lexical_write_float/algorithm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
//! Implementation of the Dragonbox algorithm.
//!
//! This is modified from the Rust port of Dragonbox, available
//! [here](https://github.com/dtolnay/dragonbox). It also uses a direct
//! port of Dragonbox, available [here](https://github.com/jk-jeon/dragonbox/).
//!
//! This is therefore under an Apache 2.0/Boost Software dual-license.
//!
//! We use a u64 for the significant digits, even for a 32-bit integer,
//! however, we use the proper bit shifts, etc. for the float in question,
//! rather than clobbering the result to f64, as Rust's port does.
//!
//! Each one of the algorithms described here has the main implementation,
//! according to the reference Dragonbox paper, as well as an alias for
//! our own purposes. The existing algorithms include:
//!
//! 1. `compute_nearest_normal`
//! 2. `compute_nearest_shorter`
//! 3. `compute_left_closed_directed`
//! 4. `compute_right_closed_directed`
//!
//! `compute_nearest_normal` and `compute_nearest_shorter` are used for
//! round-nearest, tie-even and `compute_right_closed_directed` is used
//! for round-to-zero (see below for details).
#![cfg(not(feature = "compact"))]
#![doc(hidden)]
#[cfg(feature = "f16")]
use lexical_util::bf16::bf16;
#[cfg(feature = "f16")]
use lexical_util::f16::f16;
use lexical_util::format::NumberFormat;
use lexical_util::num::{AsPrimitive, Float};
use lexical_write_integer::decimal::{Decimal, DecimalCount};
use crate::float::{ExtendedFloat80, RawFloat};
use crate::options::{Options, RoundMode};
use crate::shared;
use crate::table::*;
/// Optimized float-to-string algorithm for decimal strings.
#[inline(always)]
pub fn write_float<F: RawFloat, const FORMAT: u128>(
float: F,
bytes: &mut [u8],
options: &Options,
) -> usize {
debug_assert!(!float.is_special());
debug_assert!(float >= F::ZERO);
let fp = to_decimal(float);
let digit_count = F::digit_count(fp.mant);
let sci_exp = fp.exp + digit_count as i32 - 1;
// Note that for performance reasons, we write the significant digits
// later into the algorithms, since we can determine the right path
// and write the significant digits without using an intermediate buffer
// in most cases.
write_float!(
float,
FORMAT,
sci_exp,
options,
write_float_scientific,
write_float_positive_exponent,
write_float_negative_exponent,
generic => F,
bytes => bytes,
args => fp, sci_exp, options,
)
}
/// Write float to string in scientific notation.
#[inline]
pub fn write_float_scientific<F: DragonboxFloat, const FORMAT: u128>(
bytes: &mut [u8],
fp: ExtendedFloat80,
sci_exp: i32,
options: &Options,
) -> usize {
// Config options.
debug_assert_eq!(count_factors(10, fp.mant), 0);
let format = NumberFormat::<{ FORMAT }> {};
assert!(format.is_valid());
let decimal_point = options.decimal_point();
// Write the significant digits. Write at index 1, so we can shift 1
// for the decimal point without intermediate buffers.
// Won't panic if we have enough bytes to write the significant digits.
let digits = &mut bytes[1..];
let digit_count = F::write_digits(digits, fp.mant);
// Truncate and round the significant digits.
let (digit_count, carried) = shared::truncate_and_round_decimal(digits, digit_count, options);
let sci_exp = sci_exp + carried as i32;
// Determine the exact number of digits to write.
let exact_count = shared::min_exact_digits(digit_count, options);
// Write any trailing digits.
let mut cursor: usize;
bytes[0] = bytes[1];
bytes[1] = decimal_point;
if !format.no_exponent_without_fraction() && digit_count == 1 && options.trim_floats() {
cursor = 1;
} else if digit_count < exact_count {
// Adjust the number of digits written, by appending zeros.
cursor = digit_count + 1;
let zeros = exact_count - digit_count;
bytes[cursor..cursor + zeros].fill(b'0');
cursor += zeros;
} else if digit_count == 1 {
bytes[2] = b'0';
cursor = 3;
} else {
cursor = digit_count + 1;
}
// Now, write our scientific notation.
// Won't panic since bytes must be large enough to store all digits.
shared::write_exponent::<FORMAT>(bytes, &mut cursor, sci_exp, options.exponent());
cursor
}
/// Write negative float to string without scientific notation.
///
/// Has a negative exponent (shift right) and no scientific notation.
#[inline]
pub fn write_float_negative_exponent<F: DragonboxFloat, const FORMAT: u128>(
bytes: &mut [u8],
fp: ExtendedFloat80,
sci_exp: i32,
options: &Options,
) -> usize {
debug_assert!(sci_exp < 0);
debug_assert_eq!(count_factors(10, fp.mant), 0);
// Config options.
let decimal_point = options.decimal_point();
let sci_exp = sci_exp.wrapping_neg() as usize;
// Write our 0 digits.
let mut cursor = sci_exp + 1;
debug_assert!(cursor >= 2, "must have a buffer >= 2 to write our 0 digits");
// We write 0 digits even over the decimal point, since we might have
// to round carry over. This is rare, but it could happen, and would
// require a shift after. The good news is: if we have a shift, we
// only need to move 1 digit.
bytes[..cursor].fill(b'0');
// Write out our significant digits.
