lexical_write_float/
algorithm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
//! Implementation of the Dragonbox algorithm.
//!
//! This is modified from the Rust port of Dragonbox, available
//! [here](https://github.com/dtolnay/dragonbox). It also uses a direct
//! port of Dragonbox, available [here](https://github.com/jk-jeon/dragonbox/).
//!
//! This is therefore under an Apache 2.0/Boost Software dual-license.
//!
//! We use a u64 for the significant digits, even for a 32-bit integer,
//! however, we use the proper bit shifts, etc. for the float in question,
//! rather than clobbering the result to f64, as Rust's port does.
//!
//! Each one of the algorithms described here has the main implementation,
//! according to the reference Dragonbox paper, as well as an alias for
//! our own purposes. The existing algorithms include:
//!
//! 1. `compute_nearest_normal`
//! 2. `compute_nearest_shorter`
//! 3. `compute_left_closed_directed`
//! 4. `compute_right_closed_directed`
//!
//! `compute_nearest_normal` and `compute_nearest_shorter` are used for
//! round-nearest, tie-even and `compute_right_closed_directed` is used
//! for round-to-zero (see below for details).

#![cfg(not(feature = "compact"))]
#![doc(hidden)]

#[cfg(feature = "f16")]
use lexical_util::bf16::bf16;
#[cfg(feature = "f16")]
use lexical_util::f16::f16;
use lexical_util::format::NumberFormat;
use lexical_util::num::{AsPrimitive, Float};
use lexical_write_integer::decimal::{Decimal, DecimalCount};

use crate::float::{ExtendedFloat80, RawFloat};
use crate::options::{Options, RoundMode};
use crate::shared;
use crate::table::*;

/// Optimized float-to-string algorithm for decimal strings.
#[inline(always)]
pub fn write_float<F: RawFloat, const FORMAT: u128>(
    float: F,
    bytes: &mut [u8],
    options: &Options,
) -> usize {
    debug_assert!(!float.is_special());
    debug_assert!(float >= F::ZERO);

    let fp = to_decimal(float);
    let digit_count = F::digit_count(fp.mant);
    let sci_exp = fp.exp + digit_count as i32 - 1;

    // Note that for performance reasons, we write the significant digits
    // later into the algorithms, since we can determine the right path
    // and write the significant digits without using an intermediate buffer
    // in most cases.
    write_float!(
        float,
        FORMAT,
        sci_exp,
        options,
        write_float_scientific,
        write_float_positive_exponent,
        write_float_negative_exponent,
        generic => F,
        bytes => bytes,
        args => fp, sci_exp, options,
    )
}

/// Write float to string in scientific notation.
#[inline]
pub fn write_float_scientific<F: DragonboxFloat, const FORMAT: u128>(
    bytes: &mut [u8],
    fp: ExtendedFloat80,
    sci_exp: i32,
    options: &Options,
) -> usize {
    // Config options.
    debug_assert_eq!(count_factors(10, fp.mant), 0);
    let format = NumberFormat::<{ FORMAT }> {};
    assert!(format.is_valid());
    let decimal_point = options.decimal_point();

    // Write the significant digits. Write at index 1, so we can shift 1
    // for the decimal point without intermediate buffers.
    // Won't panic if we have enough bytes to write the significant digits.
    let digits = &mut bytes[1..];
    let digit_count = F::write_digits(digits, fp.mant);

    // Truncate and round the significant digits.
    let (digit_count, carried) = shared::truncate_and_round_decimal(digits, digit_count, options);
    let sci_exp = sci_exp + carried as i32;

    // Determine the exact number of digits to write.
    let exact_count = shared::min_exact_digits(digit_count, options);

    // Write any trailing digits.
    let mut cursor: usize;
    bytes[0] = bytes[1];
    bytes[1] = decimal_point;
    if !format.no_exponent_without_fraction() && digit_count == 1 && options.trim_floats() {
        cursor = 1;
    } else if digit_count < exact_count {
        // Adjust the number of digits written, by appending zeros.
        cursor = digit_count + 1;
        let zeros = exact_count - digit_count;
        bytes[cursor..cursor + zeros].fill(b'0');
        cursor += zeros;
    } else if digit_count == 1 {
        bytes[2] = b'0';
        cursor = 3;
    } else {
        cursor = digit_count + 1;
    }

    // Now, write our scientific notation.
    // Won't panic since bytes must be large enough to store all digits.
    shared::write_exponent::<FORMAT>(bytes, &mut cursor, sci_exp, options.exponent());

    cursor
}

/// Write negative float to string without scientific notation.
///
/// Has a negative exponent (shift right) and no scientific notation.
#[inline]
pub fn write_float_negative_exponent<F: DragonboxFloat, const FORMAT: u128>(
    bytes: &mut [u8],
    fp: ExtendedFloat80,
    sci_exp: i32,
    options: &Options,
) -> usize {
    debug_assert!(sci_exp < 0);
    debug_assert_eq!(count_factors(10, fp.mant), 0);

    // Config options.
    let decimal_point = options.decimal_point();
    let sci_exp = sci_exp.wrapping_neg() as usize;

    // Write our 0 digits.
    let mut cursor = sci_exp + 1;
    debug_assert!(cursor >= 2, "must have a buffer >= 2 to write our 0 digits");
    // We write 0 digits even over the decimal point, since we might have
    // to round carry over. This is rare, but it could happen, and would
    // require a shift after. The good news is: if we have a shift, we
    // only need to move 1 digit.
    bytes[..cursor].fill(b'0');

    // Write out our significant digits.
    // Won't panic: we have enough bytes to write the significant digits.
    let digits = &mut bytes[cursor..];
    let digit_count = F::write_digits(digits, fp.mant);

    // Truncate and round the significant digits.
    debug_assert!(cursor > 0, "underflowed our digits");
    let (digit_count, carried) = shared::truncate_and_round_decimal(digits, digit_count, options);

    // Handle any trailing digits.
    let mut trimmed = false;
    if carried && cursor == 2 {
        // Rounded-up, and carried to the first byte, so instead of having
        // 0.9999, we have 1.0.
        bytes[0] = b'1';
        if options.trim_floats() {
            cursor = 1;
            trimmed = true;
        } else {
            bytes[1] = decimal_point;
            bytes[2] = b'0';
            cursor = 3;
        }
    } else if carried {
        // Carried, so we need to remove 1 zero before our digits.
        bytes[1] = decimal_point;
        bytes[cursor - 1] = bytes[cursor];
    } else {
        bytes[1] = decimal_point;
        cursor += digit_count;
    }

    // Determine the exact number of digits to write.
    let exact_count = shared::min_exact_digits(digit_count, options);

    // Write any trailing digits.
    // Cursor is 1 if we trimmed floats, in which case skip this.
    if !trimmed && digit_count < exact_count {
        let zeros = exact_count - digit_count;
        bytes[cursor..cursor + zeros].fill(b'0');
        cursor += zeros;
    }

    cursor
}

/// Write positive float to string without scientific notation.
///
/// Has a positive exponent (shift left) and no scientific notation.
#[inline]
pub fn write_float_positive_exponent<F: DragonboxFloat, const FORMAT: u128>(
    bytes: &mut [u8],
    fp: ExtendedFloat80,
    sci_exp: i32,
    options: &Options,
) -> usize {
    // Config options.
    debug_assert!(sci_exp >= 0);
    debug_assert_eq!(count_factors(10, fp.mant), 0);
    let decimal_point = options.decimal_point();

