));
        }

        let (newpc, newix) = state.pop();
        pc = newpc;
        ix = newix;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::{quickcheck, Arbitrary, Gen};

    #[test]
    fn state_push_pop() {
        let mut state = State::new(1, MAX_STACK, 0);

        state.push(0, 0).unwrap();
        state.push(1, 1).unwrap();
        assert_eq!(state.pop(), (1, 1));
        assert_eq!(state.pop(), (0, 0));
        assert!(state.stack.is_empty());

        state.push(2, 2).unwrap();
        assert_eq!(state.pop(), (2, 2));
        assert!(state.stack.is_empty());
    }

    #[test]
    fn state_save_override() {
        let mut state = State::new(1, MAX_STACK, 0);
        state.save(0, 10);
        state.push(0, 0).unwrap();
        state.save(0, 20);
        assert_eq!(state.pop(), (0, 0));
        assert_eq!(state.get(0), 10);
    }

    #[test]
    fn state_save_override_twice() {
        let mut state = State::new(1, MAX_STACK, 0);
        state.save(0, 10);
        state.push(0, 0).unwrap();
        state.save(0, 20);
        state.push(1, 1).unwrap();
        state.save(0, 30);

        assert_eq!(state.get(0), 30);
        assert_eq!(state.pop(), (1, 1));
        assert_eq!(state.get(0), 20);
        assert_eq!(state.pop(), (0, 0));
        assert_eq!(state.get(0), 10);
    }

    #[test]
    fn state_explicit_stack() {
        let mut state = State::new(1, MAX_STACK, 0);
        state.stack_push(11);
        state.stack_push(12);

        state.push(100, 101).unwrap();
        state.stack_push(13);
        assert_eq!(state.stack_pop(), 13);
        state.stack_push(14);
        assert_eq!(state.pop(), (100, 101));

        // Note: 14 is not there because it was pushed as part of the backtrack branch
        assert_eq!(state.stack_pop(), 12);
        assert_eq!(state.stack_pop(), 11);
    }

    #[test]
    fn state_backtrack_cut_simple() {
        let mut state = State::new(2, MAX_STACK, 0);
        state.save(0, 1);
        state.save(1, 2);

        let count = state.backtrack_count();

        state.push(0, 0).unwrap();
        state.save(0, 3);
        assert_eq!(state.backtrack_count(), 1);

        state.backtrack_cut(count);
        assert_eq!(state.backtrack_count(), 0);
        assert_eq!(state.get(0), 3);
        assert_eq!(state.get(1), 2);
    }

    #[test]
    fn state_backtrack_cut_complex() {
        let mut state = State::new(2, MAX_STACK, 0);
        state.save(0, 1);
        state.save(1, 2);

        state.push(0, 0).unwrap();
        state.save(0, 3);

        let count = state.backtrack_count();

        state.push(1, 1).unwrap();
        state.save(0, 4);
        state.push(2, 2).unwrap();
        state.save(1, 5);
        assert_eq!(state.backtrack_count(), 3);

        state.backtrack_cut(count);
        assert_eq!(state.backtrack_count(), 1);
        assert_eq!(state.get(0), 4);
        assert_eq!(state.get(1), 5);

        state.pop();
        assert_eq!(state.backtrack_count(), 0);
        // Check that oldsave were set correctly
        assert_eq!(state.get(0), 1);
        assert_eq!(state.get(1), 2);
    }

    #[derive(Clone, Debug)]
    enum Operation {
        Push,
        Pop,
        Save(usize, usize),
    }

    impl Arbitrary for Operation {
        fn arbitrary(g: &mut Gen) -> Self {
            match g.choose(&[0, 1, 2]) {
                Some(0) => Operation::Push,
                Some(1) => Operation::Pop,
                _ => Operation::Save(
                    *g.choose(&[0usize, 1, 2, 3, 4]).unwrap(),
                    usize::arbitrary(g),
                ),
            }
        }
    }

    fn check_saves_for_operations(operations: Vec<Operation>) -> bool {
        let slots = operations
            .iter()
            .map(|o| match o {
                &Operation::Save(slot, _) => slot + 1,
                _ => 0,
            })
            .max()
            .unwrap_or(0);
        if slots == 0 {
            // No point checking if there's no save instructions
            return true;
        }

        // Stack with the complete VM state (including saves)
        let mut stack = Vec::new();
        let mut saves = vec![usize::MAX; slots];

        let mut state = State::new(slots, MAX_STACK, 0);

        let mut expected = Vec::new();
        let mut actual = Vec::new();

        for operation in operations {
            match operation {
                Operation::Push => {
                    // We're not checking pc and ix later, so don't bother
                    // putting in random values.
                    stack.push((0, 0, saves.clone()));
                    state.push(0, 0).unwrap();
                }
                Operation::Pop => {
                    // Note that because we generate the operations randomly
                    // there might be more pops than pushes. So ignore a pop
                    // if the stack was empty.
                    if let Some((_, _, previous_saves)) = stack.pop() {
                        saves = previous_saves;
                        state.pop();
                    }
                }
                Operation::Save(slot, value) => {
                    saves[slot] = value;
                    state.save(slot, value);
                }
            }

            // Remember state of saves for checking later
            expected.push(saves.clone());
            let mut actual_saves = vec![usize::MAX; slots];
            for i in 0..slots {
                actual_saves[i] = state.get(i);
            }
            actual.push(actual_saves);
        }

        expected == actual
    }

    quickcheck! {
        fn state_save_quickcheck(operations: Vec<Operation>) -> bool {
            check_saves_for_operations(operations)
        }
    }
}