// Won't panic: we have enough bytes to write the significant digits.
let digits = &mut bytes[cursor..];
let digit_count = F::write_digits(digits, fp.mant);
// Truncate and round the significant digits.
debug_assert!(cursor > 0, "underflowed our digits");
let (digit_count, carried) = shared::truncate_and_round_decimal(digits, digit_count, options);
// Handle any trailing digits.
let mut trimmed = false;
if carried && cursor == 2 {
// Rounded-up, and carried to the first byte, so instead of having
// 0.9999, we have 1.0.
bytes[0] = b'1';
if options.trim_floats() {
cursor = 1;
trimmed = true;
} else {
bytes[1] = decimal_point;
bytes[2] = b'0';
cursor = 3;
}
} else if carried {
// Carried, so we need to remove 1 zero before our digits.
bytes[1] = decimal_point;
bytes[cursor - 1] = bytes[cursor];
} else {
bytes[1] = decimal_point;
cursor += digit_count;
}
// Determine the exact number of digits to write.
let exact_count = shared::min_exact_digits(digit_count, options);
// Write any trailing digits.
// Cursor is 1 if we trimmed floats, in which case skip this.
if !trimmed && digit_count < exact_count {
let zeros = exact_count - digit_count;
bytes[cursor..cursor + zeros].fill(b'0');
cursor += zeros;
}
cursor
}
/// Write positive float to string without scientific notation.
///
/// Has a positive exponent (shift left) and no scientific notation.
#[inline]
pub fn write_float_positive_exponent<F: DragonboxFloat, const FORMAT: u128>(
bytes: &mut [u8],
fp: ExtendedFloat80,
sci_exp: i32,
options: &Options,
) -> usize {
// Config options.
debug_assert!(sci_exp >= 0);
debug_assert_eq!(count_factors(10, fp.mant), 0);
let decimal_point = options.decimal_point();
// Write out our significant digits.
// Let's be optimistic and try to write without needing to move digits.
// This only works if the if the resulting leading digits, or `sci_exp + 1`,
// is greater than the written digits. If not, we have to move digits after
// and then adjust the decimal point. However, with truncating and remove
// trailing zeros, we **don't** know the exact digit count **yet**.
let digit_count = F::write_digits(bytes, fp.mant);
let (mut digit_count, carried) =
shared::truncate_and_round_decimal(bytes, digit_count, options);
// Now, check if we have shift digits.
let leading_digits = sci_exp as usize + 1 + carried as usize;
let mut cursor: usize;
let mut trimmed = false;
if leading_digits >= digit_count {
// Great: we have more leading digits than we wrote, can write trailing zeros
// and an optional decimal point.
bytes[digit_count..leading_digits].fill(b'0');
cursor = leading_digits;
digit_count = leading_digits;
// Only write decimal point if we're not trimming floats.
if !options.trim_floats() {
bytes[cursor] = decimal_point;
cursor += 1;
bytes[cursor] = b'0';
cursor += 1;
digit_count += 1;
} else {
trimmed = true;
}
} else {
// Need to shift digits internally, and write the decimal point.
// First, move the digits right by 1 after leading digits.
let count = digit_count - leading_digits;
let buf = &mut bytes[leading_digits..digit_count + 1];
assert!(buf.len() > count);
for i in (0..count).rev() {
buf[i + 1] = buf[i];
}
// Now, write the decimal point.
bytes[leading_digits] = decimal_point;
cursor = digit_count + 1;
}
// Determine the exact number of digits to write.
// Don't worry if we carried: we cannot write **MORE** digits if we've
// already previously truncated the input.
let exact_count = shared::min_exact_digits(digit_count, options);
// Change the number of digits written, if we need to add more or trim digits.
if !trimmed && exact_count > digit_count {
// Check if we need to write more trailing digits.
let zeros = exact_count - digit_count;
bytes[cursor..cursor + zeros].fill(b'0');
cursor += zeros;
}
cursor
}
// ALGORITHM
// ---------
/// Get an extended representation of the decimal float.
///
/// The returned float has a decimal exponent, and the significant digits
/// returned to the nearest mantissa. For example, `1.5f32` will return
/// `ExtendedFloat80 { mant: 15, exp: -1 }`, although trailing zeros
/// might not be removed.
///
/// This algorithm **only** fails when `float == 0.0`, and we want to
/// short-circuit anyway.
#[inline(always)]
pub fn to_decimal<F: RawFloat>(float: F) -> ExtendedFloat80 {
let bits = float.to_bits();
let mantissa_bits = bits & F::MANTISSA_MASK;
if (bits & !F::SIGN_MASK).as_u64() == 0 {
return extended_float(0, 0);
}
// Shorter interval case; proceed like Schubfach.
// One might think this condition is wrong, since when `exponent_bits == 1`
// and `two_fc == 0`, the interval is actually regular. However, it turns out
// that this seemingly wrong condition is actually fine, because the end
// result is anyway the same.
//
// [binary32]
// (fc-1/2) * 2^e = 1.175'494'28... * 10^-38
// (fc-1/4) * 2^e = 1.175'494'31... * 10^-38
// fc * 2^e = 1.175'494'35... * 10^-38
// (fc+1/2) * 2^e = 1.175'494'42... * 10^-38
//
// Hence, `shorter_interval_case` will return 1.175'494'4 * 10^-38.
// 1.175'494'3 * 10^-38 is also a correct shortest representation that will
// be rejected if we assume shorter interval, but 1.175'494'4 * 10^-38 is
// closer to the true value so it doesn't matter.
//
// [binary64]
// (fc-1/2) * 2^e = 2.225'073'858'507'201'13... * 10^-308
// (fc-1/4) * 2^e = 2.225'073'858'507'201'25... * 10^-308
// fc * 2^e = 2.225'073'858'507'201'38... * 10^-308
// (fc+1/2) * 2^e = 2.225'073'858'507'201'63... * 10^-308
//
// Hence, `shorter_interval_case` will return 2.225'073'858'507'201'4 *
// 10^-308. This is indeed of the shortest length, and it is the unique one
// closest to the true value among valid representations of the same length.