    // Write out our significant digits.
    // Let's be optimistic and try to write without needing to move digits.
    // This only works if the if the resulting leading digits, or `sci_exp + 1`,
    // is greater than the written digits. If not, we have to move digits after
    // and then adjust the decimal point. However, with truncating and remove
    // trailing zeros, we **don't** know the exact digit count **yet**.
    let digit_count = F::write_digits(bytes, fp.mant);
    let (mut digit_count, carried) =
        shared::truncate_and_round_decimal(bytes, digit_count, options);

    // Now, check if we have shift digits.
    let leading_digits = sci_exp as usize + 1 + carried as usize;
    let mut cursor: usize;
    let mut trimmed = false;
    if leading_digits >= digit_count {
        // Great: we have more leading digits than we wrote, can write trailing zeros
        // and an optional decimal point.
        bytes[digit_count..leading_digits].fill(b'0');
        cursor = leading_digits;
        digit_count = leading_digits;
        // Only write decimal point if we're not trimming floats.
        if !options.trim_floats() {
            bytes[cursor] = decimal_point;
            cursor += 1;
            bytes[cursor] = b'0';
            cursor += 1;
            digit_count += 1;
        } else {
            trimmed = true;
        }
    } else {
        // Need to shift digits internally, and write the decimal point.
        // First, move the digits right by 1 after leading digits.
        let count = digit_count - leading_digits;
        let buf = &mut bytes[leading_digits..digit_count + 1];
        assert!(buf.len() > count);
        for i in (0..count).rev() {
            buf[i + 1] = buf[i];
        }

        // Now, write the decimal point.
        bytes[leading_digits] = decimal_point;
        cursor = digit_count + 1;
    }

    // Determine the exact number of digits to write.
    // Don't worry if we carried: we cannot write **MORE** digits if we've
    // already previously truncated the input.
    let exact_count = shared::min_exact_digits(digit_count, options);

    // Change the number of digits written, if we need to add more or trim digits.
    if !trimmed && exact_count > digit_count {
        // Check if we need to write more trailing digits.
        let zeros = exact_count - digit_count;
        bytes[cursor..cursor + zeros].fill(b'0');
        cursor += zeros;
    }

    cursor
}

// ALGORITHM
// ---------

/// Get an extended representation of the decimal float.
///
/// The returned float has a decimal exponent, and the significant digits
/// returned to the nearest mantissa. For example, `1.5f32` will return
/// `ExtendedFloat80 { mant: 15, exp: -1 }`, although trailing zeros
/// might not be removed.
///
/// This algorithm **only** fails when `float == 0.0`, and we want to
/// short-circuit anyway.
#[inline(always)]
pub fn to_decimal<F: RawFloat>(float: F) -> ExtendedFloat80 {
    let bits = float.to_bits();
    let mantissa_bits = bits & F::MANTISSA_MASK;

    if (bits & !F::SIGN_MASK).as_u64() == 0 {
        return extended_float(0, 0);
    }

    // Shorter interval case; proceed like Schubfach.
    // One might think this condition is wrong, since when `exponent_bits == 1`
    // and `two_fc == 0`, the interval is actually regular. However, it turns out
    // that this seemingly wrong condition is actually fine, because the end
    // result is anyway the same.
    //
    // [binary32]
    // (fc-1/2) * 2^e = 1.175'494'28... * 10^-38
    // (fc-1/4) * 2^e = 1.175'494'31... * 10^-38
    //    fc    * 2^e = 1.175'494'35... * 10^-38
    // (fc+1/2) * 2^e = 1.175'494'42... * 10^-38
    //
    // Hence, `shorter_interval_case` will return 1.175'494'4 * 10^-38.
    // 1.175'494'3 * 10^-38 is also a correct shortest representation that will
    // be rejected if we assume shorter interval, but 1.175'494'4 * 10^-38 is
    // closer to the true value so it doesn't matter.
    //
    // [binary64]
    // (fc-1/2) * 2^e = 2.225'073'858'507'201'13... * 10^-308
    // (fc-1/4) * 2^e = 2.225'073'858'507'201'25... * 10^-308
    //    fc    * 2^e = 2.225'073'858'507'201'38... * 10^-308
    // (fc+1/2) * 2^e = 2.225'073'858'507'201'63... * 10^-308
    //
    // Hence, `shorter_interval_case` will return 2.225'073'858'507'201'4 *
    // 10^-308. This is indeed of the shortest length, and it is the unique one
    // closest to the true value among valid representations of the same length.

    // Toward zero case:
    //
    // What we need is a compute-nearest, but with truncated digits in the
    // truncated case. Note that we don't need the left-closed direct
    // rounding case of `I = [w,w+)`, or right-closed directed rounding
    // case of `I = (w−,w]`, since these produce the shortest intervals for
    // a **float parser** assuming the rounding of the float-parser.
    // The left-directed case assumes the float parser will round-down,
    // while the right-directed case assumed the float parser will round-up.
    //
    // A few examples of this behavior is described here:
    //    **compute_nearest_normal**
    //
    //    - `1.23456 => (123456, -5)` for binary32.
    //    - `1.23456 => (123456, -5)` for binary64.
    //    - `13.9999999999999982236431606 => (13999999999999998, -15)` for binary64.
    //
    //     **compute_left_closed_directed**
    //
    //    - `1.23456 => (12345601, -7)` for binary32.
    //    - `1.23456 => (12345600000000002, -16)` for binary64.
    //    - `13.9999999999999982236431606 => (13999999999999999, -15)` for binary64.
    //
    //     **compute_right_closed_directed**
    //
    //    - `1.23456 => (123456, -5)` for binary32.
    //    - `1.23456 => (123456, -5)` for binary64.
    //    - `13.9999999999999982236431606 => (13999999999999982, -15)` for binary64.

    if mantissa_bits.as_u64() == 0 {
        compute_round_short(float)
    } else {
        compute_round(float)
    }
}

/// Compute for a simple case when rounding nearest, tie-even.
#[inline(always)]
pub fn compute_round_short<F: RawFloat>(float: F) -> ExtendedFloat80 {
    compute_nearest_shorter(float)
}

/// Compute for a non-simple case when rounding nearest, tie-even.
#[inline(always)]
pub fn compute_round<F: RawFloat>(float: F) -> ExtendedFloat80 {
    compute_nearest_normal(float)
}

/// Compute the interval `I = [m−w,m+w]` if even, otherwise, `(m−w,m+w)`.
/// This is the simple case for a finite number where only the hidden bit is
/// set.
#[inline]
pub fn compute_nearest_shorter<F: RawFloat>(float: F) -> ExtendedFloat80 {
    // Compute `k` and `beta`.
    let exponent = float.exponent();
    let minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
    let beta = exponent + floor_log2_pow10(-minus_k);