// Toward zero case:
//
// What we need is a compute-nearest, but with truncated digits in the
// truncated case. Note that we don't need the left-closed direct
// rounding case of `I = [w,w+)`, or right-closed directed rounding
// case of `I = (w−,w]`, since these produce the shortest intervals for
// a **float parser** assuming the rounding of the float-parser.
// The left-directed case assumes the float parser will round-down,
// while the right-directed case assumed the float parser will round-up.
//
// A few examples of this behavior is described here:
// **compute_nearest_normal**
//
// - `1.23456 => (123456, -5)` for binary32.
// - `1.23456 => (123456, -5)` for binary64.
// - `13.9999999999999982236431606 => (13999999999999998, -15)` for binary64.
//
// **compute_left_closed_directed**
//
// - `1.23456 => (12345601, -7)` for binary32.
// - `1.23456 => (12345600000000002, -16)` for binary64.
// - `13.9999999999999982236431606 => (13999999999999999, -15)` for binary64.
//
// **compute_right_closed_directed**
//
// - `1.23456 => (123456, -5)` for binary32.
// - `1.23456 => (123456, -5)` for binary64.
// - `13.9999999999999982236431606 => (13999999999999982, -15)` for binary64.
if mantissa_bits.as_u64() == 0 {
compute_round_short(float)
} else {
compute_round(float)
}
}
/// Compute for a simple case when rounding nearest, tie-even.
#[inline(always)]
pub fn compute_round_short<F: RawFloat>(float: F) -> ExtendedFloat80 {
compute_nearest_shorter(float)
}
/// Compute for a non-simple case when rounding nearest, tie-even.
#[inline(always)]
pub fn compute_round<F: RawFloat>(float: F) -> ExtendedFloat80 {
compute_nearest_normal(float)
}
/// Compute the interval `I = [m−w,m+w]` if even, otherwise, `(m−w,m+w)`.
/// This is the simple case for a finite number where only the hidden bit is
/// set.
#[inline]
pub fn compute_nearest_shorter<F: RawFloat>(float: F) -> ExtendedFloat80 {
// Compute `k` and `beta`.
let exponent = float.exponent();
let minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
let beta = exponent + floor_log2_pow10(-minus_k);
// Compute `xi` and `zi`.
// SAFETY: safe, since value must be finite and therefore in the correct range.
// `-324 <= exponent <= 308`, so `x * log10(2) - log10(4 / 3)` must be in
// `-98 <= x <= 93`, so the final value must be in `[-93, 98]` (for f64). We
// have pre-computed powers for `[-292, 326]` for f64 (same logic applies
// for f32) so this is **ALWAYS** safe.
let pow5 = unsafe { F::dragonbox_power(-minus_k) };
let mut xi = F::compute_left_endpoint(&pow5, beta);
let mut zi = F::compute_right_endpoint(&pow5, beta);
// Get the interval type.
// Must be Round since we only use `compute_round` with a round-nearest
// direction.
let interval_type = IntervalType::Closed;
// If we don't accept the right endpoint and if the right endpoint is an
// integer, decrease it.
if !interval_type.include_right_endpoint() && is_right_endpoint::<F>(exponent) {
zi -= 1;
}
// If the left endpoint is not an integer, increase it.
if !(interval_type.include_left_endpoint() && is_left_endpoint::<F>(exponent)) {
xi += 1;
}
// Try bigger divisor.
let significand = zi / 10;
// If succeed, remove trailing zeros if necessary and return.
if significand * 10 >= xi {
let (mant, exp) = F::process_trailing_zeros(significand, minus_k + 1);
return extended_float(mant, exp);
}
// Otherwise, compute the round-up of `y`.
let mut significand = F::compute_round_up(&pow5, beta);
// When tie occurs, choose one of them according to the rule.
let bits: i32 = F::MANTISSA_SIZE;
let lower_threshold: i32 = -floor_log5_pow2_minus_log5_3(bits + 4) - 2 - bits;
let upper_threshold: i32 = -floor_log5_pow2(bits + 2) - 2 - bits;
let round_down = RoundMode::Round.prefer_round_down(significand);
if round_down && exponent >= lower_threshold && exponent <= upper_threshold {
significand -= 1;
} else if significand < xi {
significand += 1;
}
// Ensure we haven't re-assigned `exponent` or `minus_k`, since this
// is a massive potential security vulnerability.
debug_assert!(float.exponent() == exponent);
debug_assert!(minus_k == floor_log10_pow2_minus_log10_4_over_3(exponent));
extended_float(significand, minus_k)
}
/// Compute the interval `I = [m−w,m+w]` if even, otherwise, `(m−w,m+w)`.
/// This is the normal case for a finite number with non-zero significant
/// digits.
#[allow(clippy::comparison_chain)] // reason="logical approach for algorithm"
pub fn compute_nearest_normal<F: RawFloat>(float: F) -> ExtendedFloat80 {
let mantissa = float.mantissa().as_u64();
let exponent = float.exponent();
let is_even = mantissa % 2 == 0;
// Step 1: Schubfach multiplier calculation
// Compute `k` and `beta`.
let minus_k = floor_log10_pow2(exponent) - F::KAPPA as i32;
// SAFETY: safe, since value must be finite and therefore in the correct range.
// `-324 <= exponent <= 308`, so `x * log10(2)` must be in
// `-98 <= x <= 93`, so the final value must be in `[-93, 98]` (for f64). We
// have pre-computed powers for `[-292, 326]` for f64 (same logic applies
// for f32) so this is **ALWAYS** safe.
let pow5 = unsafe { F::dragonbox_power(-minus_k) };
let beta = exponent + floor_log2_pow10(-minus_k);
// Compute `zi` and `deltai`.
// `10^kappa <= deltai < 10^(kappa + 1)`
let two_fc = mantissa << 1;
let deltai = F::compute_delta(&pow5, beta);
// For the case of binary32, the result of integer check is not correct for
// `29711844 * 2^-82
// = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18`
// and `29711844 * 2^-81
// = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17`,
// and they are the unique counterexamples. However, since `29711844` is even,
// this does not cause any problem for the endpoints calculations; it can only
// cause a problem when we need to perform integer check for the center.
// Fortunately, with these inputs, that branch is never executed, so we are
// fine.
let (zi, is_z_integer) = F::compute_mul((two_fc | 1) << beta, &pow5);
// Step 2: Try larger divisor; remove trailing zeros if necessary
let big_divisor = pow32(10, F::KAPPA + 1);
let small_divisor = pow32(10, F::KAPPA);
// Using an upper bound on `zi`, we might be able to optimize the division
// better than the compiler; we are computing `zi / big_divisor` here.
let exp = F::KAPPA + 1;
let n_max = (1 << (F::MANTISSA_SIZE + 1)) * big_divisor as u64 - 1;
let mut significand = F::divide_by_pow10(zi, exp, n_max);
let mut r = (zi - (big_divisor as u64).wrapping_mul(significand)) as u32;
// Get the interval type.
// Must be Round since we only use `compute_round` with a round-nearest
// direction.
let interval_type = IntervalType::Symmetric(is_even);
// Check for short-circuit.
// We use this, since the `goto` statements in dragonbox are unidiomatic
// in Rust and lead to unmaintainable code. Using a simple closure is much
// simpler, however, we do store a boolean in some cases to determine
// if we need to short-circuit.
let mut should_short_circuit = true;
if r < deltai {
// Exclude the right endpoint if necessary.
let include_right = interval_type.include_right_endpoint();
if r == 0 && !include_right && is_z_integer {
significand -= 1;
r = big_divisor;
should_short_circuit = false;
}
} else if r > deltai {
should_short_circuit = false;
} else {
// `r == deltai`; compare fractional parts.
// Due to the more complex logic in the new dragonbox algorithm,
// it's much easier logically to store if we should short circuit,
// the default, and only mark
let two_fl = two_fc - 1;
let include_left = interval_type.include_left_endpoint();
if !include_left || exponent < F::FC_PM_HALF_LOWER || exponent > F::DIV_BY_5_THRESHOLD {
// If the left endpoint is not included, the condition for
// success is `z^(f) < delta^(f)` (odd parity).
// Otherwise, the inequalities on exponent ensure that
// `x` is not an integer, so if `z^(f) >= delta^(f)` (even parity), we in fact
// have strict inequality.
let parity = F::compute_mul_parity(two_fl, &pow5, beta).0;
if !parity {
should_short_circuit = false;
}
} else {
let (xi_parity, x_is_integer) = F::compute_mul_parity(two_fl, &pow5, beta);
if !xi_parity && !x_is_integer {
should_short_circuit = false;
}
}
}
if should_short_circuit {
// Short-circuit case.
let (mant, exp) = F::process_trailing_zeros(significand, minus_k + F::KAPPA as i32 + 1);
extended_float(mant, exp)
} else {
// Step 3: Find the significand with the smaller divisor
significand *= 10;
let dist = r - (deltai / 2) + (small_divisor / 2);
let approx_y_parity = ((dist ^ (small_divisor / 2)) & 1) != 0;
// Is dist divisible by `10^kappa`?
let (dist, is_dist_div_by_kappa) = F::check_div_pow10(dist);
// Add `dist / 10^kappa` to the significand.
significand += dist as u64;
if is_dist_div_by_kappa {
// Check `z^(f) >= epsilon^(f)`.
// We have either `yi == zi - epsiloni` or `yi == (zi - epsiloni) - 1`,
// where `yi == zi - epsiloni` if and only if `z^(f) >= epsilon^(f)`.
// Since there are only 2 possibilities, we only need to care about the
// parity. Also, `zi` and `r` should have the same parity since the divisor is
// an even number.
let (yi_parity, is_y_integer) = F::compute_mul_parity(two_fc, &pow5, beta);
let round_down = RoundMode::Round.prefer_round_down(significand);
if yi_parity != approx_y_parity || (is_y_integer && round_down) {
// If `z^(f) >= epsilon^(f)`, we might have a tie
// when `z^(f) == epsilon^(f)`, or equivalently, when `y` is an integer.
// For tie-to-up case, we can just choose the upper one.
significand -= 1;
}
}
// Ensure we haven't re-assigned `exponent` or `minus_k`, since this
// is a massive potential security vulnerability.
debug_assert!(float.exponent() == exponent);
debug_assert!(minus_k == floor_log10_pow2(exponent) - F::KAPPA as i32);
extended_float(significand, minus_k + F::KAPPA as i32)
}
}
/// Compute the interval `I = [w,w+)`.
#[allow(clippy::comparison_chain)] // reason="logical approach for algorithm"
pub fn compute_left_closed_directed<F: RawFloat>(float: F) -> ExtendedFloat80 {
let mantissa = float.mantissa().as_u64();
let exponent = float.exponent();
// Step 1: Schubfach multiplier calculation
// Compute `k` and `beta`.
let minus_k = floor_log10_pow2(exponent) - F::KAPPA as i32;
// SAFETY: safe, since value must be finite and therefore in the correct range.
// `-324 <= exponent <= 308`, so `x * log10(2)` must be in `[-98, 93]` (for
// f64). We have pre-computed powers for `[-292, 326]` for f64 (same logic
// applies for f32) so this is **ALWAYS** safe.
let pow5 = unsafe { F::dragonbox_power(-minus_k) };
let beta = exponent + floor_log2_pow10(-minus_k);
// Compute `zi` and `deltai`.