    // Compute `xi` and `zi`.
    // SAFETY: safe, since value must be finite and therefore in the correct range.
    // `-324 <= exponent <= 308`, so `x * log10(2) - log10(4 / 3)` must be in
    // `-98 <= x <= 93`, so the final value must be in `[-93, 98]` (for f64). We
    // have pre-computed powers for `[-292, 326]` for f64 (same logic applies
    // for f32) so this is **ALWAYS** safe.
    let pow5 = unsafe { F::dragonbox_power(-minus_k) };
    let mut xi = F::compute_left_endpoint(&pow5, beta);
    let mut zi = F::compute_right_endpoint(&pow5, beta);

    // Get the interval type.
    // Must be Round since we only use `compute_round` with a round-nearest
    // direction.
    let interval_type = IntervalType::Closed;

    // If we don't accept the right endpoint and if the right endpoint is an
    // integer, decrease it.
    if !interval_type.include_right_endpoint() && is_right_endpoint::<F>(exponent) {
        zi -= 1;
    }

    // If the left endpoint is not an integer, increase it.
    if !(interval_type.include_left_endpoint() && is_left_endpoint::<F>(exponent)) {
        xi += 1;
    }

    // Try bigger divisor.
    let significand = zi / 10;

    // If succeed, remove trailing zeros if necessary and return.
    if significand * 10 >= xi {
        let (mant, exp) = F::process_trailing_zeros(significand, minus_k + 1);
        return extended_float(mant, exp);
    }

    // Otherwise, compute the round-up of `y`.
    let mut significand = F::compute_round_up(&pow5, beta);

    // When tie occurs, choose one of them according to the rule.
    let bits: i32 = F::MANTISSA_SIZE;
    let lower_threshold: i32 = -floor_log5_pow2_minus_log5_3(bits + 4) - 2 - bits;
    let upper_threshold: i32 = -floor_log5_pow2(bits + 2) - 2 - bits;

    let round_down = RoundMode::Round.prefer_round_down(significand);
    if round_down && exponent >= lower_threshold && exponent <= upper_threshold {
        significand -= 1;
    } else if significand < xi {
        significand += 1;
    }

    // Ensure we haven't re-assigned `exponent` or `minus_k`, since this
    // is a massive potential security vulnerability.
    debug_assert!(float.exponent() == exponent);
    debug_assert!(minus_k == floor_log10_pow2_minus_log10_4_over_3(exponent));

    extended_float(significand, minus_k)
}

/// Compute the interval `I = [m−w,m+w]` if even, otherwise, `(m−w,m+w)`.
/// This is the normal case for a finite number with non-zero significant
/// digits.
#[allow(clippy::comparison_chain)] // reason="logical approach for algorithm"
pub fn compute_nearest_normal<F: RawFloat>(float: F) -> ExtendedFloat80 {
    let mantissa = float.mantissa().as_u64();
    let exponent = float.exponent();
    let is_even = mantissa % 2 == 0;

    // Step 1: Schubfach multiplier calculation
    // Compute `k` and `beta`.
    let minus_k = floor_log10_pow2(exponent) - F::KAPPA as i32;
    // SAFETY: safe, since value must be finite and therefore in the correct range.
    // `-324 <= exponent <= 308`, so `x * log10(2)` must be in
    // `-98 <= x <= 93`, so the final value must be in `[-93, 98]` (for f64). We
    // have pre-computed powers for `[-292, 326]` for f64 (same logic applies
    // for f32) so this is **ALWAYS** safe.
    let pow5 = unsafe { F::dragonbox_power(-minus_k) };
    let beta = exponent + floor_log2_pow10(-minus_k);

    // Compute `zi` and `deltai`.
    // `10^kappa <= deltai < 10^(kappa + 1)`
    let two_fc = mantissa << 1;
    let deltai = F::compute_delta(&pow5, beta);
    // For the case of binary32, the result of integer check is not correct for
    // `29711844 * 2^-82
    // = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18`
    // and `29711844 * 2^-81
    // = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17`,
    // and they are the unique counterexamples. However, since `29711844` is even,
    // this does not cause any problem for the endpoints calculations; it can only
    // cause a problem when we need to perform integer check for the center.
    // Fortunately, with these inputs, that branch is never executed, so we are
    // fine.
    let (zi, is_z_integer) = F::compute_mul((two_fc | 1) << beta, &pow5);

    // Step 2: Try larger divisor; remove trailing zeros if necessary
    let big_divisor = pow32(10, F::KAPPA + 1);
    let small_divisor = pow32(10, F::KAPPA);

    // Using an upper bound on `zi`, we might be able to optimize the division
    // better than the compiler; we are computing `zi / big_divisor` here.
    let exp = F::KAPPA + 1;
    let n_max = (1 << (F::MANTISSA_SIZE + 1)) * big_divisor as u64 - 1;
    let mut significand = F::divide_by_pow10(zi, exp, n_max);
    let mut r = (zi - (big_divisor as u64).wrapping_mul(significand)) as u32;

    // Get the interval type.
    // Must be Round since we only use `compute_round` with a round-nearest
    // direction.
    let interval_type = IntervalType::Symmetric(is_even);

    // Check for short-circuit.
    // We use this, since the `goto` statements in dragonbox are unidiomatic
    // in Rust and lead to unmaintainable code. Using a simple closure is much
    // simpler, however, we do store a boolean in some cases to determine
    // if we need to short-circuit.
    let mut should_short_circuit = true;
    if r < deltai {
        // Exclude the right endpoint if necessary.
        let include_right = interval_type.include_right_endpoint();
        if r == 0 && !include_right && is_z_integer {
            significand -= 1;
            r = big_divisor;
            should_short_circuit = false;
        }
    } else if r > deltai {
        should_short_circuit = false;
    } else {
        // `r == deltai`; compare fractional parts.
        // Due to the more complex logic in the new dragonbox algorithm,
        // it's much easier logically to store if we should short circuit,
        // the default, and only mark
        let two_fl = two_fc - 1;
        let include_left = interval_type.include_left_endpoint();

        if !include_left || exponent < F::FC_PM_HALF_LOWER || exponent > F::DIV_BY_5_THRESHOLD {
            // If the left endpoint is not included, the condition for
            // success is `z^(f) < delta^(f)` (odd parity).
            // Otherwise, the inequalities on exponent ensure that
            // `x` is not an integer, so if `z^(f) >= delta^(f)` (even parity), we in fact
            // have strict inequality.
            let parity = F::compute_mul_parity(two_fl, &pow5, beta).0;
            if !parity {
                should_short_circuit = false;
            }
        } else {
            let (xi_parity, x_is_integer) = F::compute_mul_parity(two_fl, &pow5, beta);
            if !xi_parity && !x_is_integer {
                should_short_circuit = false;
            }
        }
    }

    if should_short_circuit {
        // Short-circuit case.
        let (mant, exp) = F::process_trailing_zeros(significand, minus_k + F::KAPPA as i32 + 1);
        extended_float(mant, exp)
    } else {
        // Step 3: Find the significand with the smaller divisor
        significand *= 10;

        let dist = r - (deltai / 2) + (small_divisor / 2);
        let approx_y_parity = ((dist ^ (small_divisor / 2)) & 1) != 0;