// `10^kappa <= deltai < 10^(kappa + 1)`
let two_fc = mantissa << 1;
let deltai = F::compute_delta(&pow5, beta);
let (mut xi, mut is_x_integer) = F::compute_mul(two_fc << beta, &pow5);
// Deal with the unique exceptional cases
// `29711844 * 2^-82
// = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18`
// and `29711844 * 2^-81
// = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17`
// for binary32.
if F::BITS == 32 && exponent <= -80 {
is_x_integer = false;
}
if !is_x_integer {
xi += 1;
}
// Step 2: Try larger divisor; remove trailing zeros if necessary
let big_divisor = pow32(10, F::KAPPA + 1);
// Using an upper bound on `xi`, we might be able to optimize the division
// better than the compiler; we are computing `xi / big_divisor` here.
let exp = F::KAPPA + 1;
let n_max = (1 << (F::MANTISSA_SIZE + 1)) * big_divisor as u64 - 1;
let mut significand = F::divide_by_pow10(xi, exp, n_max);
let mut r = (xi - (big_divisor as u64).wrapping_mul(significand)) as u32;
if r != 0 {
significand += 1;
r = big_divisor - r;
}
// Check for short-circuit.
// We use this, since the `goto` statements in dragonbox are unidiomatic
// in Rust and lead to unmaintainable code. Using a simple closure is much
// simpler, however, we do store a boolean in some cases to determine
// if we need to short-circuit.
let mut should_short_circuit = true;
if r > deltai {
should_short_circuit = false;
} else if r == deltai {
// Compare the fractional parts.
// This branch is never taken for the exceptional cases
// `2f_c = 29711482, e = -81`
// `(6.1442649164096937243516663440523473127541365101933479309082... * 10^-18)`
// and `2f_c = 29711482, e = -80`
// `(1.2288529832819387448703332688104694625508273020386695861816... * 10^-17)`.
let (zi_parity, is_z_integer) = F::compute_mul_parity(two_fc + 2, &pow5, beta);
if zi_parity || is_z_integer {
should_short_circuit = false;
}
}
if should_short_circuit {
let (mant, exp) = F::process_trailing_zeros(significand, minus_k + F::KAPPA as i32 + 1);
extended_float(mant, exp)
} else {
// Step 3: Find the significand with the smaller divisor
significand *= 10;
significand -= F::div_pow10(r) as u64;
// Ensure we haven't re-assigned `exponent` or `minus_k`, since this
// is a massive potential security vulnerability.
debug_assert!(float.exponent() == exponent);
debug_assert!(minus_k == floor_log10_pow2(exponent) - F::KAPPA as i32);
extended_float(significand, minus_k + F::KAPPA as i32)
}
}
/// Compute the interval `I = (w−,w]`.
#[allow(clippy::comparison_chain, clippy::if_same_then_else)] // reason="logical approach for algorithm"
pub fn compute_right_closed_directed<F: RawFloat>(float: F, shorter: bool) -> ExtendedFloat80 {
// ensure our floats have a maximum exp in the range [-324, 308].
assert!(F::BITS <= 64, "cannot guarantee safety invariants with 128-bit floats");
let mantissa = float.mantissa().as_u64();
let exponent = float.exponent();
// Step 1: Schubfach multiplier calculation
// Exponent must be in the range `[-324, 308]`
// Compute `k` and `beta`.
let minus_k = floor_log10_pow2(exponent - shorter as i32) - F::KAPPA as i32;
assert!(F::KAPPA <= 2);
// SAFETY: safe, since value must be finite and therefore in the correct range.
// `-324 <= exponent <= 308`, so `x * log10(2)` must be in [-100, 92] (for f64).
// We have pre-computed powers for [-292, 326] for f64 (same logic applies for
// f32) so this is **ALWAYS** safe.
let pow5: <F as DragonboxFloat>::Power = unsafe { F::dragonbox_power(-minus_k) };
let beta = exponent + floor_log2_pow10(-minus_k);
// Compute `zi` and `deltai`.
// `10^kappa <= deltai < 10^(kappa + 1)`
let two_fc = mantissa << 1;
let deltai = F::compute_delta(&pow5, beta - shorter as i32);
let zi = F::compute_mul(two_fc << beta, &pow5).0;
// Step 2: Try larger divisor; remove trailing zeros if necessary
let big_divisor = pow32(10, F::KAPPA + 1);
// Using an upper bound on `zi`, we might be able to optimize the division
// better than the compiler; we are computing `zi / big_divisor` here.
let exp = F::KAPPA + 1;
let n_max = (1 << (F::MANTISSA_SIZE + 1)) * big_divisor as u64 - 1;
let mut significand = F::divide_by_pow10(zi, exp, n_max);
let r = (zi - (big_divisor as u64).wrapping_mul(significand)) as u32;
// Check for short-circuit.
// We use this, since the `goto` statements in dragonbox are unidiomatic
// in Rust and lead to unmaintainable code. Using a simple closure is much
// simpler, however, we do store a boolean in some cases to determine
// if we need to short-circuit.
let mut should_short_circuit = true;
if r > deltai {
should_short_circuit = false;
} else if r == deltai {
// Compare the fractional parts.
let two_f = two_fc
- if shorter {
1
} else {
2
};
if !F::compute_mul_parity(two_f, &pow5, beta).0 {
should_short_circuit = false;
}
}
if should_short_circuit {
let (mant, exp) = F::process_trailing_zeros(significand, minus_k + F::KAPPA as i32 + 1);
extended_float(mant, exp)
} else {
// Step 3: Find the significand with the smaller divisor
significand *= 10;
significand -= F::div_pow10(r) as u64;
// Ensure we haven't re-assigned `exponent` or `minus_k`.
assert!(float.exponent() == exponent);
debug_assert!(
minus_k == floor_log10_pow2(float.exponent() - shorter as i32) - F::KAPPA as i32
);
extended_float(significand, minus_k + F::KAPPA as i32)
}
}
// DIGITS
// ------
// NOTE: Dragonbox has a heavily-branched, dubiously optimized algorithm using
// fast division, that leads to no practical performance benefits in my
// benchmarks, and the division algorithm is at best ~3% faster. It also tries
// to avoid writing digits extensively, but requires division operations for
// each step regardless, which means the **actual** overhead of said branching
// likely exceeds any benefits. The code is also impossible to maintain, and in
// my benchmarks is slower (by a small amount) for a 32-bit mantissa, and a
// **lot** slower for a 64-bit mantissa, where we need to trim trailing zeros.
/// Write the significant digits, when the significant digits can fit in a
/// 32-bit integer. `log10(2**32-1) < 10`, so 10 digits is always enough.
///
/// Returns the number of digits written. This assumes any trailing zeros have
/// been removed.
#[inline(always)]
#[allow(clippy::branches_sharing_code)] // reason="could differentiate later"
pub fn write_digits_u32(bytes: &mut [u8], mantissa: u32) -> usize {
debug_assert!(bytes.len() >= 10);
mantissa.decimal(bytes)
}
/// Write the significant digits, when the significant digits cannot fit in a
/// 32-bit integer.
///
/// Returns the number of digits written. Note that this might not be the
/// same as the number of digits in the mantissa, since trailing zeros will
/// be removed. `log10(2**64-1) < 20`, so 20 digits is always enough.
#[inline(always)]
#[allow(clippy::branches_sharing_code)] // reason="could differentiate later"
pub fn write_digits_u64(bytes: &mut [u8], mantissa: u64) -> usize {
debug_assert!(bytes.len() >= 20);
mantissa.decimal(bytes)
}
// EXTENDED
// --------
/// Create extended float from significant digits and exponent.
#[inline(always)]
pub const fn extended_float(mant: u64, exp: i32) -> ExtendedFloat80 {
ExtendedFloat80 {
mant,
exp,
}
}
// COMPUTE
// -------
#[inline(always)]
pub const fn floor_log2(mut n: u64) -> i32 {
let mut count = -1;
while n != 0 {
count += 1;
n >>= 1;
}
count
}
#[inline(always)]
pub const fn is_endpoint(exponent: i32, lower: i32, upper: i32) -> bool {
exponent >= lower && exponent <= upper
}
#[inline(always)]
pub fn is_right_endpoint<F: Float>(exponent: i32) -> bool {
let lower_threshold = 0;
let factors = count_factors(5, (1u64 << (F::MANTISSA_SIZE + 1)) + 1) + 1;
let upper_threshold = 2 + floor_log2(pow64(10, factors) / 3);
is_endpoint(exponent, lower_threshold, upper_threshold)
}
#[inline(always)]
pub fn is_left_endpoint<F: Float>(exponent: i32) -> bool {
let lower_threshold = 2;
let factors = count_factors(5, (1u64 << (F::MANTISSA_SIZE + 2)) - 1) + 1;
let upper_threshold = 2 + floor_log2(pow64(10, factors) / 3);
is_endpoint(exponent, lower_threshold, upper_threshold)
}
// MUL
// ---
#[inline(always)]
pub const fn umul128_upper64(x: u64, y: u64) -> u64 {
let p = x as u128 * y as u128;
(p >> 64) as u64
}
#[inline(always)]
pub const fn umul192_upper128(x: u64, hi: u64, lo: u64) -> (u64, u64) {
let mut r = x as u128 * hi as u128;
r += umul128_upper64(x, lo) as u128;
((r >> 64) as u64, r as u64)
}
#[inline(always)]
pub const fn umul192_lower128(x: u64, yhi: u64, ylo: u64) -> (u64, u64) {
let hi = x.wrapping_mul(yhi);
let hi_lo = x as u128 * ylo as u128;
// NOTE: This can wrap exactly to 0, and this is desired.
(hi.wrapping_add((hi_lo >> 64) as u64), hi_lo as u64)
}
#[inline(always)]
pub const fn umul96_upper64(x: u64, y: u64) -> u64 {
umul128_upper64(x << 32, y)
}
#[inline(always)]
pub const fn umul96_lower64(x: u64, y: u64) -> u64 {
x.wrapping_mul(y)
}
// LOG
// ---
/// Calculate `x * log5(2)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1492, 1492]`
#[inline(always)]
pub const fn floor_log5_pow2(q: i32) -> i32 {
q.wrapping_mul(225799) >> 19
}
/// Calculate `x * log10(2)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1700, 1700]`
#[inline(always)]
pub const fn floor_log10_pow2(q: i32) -> i32 {
q.wrapping_mul(315653) >> 20
}
/// Calculate `x * log2(10)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1233, 1233]`
#[inline(always)]
pub const fn floor_log2_pow10(q: i32) -> i32 {
q.wrapping_mul(1741647) >> 19
}
/// Calculate `x * log5(2) - log5(3)` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-2427, 2427]`
#[inline(always)]
pub const fn floor_log5_pow2_minus_log5_3(q: i32) -> i32 {
q.wrapping_mul(451597).wrapping_sub(715764) >> 20
}
/// Calculate `(x * log10(2) - log10(4 / 3))` quickly.
/// Generated by `etc/log.py`.
/// Only needs to be valid for values from `[-1700, 1700]`
#[inline(always)]
pub const fn floor_log10_pow2_minus_log10_4_over_3(q: i32) -> i32 {
// NOTE: these values aren't actually exact:
// They're off for -295 and 97, so any automated way of computing
// them will also be off.
q.wrapping_mul(1262611).wrapping_sub(524031) >> 22
}
// POW
// ---
/// const fn to calculate `radix^exp`.