        // Is dist divisible by `10^kappa`?
        let (dist, is_dist_div_by_kappa) = F::check_div_pow10(dist);

        // Add `dist / 10^kappa` to the significand.
        significand += dist as u64;

        if is_dist_div_by_kappa {
            // Check `z^(f) >= epsilon^(f)`.
            // We have either `yi == zi - epsiloni` or `yi == (zi - epsiloni) - 1`,
            // where `yi == zi - epsiloni` if and only if `z^(f) >= epsilon^(f)`.
            // Since there are only 2 possibilities, we only need to care about the
            // parity. Also, `zi` and `r` should have the same parity since the divisor is
            // an even number.
            let (yi_parity, is_y_integer) = F::compute_mul_parity(two_fc, &pow5, beta);
            let round_down = RoundMode::Round.prefer_round_down(significand);

            if yi_parity != approx_y_parity || (is_y_integer && round_down) {
                // If `z^(f) >= epsilon^(f)`, we might have a tie
                // when `z^(f) == epsilon^(f)`, or equivalently, when `y` is an integer.
                // For tie-to-up case, we can just choose the upper one.
                significand -= 1;
            }
        }

        // Ensure we haven't re-assigned `exponent` or `minus_k`, since this
        // is a massive potential security vulnerability.
        debug_assert!(float.exponent() == exponent);
        debug_assert!(minus_k == floor_log10_pow2(exponent) - F::KAPPA as i32);

        extended_float(significand, minus_k + F::KAPPA as i32)
    }
}

/// Compute the interval `I = [w,w+)`.
#[allow(clippy::comparison_chain)] // reason="logical approach for algorithm"
pub fn compute_left_closed_directed<F: RawFloat>(float: F) -> ExtendedFloat80 {
    let mantissa = float.mantissa().as_u64();
    let exponent = float.exponent();

    // Step 1: Schubfach multiplier calculation
    // Compute `k` and `beta`.
    let minus_k = floor_log10_pow2(exponent) - F::KAPPA as i32;
    // SAFETY: safe, since value must be finite and therefore in the correct range.
    // `-324 <= exponent <= 308`, so `x * log10(2)` must be in `[-98, 93]` (for
    // f64). We have pre-computed powers for `[-292, 326]` for f64 (same logic
    // applies for f32) so this is **ALWAYS** safe.
    let pow5 = unsafe { F::dragonbox_power(-minus_k) };
    let beta = exponent + floor_log2_pow10(-minus_k);

    // Compute `zi` and `deltai`.
    // `10^kappa <= deltai < 10^(kappa + 1)`
    let two_fc = mantissa << 1;
    let deltai = F::compute_delta(&pow5, beta);
    let (mut xi, mut is_x_integer) = F::compute_mul(two_fc << beta, &pow5);

    // Deal with the unique exceptional cases
    // `29711844 * 2^-82
    // = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18`
    // and `29711844 * 2^-81
    // = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17`
    // for binary32.
    if F::BITS == 32 && exponent <= -80 {
        is_x_integer = false;
    }

    if !is_x_integer {
        xi += 1;
    }

    // Step 2: Try larger divisor; remove trailing zeros if necessary
    let big_divisor = pow32(10, F::KAPPA + 1);

    // Using an upper bound on `xi`, we might be able to optimize the division
    // better than the compiler; we are computing `xi / big_divisor` here.
    let exp = F::KAPPA + 1;
    let n_max = (1 << (F::MANTISSA_SIZE + 1)) * big_divisor as u64 - 1;
    let mut significand = F::divide_by_pow10(xi, exp, n_max);
    let mut r = (xi - (big_divisor as u64).wrapping_mul(significand)) as u32;

    if r != 0 {
        significand += 1;
        r = big_divisor - r;
    }

    // Check for short-circuit.
    // We use this, since the `goto` statements in dragonbox are unidiomatic
    // in Rust and lead to unmaintainable code. Using a simple closure is much
    // simpler, however, we do store a boolean in some cases to determine
    // if we need to short-circuit.
    let mut should_short_circuit = true;
    if r > deltai {
        should_short_circuit = false;
    } else if r == deltai {
        // Compare the fractional parts.
        // This branch is never taken for the exceptional cases
        // `2f_c = 29711482, e = -81`
        // `(6.1442649164096937243516663440523473127541365101933479309082... * 10^-18)`
        // and `2f_c = 29711482, e = -80`
        // `(1.2288529832819387448703332688104694625508273020386695861816... * 10^-17)`.
        let (zi_parity, is_z_integer) = F::compute_mul_parity(two_fc + 2, &pow5, beta);
        if zi_parity || is_z_integer {
            should_short_circuit = false;
        }
    }

    if should_short_circuit {
        let (mant, exp) = F::process_trailing_zeros(significand, minus_k + F::KAPPA as i32 + 1);
        extended_float(mant, exp)
    } else {
        // Step 3: Find the significand with the smaller divisor
        significand *= 10;
        significand -= F::div_pow10(r) as u64;

        // Ensure we haven't re-assigned `exponent` or `minus_k`, since this
        // is a massive potential security vulnerability.
        debug_assert!(float.exponent() == exponent);
        debug_assert!(minus_k == floor_log10_pow2(exponent) - F::KAPPA as i32);

        extended_float(significand, minus_k + F::KAPPA as i32)
    }
}

/// Compute the interval `I = (w−,w]`.
#[allow(clippy::comparison_chain, clippy::if_same_then_else)] // reason="logical approach for algorithm"
pub fn compute_right_closed_directed<F: RawFloat>(float: F, shorter: bool) -> ExtendedFloat80 {
    // ensure our floats have a maximum exp in the range [-324, 308].
    assert!(F::BITS <= 64, "cannot guarantee safety invariants with 128-bit floats");

    let mantissa = float.mantissa().as_u64();
    let exponent = float.exponent();

    // Step 1: Schubfach multiplier calculation
    // Exponent must be in the range `[-324, 308]`
    // Compute `k` and `beta`.
    let minus_k = floor_log10_pow2(exponent - shorter as i32) - F::KAPPA as i32;
    assert!(F::KAPPA <= 2);
    // SAFETY: safe, since value must be finite and therefore in the correct range.
    // `-324 <= exponent <= 308`, so `x * log10(2)` must be in [-100, 92] (for f64).
    // We have pre-computed powers for [-292, 326] for f64 (same logic applies for
    // f32) so this is **ALWAYS** safe.
    let pow5: <F as DragonboxFloat>::Power = unsafe { F::dragonbox_power(-minus_k) };
    let beta = exponent + floor_log2_pow10(-minus_k);

    // Compute `zi` and `deltai`.
    // `10^kappa <= deltai < 10^(kappa + 1)`
    let two_fc = mantissa << 1;
    let deltai = F::compute_delta(&pow5, beta - shorter as i32);
    let zi = F::compute_mul(two_fc << beta, &pow5).0;

    // Step 2: Try larger divisor; remove trailing zeros if necessary
    let big_divisor = pow32(10, F::KAPPA + 1);