#[inline(always)]
pub const fn pow32(radix: u32, mut exp: u32) -> u32 {
let mut p = 1;
while exp > 0 {
p *= radix;
exp -= 1;
}
p
}
/// const fn to calculate `radix^exp`.
#[inline(always)]
pub const fn pow64(radix: u32, mut exp: u32) -> u64 {
let mut p = 1;
while exp > 0 {
p *= radix as u64;
exp -= 1;
}
p
}
/// Counter the number of powers of radix are in `n`.
#[inline(always)]
pub const fn count_factors(radix: u32, mut n: u64) -> u32 {
let mut c = 0;
while n != 0 && n % radix as u64 == 0 {
n /= radix as u64;
c += 1;
}
c
}
// DIV
// ---
// Compute `floor(n / 10^exp)` for small exp.
// Precondition: `exp >= 0.`
#[inline(always)]
pub const fn divide_by_pow10_32(n: u32, exp: u32) -> u32 {
// Specialize for 32-bit division by 100.
// Compiler is supposed to generate the identical code for just writing
// `n / 100`, but for some reason MSVC generates an inefficient code
// (mul + mov for no apparent reason, instead of single imul),
// so we does this manually.
if exp == 2 {
((n as u64 * 1374389535) >> 37) as u32
} else {
let divisor = pow32(exp, 10);
n / divisor
}
}
// Compute `floor(n / 10^exp)` for small exp.
// Precondition: `n <= n_max`
#[inline(always)]
pub const fn divide_by_pow10_64(n: u64, exp: u32, n_max: u64) -> u64 {
// Specialize for 64-bit division by 1000.
// Ensure that the correctness condition is met.
if exp == 3 && n_max <= 15534100272597517998 {
umul128_upper64(n, 2361183241434822607) >> 7
} else {
let divisor = pow64(exp, 10);
n / divisor
}
}
// ROUNDING
// --------
impl RoundMode {
/// Determine if we should round down.
#[inline(always)]
pub const fn prefer_round_down(&self, significand: u64) -> bool {
match self {
RoundMode::Round => significand % 2 != 0,
RoundMode::Truncate => true,
}
}
}
// INTERVAL TYPE
// -------------
/// Interval types for rounding modes to compute endpoints.
#[non_exhaustive]
pub enum IntervalType {
Symmetric(bool),
Asymmetric(bool),
Closed,
Open,
LeftClosedRightOpen,
RightClosedLeftOpen,
}
impl IntervalType {
/// Determine if the interval type is symmetric.
#[inline(always)]
pub fn is_symmetric(&self) -> bool {
match self {
Self::Symmetric(_) => true,
Self::Asymmetric(_) => false,
Self::Closed => true,
Self::Open => true,
Self::LeftClosedRightOpen => false,
Self::RightClosedLeftOpen => false,
}
}
/// Determine if we include the left endpoint.
#[inline(always)]
pub fn include_left_endpoint(&self) -> bool {
match self {
Self::Symmetric(closed) => *closed,
Self::Asymmetric(left_closed) => *left_closed,
Self::Closed => true,
Self::Open => false,
Self::LeftClosedRightOpen => true,
Self::RightClosedLeftOpen => false,
}
}
/// Determine if we include the right endpoint.
#[inline(always)]
pub fn include_right_endpoint(&self) -> bool {
match self {
Self::Symmetric(closed) => *closed,
Self::Asymmetric(left_closed) => !*left_closed,
Self::Closed => true,
Self::Open => false,
Self::LeftClosedRightOpen => false,
Self::RightClosedLeftOpen => true,
}
}
}
// ENDPOINTS
// ---------
/// Compute the left endpoint from a 64-bit power-of-5.
#[inline(always)]
pub fn compute_left_endpoint_u64<F: DragonboxFloat>(pow5: u64, beta: i32) -> u64 {
let zero_carry = pow5 >> (F::MANTISSA_SIZE as usize + 2);
let mantissa_shift = 64 - F::MANTISSA_SIZE as usize - 1;
(pow5 - zero_carry) >> (mantissa_shift as i32 - beta)
}
#[inline(always)]
pub fn compute_right_endpoint_u64<F: DragonboxFloat>(pow5: u64, beta: i32) -> u64 {
let zero_carry = pow5 >> (F::MANTISSA_SIZE as usize + 1);
let mantissa_shift = 64 - F::MANTISSA_SIZE as usize - 1;
(pow5 + zero_carry) >> (mantissa_shift as i32 - beta)
}
/// Determine if we should round up for the short interval case.
#[inline(always)]
pub fn compute_round_up_u64<F: DragonboxFloat>(pow5: u64, beta: i32) -> u64 {
let shift = 64 - F::MANTISSA_SIZE - 2;
((pow5 >> (shift - beta)) + 1) / 2
}
// DRAGONBOX FLOAT
// ---------------
/// Get the high bits from the power-of-5.
#[inline(always)]
pub const fn high(pow5: &(u64, u64)) -> u64 {
pow5.0
}
/// Get the low bits from the power-of-5.
#[inline(always)]
pub const fn low(pow5: &(u64, u64)) -> u64 {
pow5.1
}
/// ROR instruction for 32-bit type.
#[inline(always)]
pub const fn rotr32(n: u32, r: u32) -> u32 {
let r = r & 31;
(n >> r) | (n << (32 - r))
}
/// ROR instruction for 64-bit type.
#[inline(always)]
pub const fn rotr64(n: u64, r: u64) -> u64 {
let r = r & 63;
(n >> r) | (n << (64 - r))
}
/// Magic numbers for division by a power of 10.
/// Replace `n` by `floor(n / 10^N)`.
/// Returns true if and only if n is divisible by `10^N`.