    // Using an upper bound on `zi`, we might be able to optimize the division
    // better than the compiler; we are computing `zi / big_divisor` here.
    let exp = F::KAPPA + 1;
    let n_max = (1 << (F::MANTISSA_SIZE + 1)) * big_divisor as u64 - 1;
    let mut significand = F::divide_by_pow10(zi, exp, n_max);
    let r = (zi - (big_divisor as u64).wrapping_mul(significand)) as u32;

    // Check for short-circuit.
    // We use this, since the `goto` statements in dragonbox are unidiomatic
    // in Rust and lead to unmaintainable code. Using a simple closure is much
    // simpler, however, we do store a boolean in some cases to determine
    // if we need to short-circuit.
    let mut should_short_circuit = true;
    if r > deltai {
        should_short_circuit = false;
    } else if r == deltai {
        // Compare the fractional parts.
        let two_f = two_fc
            - if shorter {
                1
            } else {
                2
            };
        if !F::compute_mul_parity(two_f, &pow5, beta).0 {
            should_short_circuit = false;
        }
    }

    if should_short_circuit {
        let (mant, exp) = F::process_trailing_zeros(significand, minus_k + F::KAPPA as i32 + 1);
        extended_float(mant, exp)
    } else {
        // Step 3: Find the significand with the smaller divisor
        significand *= 10;
        significand -= F::div_pow10(r) as u64;

        // Ensure we haven't re-assigned `exponent` or `minus_k`.
        assert!(float.exponent() == exponent);
        debug_assert!(
            minus_k == floor_log10_pow2(float.exponent() - shorter as i32) - F::KAPPA as i32
        );

        extended_float(significand, minus_k + F::KAPPA as i32)
    }
}

// DIGITS
// ------

// NOTE: Dragonbox has a heavily-branched, dubiously optimized algorithm using
// fast division, that leads to no practical performance benefits in my
// benchmarks, and the division algorithm is at best ~3% faster. It also tries
// to avoid writing digits extensively, but requires division operations for
// each step regardless, which means the **actual** overhead of said branching
// likely exceeds any benefits. The code is also impossible to maintain, and in
// my benchmarks is slower (by a small amount) for a 32-bit mantissa, and a
// **lot** slower for a 64-bit mantissa, where we need to trim trailing zeros.

/// Write the significant digits, when the significant digits can fit in a
/// 32-bit integer. `log10(2**32-1) < 10`, so 10 digits is always enough.
///
/// Returns the number of digits written. This assumes any trailing zeros have
/// been removed.
#[inline(always)]
#[allow(clippy::branches_sharing_code)] // reason="could differentiate later"
pub fn write_digits_u32(bytes: &mut [u8], mantissa: u32) -> usize {
    debug_assert!(bytes.len() >= 10);
    mantissa.decimal(bytes)
}

/// Write the significant digits, when the significant digits cannot fit in a
/// 32-bit integer.
///
/// Returns the number of digits written. Note that this might not be the
/// same as the number of digits in the mantissa, since trailing zeros will
/// be removed. `log10(2**64-1) < 20`, so 20 digits is always enough.
#[inline(always)]
#[allow(clippy::branches_sharing_code)] // reason="could differentiate later"
pub fn write_digits_u64(bytes: &mut [u8], mantissa: u64) -> usize {
    debug_assert!(bytes.len() >= 20);
    mantissa.decimal(bytes)
}

// EXTENDED
// --------

/// Create extended float from significant digits and exponent.
#[inline(always)]
pub const fn extended_float(mant: u64, exp: i32) -> ExtendedFloat80 {
    ExtendedFloat80 {
        mant,
        exp,
    }
}

// COMPUTE
// -------

#[inline(always)]
pub const fn floor_log2(mut n: u64) -> i32 {
    let mut count = -1;
    while n != 0 {
        count += 1;
        n >>= 1;
    }
    count
}

#[inline(always)]
pub const fn is_endpoint(exponent: i32, lower: i32, upper: i32) -> bool {
    exponent >= lower && exponent <= upper
}

#[inline(always)]
pub fn is_right_endpoint<F: Float>(exponent: i32) -> bool {
    let lower_threshold = 0;
    let factors = count_factors(5, (1u64 << (F::MANTISSA_SIZE + 1)) + 1) + 1;
    let upper_threshold = 2 + floor_log2(pow64(10, factors) / 3);
    is_endpoint(exponent, lower_threshold, upper_threshold)
}

#[inline(always)]
pub fn is_left_endpoint<F: Float>(exponent: i32) -> bool {
    let lower_threshold = 2;
    let factors = count_factors(5, (1u64 << (F::MANTISSA_SIZE + 2)) - 1) + 1;
    let upper_threshold = 2 + floor_log2(pow64(10, factors) / 3);
    is_endpoint(exponent, lower_threshold, upper_threshold)
}

// MUL
// ---

#[inline(always)]
pub const fn umul128_upper64(x: u64, y: u64) -> u64 {
    let p = x as u128 * y as u128;
    (p >> 64) as u64
}

#[inline(always)]
pub const fn umul192_upper128(x: u64, hi: u64, lo: u64) -> (u64, u64) {
    let mut r = x as u128 * hi as u128;
    r += umul128_upper64(x, lo) as u128;
    ((r >> 64) as u64, r as u64)
}

#[inline(always)]
pub const fn umul192_lower128(x: u64, yhi: u64, ylo: u64) -> (u64, u64) {
    let hi = x.wrapping_mul(yhi);
    let hi_lo = x as u128 * ylo as u128;
    // NOTE: This can wrap exactly to 0, and this is desired.
    (hi.wrapping_add((hi_lo >> 64) as u64), hi_lo as u64)
}

#[inline(always)]
pub const fn umul96_upper64(x: u64, y: u64) -> u64 {
    umul128_upper64(x << 32, y)
}

#[inline(always)]
pub const fn umul96_lower64(x: u64, y: u64) -> u64 {
    x.wrapping_mul(y)
}

// LOG
// ---

/// Calculate `x * log5(2)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1492, 1492]`
#[inline(always)]
pub const fn floor_log5_pow2(q: i32) -> i32 {
    q.wrapping_mul(225799) >> 19
}

/// Calculate `x * log10(2)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1700, 1700]`
#[inline(always)]
pub const fn floor_log10_pow2(q: i32) -> i32 {
    q.wrapping_mul(315653) >> 20
}

/// Calculate `x * log2(10)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1233, 1233]`
#[inline(always)]
pub const fn floor_log2_pow10(q: i32) -> i32 {
    q.wrapping_mul(1741647) >> 19
}

/// Calculate `x * log5(2) - log5(3)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-2427, 2427]`
#[inline(always)]
pub const fn floor_log5_pow2_minus_log5_3(q: i32) -> i32 {
    q.wrapping_mul(451597).wrapping_sub(715764) >> 20
}

/// Calculate `(x * log10(2) - log10(4 / 3))` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1700, 1700]`
#[inline(always)]
pub const fn floor_log10_pow2_minus_log10_4_over_3(q: i32) -> i32 {
    // NOTE: these values aren't actually exact:
    //      They're off for -295 and 97, so any automated way of computing
    //      them will also be off.
    q.wrapping_mul(1262611).wrapping_sub(524031) >> 22
}

// POW
// ---

/// const fn to calculate `radix^exp`.
#[inline(always)]
pub const fn pow32(radix: u32, mut exp: u32) -> u32 {
    let mut p = 1;
    while exp > 0 {
        p *= radix;
        exp -= 1;
    }
    p
}

/// const fn to calculate `radix^exp`.
#[inline(always)]
pub const fn pow64(radix: u32, mut exp: u32) -> u64 {
    let mut p = 1;
    while exp > 0 {
        p *= radix as u64;
        exp -= 1;
    }
    p
}

/// Counter the number of powers of radix are in `n`.
#[inline(always)]
pub const fn count_factors(radix: u32, mut n: u64) -> u32 {
    let mut c = 0;
    while n != 0 && n % radix as u64 == 0 {
        n /= radix as u64;
        c += 1;
    }
    c
}

// DIV
// ---

// Compute `floor(n / 10^exp)` for small exp.
// Precondition: `exp >= 0.`
#[inline(always)]
pub const fn divide_by_pow10_32(n: u32, exp: u32) -> u32 {
    // Specialize for 32-bit division by 100.
    // Compiler is supposed to generate the identical code for just writing
    // `n / 100`, but for some reason MSVC generates an inefficient code
    // (mul + mov for no apparent reason, instead of single imul),
    // so we does this manually.
    if exp == 2 {
        ((n as u64 * 1374389535) >> 37) as u32
    } else {
        let divisor = pow32(exp, 10);
        n / divisor
    }
}

// Compute `floor(n / 10^exp)` for small exp.
// Precondition: `n <= n_max`
#[inline(always)]
pub const fn divide_by_pow10_64(n: u64, exp: u32, n_max: u64) -> u64 {
    // Specialize for 64-bit division by 1000.
    // Ensure that the correctness condition is met.
    if exp == 3 && n_max <= 15534100272597517998 {
        umul128_upper64(n, 2361183241434822607) >> 7
    } else {
        let divisor = pow64(exp, 10);
        n / divisor
    }
}

// ROUNDING
// --------

impl RoundMode {
    /// Determine if we should round down.
    #[inline(always)]
    pub const fn prefer_round_down(&self, significand: u64) -> bool {
        match self {
            RoundMode::Round => significand % 2 != 0,
            RoundMode::Truncate => true,
        }
    }
}

// INTERVAL TYPE
// -------------

/// Interval types for rounding modes to compute endpoints.
#[non_exhaustive]
pub enum IntervalType {
    Symmetric(bool),
    Asymmetric(bool),
    Closed,
    Open,
    LeftClosedRightOpen,
    RightClosedLeftOpen,
}

impl IntervalType {
    /// Determine if the interval type is symmetric.
    #[inline(always)]
    pub fn is_symmetric(&self) -> bool {
        match self {
            Self::Symmetric(_) => true,
            Self::Asymmetric(_) => false,
            Self::Closed => true,
            Self::Open => true,
            Self::LeftClosedRightOpen => false,
            Self::RightClosedLeftOpen => false,
        }
    }

    /// Determine if we include the left endpoint.
    #[inline(always)]
    pub fn include_left_endpoint(&self) -> bool {
        match self {
            Self::Symmetric(closed) => *closed,
            Self::Asymmetric(left_closed) => *left_closed,
            Self::Closed => true,
            Self::Open => false,
            Self::LeftClosedRightOpen => true,
            Self::RightClosedLeftOpen => false,
        }
    }

    /// Determine if we include the right endpoint.
    #[inline(always)]
    pub fn include_right_endpoint(&self) -> bool {
        match self {
            Self::Symmetric(closed) => *closed,
            Self::Asymmetric(left_closed) => !*left_closed,
            Self::Closed => true,
            Self::Open => false,
            Self::LeftClosedRightOpen => false,
            Self::RightClosedLeftOpen => true,
        }
    }
}

// ENDPOINTS
// ---------

/// Compute the left endpoint from a 64-bit power-of-5.
#[inline(always)]
pub fn compute_left_endpoint_u64<F: DragonboxFloat>(pow5: u64, beta: i32) -> u64 {
    let zero_carry = pow5 >> (F::MANTISSA_SIZE as usize + 2);
    let mantissa_shift = 64 - F::MANTISSA_SIZE as usize - 1;
    (pow5 - zero_carry) >> (mantissa_shift as i32 - beta)
}

#[inline(always)]
pub fn compute_right_endpoint_u64<F: DragonboxFloat>(pow5: u64, beta: i32) -> u64 {
    let zero_carry = pow5 >> (F::MANTISSA_SIZE as usize + 1);
    let mantissa_shift = 64 - F::MANTISSA_SIZE as usize - 1;
    (pow5 + zero_carry) >> (mantissa_shift as i32 - beta)
}

/// Determine if we should round up for the short interval case.
#[inline(always)]
pub fn compute_round_up_u64<F: DragonboxFloat>(pow5: u64, beta: i32) -> u64 {
    let shift = 64 - F::MANTISSA_SIZE - 2;
    ((pow5 >> (shift - beta)) + 1) / 2
}

// DRAGONBOX FLOAT
// ---------------

/// Get the high bits from the power-of-5.
#[inline(always)]
pub const fn high(pow5: &(u64, u64)) -> u64 {
    pow5.0
}

/// Get the low bits from the power-of-5.
#[inline(always)]
pub const fn low(pow5: &(u64, u64)) -> u64 {
    pow5.1
}

/// ROR instruction for 32-bit type.
#[inline(always)]
pub const fn rotr32(n: u32, r: u32) -> u32 {
    let r = r & 31;
    (n >> r) | (n << (32 - r))
}

/// ROR instruction for 64-bit type.
#[inline(always)]
pub const fn rotr64(n: u64, r: u64) -> u64 {
    let r = r & 63;
    (n >> r) | (n << (64 - r))
}

/// Magic numbers for division by a power of 10.
/// Replace `n` by `floor(n / 10^N)`.
/// Returns true if and only if n is divisible by `10^N`.
/// Precondition: `n <= 10^(N+1)`
/// !!It takes an in-out parameter!!
struct Div10Info {
    magic_number: u32,
    shift_amount: i32,
}

const F32_DIV10_INFO: Div10Info = Div10Info {
    magic_number: 6554,
    shift_amount: 16,
};

const F64_DIV10_INFO: Div10Info = Div10Info {
    magic_number: 656,
    shift_amount: 16,
};

macro_rules! check_div_pow10 {
    ($n:ident, $exp:literal, $float:ident, $info:ident) => {{
        // Make sure the computation for `max_n` does not overflow.
        debug_assert!($exp + 2 < floor_log10_pow2(31));
        debug_assert!($n as u64 <= pow64(10, $exp + 1));

        let n = $n.wrapping_mul($info.magic_number);
        let mask = (1u32 << $info.shift_amount) - 1;
        let r = (n & mask) < $info.magic_number;

        (n >> $info.shift_amount, r)
    }};
}

// These constants are efficient because we can do it in 32-bits.
const MOD_INV_5_U32: u32 = 0xCCCC_CCCD;
const MOD_INV_25_U32: u32 = MOD_INV_5_U32.wrapping_mul(MOD_INV_5_U32);
const MOD_INV_5_U64: u64 = 0xCCCC_CCCC_CCCC_CCCD;
const MOD_INV_25_U64: u64 = MOD_INV_5_U64.wrapping_mul(MOD_INV_5_U64);

macro_rules! div_pow10 {
    ($n:ident, $info:ident) => {{
        $n.wrapping_mul($info.magic_number) >> $info.shift_amount
    }};
}

/// Trait with specialized methods for the Dragonbox algorithm.
pub trait DragonboxFloat: Float {
    /// Constant derived in Section 4.5 of the Dragonbox algorithm.
    const KAPPA: u32;
    /// Ceiling of the maximum number of float decimal digits + 1.
    /// Or, `ceil((MANTISSA_SIZE + 1) / log2(10)) + 1`.
    const DECIMAL_DIGITS: usize;
    const FC_PM_HALF_LOWER: i32 = -(Self::KAPPA as i32) - floor_log5_pow2(Self::KAPPA as i32);
    const DIV_BY_5_THRESHOLD: i32 = floor_log2_pow10(Self::KAPPA as i32 + 1);

    type Power;

    /// Quick calculation for the number of significant digits in the float.
    fn digit_count(mantissa: u64) -> usize;

    /// Write the significant digits to a buffer.
    ///
    /// Does not handle rounding or truncated digits.
    fn write_digits(bytes: &mut [u8], mantissa: u64) -> usize;

    /// Get the pre-computed Dragonbox power from the exponent.
    ///
    /// # Safety
    ///
    /// Safe as long as the exponent is within the valid power-of-5 range.
    unsafe fn dragonbox_power(exponent: i32) -> Self::Power;

    /// Compute the left endpoint for the shorter interval case.
    fn compute_left_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64;

    /// Compute the right endpoint for the shorter interval case.
    fn compute_right_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64;

    /// Handle rounding-up for the short interval case.
    fn compute_round_up(pow5: &Self::Power, beta_minus_1: i32) -> u64;

    fn compute_mul(u: u64, pow5: &Self::Power) -> (u64, bool);
    fn compute_mul_parity(two_f: u64, pow5: &Self::Power, beta_minus_1: i32) -> (bool, bool);
    fn compute_delta(pow5: &Self::Power, beta_minus_1: i32) -> u32;

    /// Handle trailing zeros, conditional on the float type.
    fn process_trailing_zeros(mantissa: u64, exponent: i32) -> (u64, i32);

    /// Remove trailing zeros from the float.
    fn remove_trailing_zeros(mantissa: u64) -> (u64, i32);

    /// Determine if `two_f` is divisible by `2^exp`.
    #[inline(always)]
    fn divisible_by_pow2(x: u64, exp: u32) -> bool {
        // Preconditions: `exp >= 1 && x != 0`
        x.trailing_zeros() >= exp
    }

    // Replace `n` by `floor(n / 10^N)`.
    // Returns true if and only if `n` is divisible by `10^N`.
    // Precondition: `n <= 10^(N+1)`
    fn check_div_pow10(n: u32) -> (u32, bool);

    // Compute `floor(n / 10^N)` for small `n` and exp.
    // Precondition: `n <= 10^(N+1)`
    fn div_pow10(n: u32) -> u32;

    // Compute `floor(n / 10^N)` for small `N`.
    // Precondition: `n <= n_max`
    fn divide_by_pow10(n: u64, exp: u32, n_max: u64) -> u64;
}

impl DragonboxFloat for f32 {
    const KAPPA: u32 = 1;
    const DECIMAL_DIGITS: usize = 9;

    type Power = u64;

    #[inline(always)]
    fn digit_count(mantissa: u64) -> usize {
        debug_assert!(mantissa <= u32::MAX as u64);
        (mantissa as u32).decimal_count()
    }

    #[inline(always)]
    fn write_digits(bytes: &mut [u8], mantissa: u64) -> usize {
        // NOTE: These digits are after shifting, so it can be 2**32 - 1.
        debug_assert!(mantissa <= u32::MAX as u64);
        write_digits_u32(bytes, mantissa as u32)
    }

    #[inline(always)]
    unsafe fn dragonbox_power(exponent: i32) -> Self::Power {
        debug_assert!((SMALLEST_F32_POW5..=LARGEST_F32_POW5).contains(&exponent));
        let index = (exponent - SMALLEST_F32_POW5) as usize;
        // SAFETY: safe if the exponent is in the correct range.
        unsafe { index_unchecked!(DRAGONBOX32_POWERS_OF_FIVE[index]) }
    }

    #[inline(always)]
    fn compute_left_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
        compute_left_endpoint_u64::<Self>(*pow5, beta_minus_1)
    }

    #[inline(always)]
    fn compute_right_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
        compute_right_endpoint_u64::<Self>(*pow5, beta_minus_1)
    }

    #[inline(always)]
    fn compute_round_up(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
        compute_round_up_u64::<Self>(*pow5, beta_minus_1)
    }

    #[inline(always)]
    fn compute_mul(u: u64, pow5: &Self::Power) -> (u64, bool) {
        let r = umul96_upper64(u, *pow5);
        (r >> 32, (r as u32) == 0)
    }

    #[inline(always)]
    fn compute_mul_parity(two_f: u64, pow5: &Self::Power, beta: i32) -> (bool, bool) {
        debug_assert!((1..64).contains(&beta));

        let r = umul96_lower64(two_f, *pow5);
        let parity = (r >> (64 - beta)) & 1;
        let is_integer = r >> (32 - beta);
        (parity != 0, is_integer == 0)
    }

    #[inline(always)]
    fn compute_delta(pow5: &Self::Power, beta: i32) -> u32 {
        (*pow5 >> (64 - 1 - beta)) as u32
    }

    #[inline(always)]
    fn process_trailing_zeros(mantissa: u64, exponent: i32) -> (u64, i32) {
        // Policy is to remove the trailing zeros.
        let (mantissa, trailing) = Self::remove_trailing_zeros(mantissa);
        (mantissa, exponent + trailing)
    }

    #[inline(always)]
    fn remove_trailing_zeros(mantissa: u64) -> (u64, i32) {
        debug_assert!(mantissa <= u32::MAX as u64);
        debug_assert!(mantissa != 0);

        let mut n = mantissa as u32;
        let mut quo: u32;
        let mut s: i32 = 0;
        loop {
            quo = rotr32(n.wrapping_mul(MOD_INV_25_U32), 2);
            if quo <= u32::MAX / 100 {
                n = quo;
                s += 2;
            } else {
                break;
            }
        }

        quo = rotr32(n.wrapping_mul(MOD_INV_5_U32), 1);
        if quo <= u32::MAX / 10 {
            n = quo;
            s |= 1;
        }
        (n as u64, s)
    }

    #[inline(always)]
    fn check_div_pow10(n: u32) -> (u32, bool) {
        check_div_pow10!(n, 1, f32, F32_DIV10_INFO)
    }

    #[inline(always)]
    fn div_pow10(n: u32) -> u32 {
        div_pow10!(n, F32_DIV10_INFO)
    }

    #[inline(always)]
    fn divide_by_pow10(n: u64, exp: u32, _: u64) -> u64 {
        divide_by_pow10_32(n as u32, exp) as u64
    }
}

impl DragonboxFloat for f64 {
    const KAPPA: u32 = 2;
    const DECIMAL_DIGITS: usize = 17;

    type Power = (u64, u64);

    #[inline(always)]
    fn digit_count(mantissa: u64) -> usize {
        mantissa.decimal_count()
    }

    #[inline(always)]
    fn write_digits(bytes: &mut [u8], mantissa: u64) -> usize {
        // NOTE: These digits are after shifting, so it can be 2**64 - 1.
        write_digits_u64(bytes, mantissa)
    }

    #[inline(always)]
    unsafe fn dragonbox_power(exponent: i32) -> Self::Power {
        debug_assert!((SMALLEST_F64_POW5..=LARGEST_F64_POW5).contains(&exponent));
        let index = (exponent - SMALLEST_F64_POW5) as usize;
        // SAFETY: safe if the exponent is in the correct range.
        unsafe { index_unchecked!(DRAGONBOX64_POWERS_OF_FIVE[index]) }
    }

    #[inline(always)]
    fn compute_left_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
        compute_left_endpoint_u64::<Self>(high(pow5), beta_minus_1)
    }

    #[inline(always)]
    fn compute_right_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
        compute_right_endpoint_u64::<Self>(high(pow5), beta_minus_1)
    }

    #[inline(always)]
    fn compute_round_up(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
        compute_round_up_u64::<Self>(high(pow5), beta_minus_1)
    }

    #[inline(always)]
    fn compute_mul(u: u64, pow5: &Self::Power) -> (u64, bool) {
        let (hi, lo) = umul192_upper128(u, high(pow5), low(pow5));
        (hi, lo == 0)
    }

    #[inline(always)]
    fn compute_mul_parity(two_f: u64, pow5: &Self::Power, beta: i32) -> (bool, bool) {
        debug_assert!((1..64).contains(&beta));

        let (rhi, rlo) = umul192_lower128(two_f, high(pow5), low(pow5));
        let parity = (rhi >> (64 - beta)) & 1;
        let is_integer = (rhi << beta) | (rlo >> (64 - beta));
        (parity != 0, is_integer == 0)
    }

    #[inline(always)]
    fn compute_delta(pow5: &Self::Power, beta: i32) -> u32 {
        (high(pow5) >> (64 - 1 - beta)) as u32
    }

    #[inline(always)]
    fn process_trailing_zeros(mantissa: u64, exponent: i32) -> (u64, i32) {
        // Policy is to remove the trailing zeros.
        // This differs from dragonbox proper, but leads to faster benchmarks.
        let (mantissa, trailing) = Self::remove_trailing_zeros(mantissa);
        (mantissa, exponent + trailing)
    }

    #[inline(always)]
    fn remove_trailing_zeros(mantissa: u64) -> (u64, i32) {
        debug_assert!(mantissa != 0);

        // This magic number is `ceil(2^90 / 10^8)`.
        let magic_number = 12379400392853802749u64;
        let nm = mantissa as u128 * magic_number as u128;

        // Is n is divisible by 10^8?
        let high = (nm >> 64) as u64;
        let mask = (1 << (90 - 64)) - 1;
        let low = nm as u64;
        if high & mask == 0 && low < magic_number {
            // If yes, work with the quotient.
            let mut n = (high >> (90 - 64)) as u32;
            let mut s: i32 = 8;
            let mut quo: u32;

            loop {
                quo = rotr32(n.wrapping_mul(MOD_INV_25_U32), 2);
                if quo <= u32::MAX / 100 {
                    n = quo;
                    s += 2;
                } else {
                    break;
                }
            }

            quo = rotr32(n.wrapping_mul(MOD_INV_5_U32), 1);
            if quo <= u32::MAX / 10 {
                n = quo;
                s |= 1;
            }

            (n as u64, s)
        } else {
            // If n is not divisible by 10^8, work with n itself.
            let mut n = mantissa;
            let mut s: i32 = 0;
            let mut quo: u64;

            loop {
                quo = rotr64(n.wrapping_mul(MOD_INV_25_U64), 2);
                if quo <= u64::MAX / 100 {
                    n = quo;
                    s += 2;
                } else {
                    break;
                }
            }

            quo = rotr64(n.wrapping_mul(MOD_INV_5_U64), 1);
            if quo <= u64::MAX / 10 {
                n = quo;
                s |= 1;
            }

            (n, s)
        }
    }

    #[inline(always)]
    fn check_div_pow10(n: u32) -> (u32, bool) {
        check_div_pow10!(n, 2, f64, F64_DIV10_INFO)
    }

    #[inline(always)]
    fn div_pow10(n: u32) -> u32 {
        div_pow10!(n, F64_DIV10_INFO)
    }

    #[inline(always)]
    fn divide_by_pow10(n: u64, exp: u32, n_max: u64) -> u64 {
        divide_by_pow10_64(n, exp, n_max)
    }
}

#[cfg(feature = "f16")]
macro_rules! dragonbox_unimpl {
    ($($t:ident)*) => ($(
        impl DragonboxFloat for $t {
            const KAPPA: u32 = 0;
            const DECIMAL_DIGITS: usize = 0;

            type Power = u64;

            #[inline(always)]
            fn digit_count(_: u64) -> usize {
                unimplemented!()
            }

            #[inline(always)]
            fn write_digits(_: &mut [u8], _: u64) -> usize {
                unimplemented!()
            }

            #[inline(always)]
            unsafe fn dragonbox_power(_: i32) -> Self::Power {
                unimplemented!()
            }

            #[inline(always)]
            fn compute_left_endpoint(_: &Self::Power, _: i32) -> u64 {
                unimplemented!()
            }

            #[inline(always)]
            fn compute_right_endpoint(_: &Self::Power, _: i32) -> u64 {
                unimplemented!()
            }

            #[inline(always)]
            fn compute_round_up(_: &Self::Power, _: i32) -> (u64, bool) {
                unimplemented!()
            }

            #[inline(always)]
            fn compute_mul(_: u64, _: &Self::Power) -> (u64, bool) {
                unimplemented!()
            }

            #[inline(always)]
            fn compute_mul_parity(_: u64, _: &Self::Power, _: i32) -> (bool, bool) {
                unimplemented!()
            }

            #[inline(always)]
            fn compute_delta(_: &Self::Power, _: i32) -> u32 {
                unimplemented!()
            }

            #[inline(always)]
            fn process_trailing_zeros(_: u64, _: i32) -> (u64, i32) {
                unimplemented!()
            }

            #[inline(always)]
            fn remove_trailing_zeros(_: u64) -> (u64, i32) {
                unimplemented!()
            }

            #[inline(always)]
            fn check_div_pow10(_: u32) -> (u32, bool) {
                unimplemented!()
            }

            #[inline(always)]
            fn div_pow10(_: u32) -> u32 {
                unimplemented!()
            }
        }
    )*);
}

#[cfg(feature = "f16")]
dragonbox_unimpl! { bf16 f16 }