/// Precondition: `n <= 10^(N+1)`
/// !!It takes an in-out parameter!!
struct Div10Info {
magic_number: u32,
shift_amount: i32,
}
const F32_DIV10_INFO: Div10Info = Div10Info {
magic_number: 6554,
shift_amount: 16,
};
const F64_DIV10_INFO: Div10Info = Div10Info {
magic_number: 656,
shift_amount: 16,
};
macro_rules! check_div_pow10 {
($n:ident, $exp:literal, $float:ident, $info:ident) => {{
// Make sure the computation for `max_n` does not overflow.
debug_assert!($exp + 2 < floor_log10_pow2(31));
debug_assert!($n as u64 <= pow64(10, $exp + 1));
let n = $n.wrapping_mul($info.magic_number);
let mask = (1u32 << $info.shift_amount) - 1;
let r = (n & mask) < $info.magic_number;
(n >> $info.shift_amount, r)
}};
}
// These constants are efficient because we can do it in 32-bits.
const MOD_INV_5_U32: u32 = 0xCCCC_CCCD;
const MOD_INV_25_U32: u32 = MOD_INV_5_U32.wrapping_mul(MOD_INV_5_U32);
const MOD_INV_5_U64: u64 = 0xCCCC_CCCC_CCCC_CCCD;
const MOD_INV_25_U64: u64 = MOD_INV_5_U64.wrapping_mul(MOD_INV_5_U64);
macro_rules! div_pow10 {
($n:ident, $info:ident) => {{
$n.wrapping_mul($info.magic_number) >> $info.shift_amount
}};
}
/// Trait with specialized methods for the Dragonbox algorithm.
pub trait DragonboxFloat: Float {
/// Constant derived in Section 4.5 of the Dragonbox algorithm.
const KAPPA: u32;
/// Ceiling of the maximum number of float decimal digits + 1.
/// Or, `ceil((MANTISSA_SIZE + 1) / log2(10)) + 1`.
const DECIMAL_DIGITS: usize;
const FC_PM_HALF_LOWER: i32 = -(Self::KAPPA as i32) - floor_log5_pow2(Self::KAPPA as i32);
const DIV_BY_5_THRESHOLD: i32 = floor_log2_pow10(Self::KAPPA as i32 + 1);
type Power;
/// Quick calculation for the number of significant digits in the float.
fn digit_count(mantissa: u64) -> usize;
/// Write the significant digits to a buffer.
///
/// Does not handle rounding or truncated digits.
fn write_digits(bytes: &mut [u8], mantissa: u64) -> usize;
/// Get the pre-computed Dragonbox power from the exponent.
///
/// # Safety
///
/// Safe as long as the exponent is within the valid power-of-5 range.
unsafe fn dragonbox_power(exponent: i32) -> Self::Power;
/// Compute the left endpoint for the shorter interval case.
fn compute_left_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64;
/// Compute the right endpoint for the shorter interval case.
fn compute_right_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64;
/// Handle rounding-up for the short interval case.
fn compute_round_up(pow5: &Self::Power, beta_minus_1: i32) -> u64;
fn compute_mul(u: u64, pow5: &Self::Power) -> (u64, bool);
fn compute_mul_parity(two_f: u64, pow5: &Self::Power, beta_minus_1: i32) -> (bool, bool);
fn compute_delta(pow5: &Self::Power, beta_minus_1: i32) -> u32;
/// Handle trailing zeros, conditional on the float type.
fn process_trailing_zeros(mantissa: u64, exponent: i32) -> (u64, i32);
/// Remove trailing zeros from the float.
fn remove_trailing_zeros(mantissa: u64) -> (u64, i32);
/// Determine if `two_f` is divisible by `2^exp`.
#[inline(always)]
fn divisible_by_pow2(x: u64, exp: u32) -> bool {
// Preconditions: `exp >= 1 && x != 0`
x.trailing_zeros() >= exp
}
// Replace `n` by `floor(n / 10^N)`.
// Returns true if and only if `n` is divisible by `10^N`.
// Precondition: `n <= 10^(N+1)`
fn check_div_pow10(n: u32) -> (u32, bool);
// Compute `floor(n / 10^N)` for small `n` and exp.
// Precondition: `n <= 10^(N+1)`
fn div_pow10(n: u32) -> u32;
// Compute `floor(n / 10^N)` for small `N`.
// Precondition: `n <= n_max`
fn divide_by_pow10(n: u64, exp: u32, n_max: u64) -> u64;
}
impl DragonboxFloat for f32 {
const KAPPA: u32 = 1;
const DECIMAL_DIGITS: usize = 9;
type Power = u64;
#[inline(always)]
fn digit_count(mantissa: u64) -> usize {
debug_assert!(mantissa <= u32::MAX as u64);
(mantissa as u32).decimal_count()
}
#[inline(always)]
fn write_digits(bytes: &mut [u8], mantissa: u64) -> usize {
// NOTE: These digits are after shifting, so it can be 2**32 - 1.
debug_assert!(mantissa <= u32::MAX as u64);
write_digits_u32(bytes, mantissa as u32)
}
#[inline(always)]
unsafe fn dragonbox_power(exponent: i32) -> Self::Power {
debug_assert!((SMALLEST_F32_POW5..=LARGEST_F32_POW5).contains(&exponent));
let index = (exponent - SMALLEST_F32_POW5) as usize;
// SAFETY: safe if the exponent is in the correct range.
unsafe { index_unchecked!(DRAGONBOX32_POWERS_OF_FIVE[index]) }
}
#[inline(always)]
fn compute_left_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
compute_left_endpoint_u64::<Self>(*pow5, beta_minus_1)
}
#[inline(always)]
fn compute_right_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
compute_right_endpoint_u64::<Self>(*pow5, beta_minus_1)
}
#[inline(always)]
fn compute_round_up(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
compute_round_up_u64::<Self>(*pow5, beta_minus_1)
}
#[inline(always)]
fn compute_mul(u: u64, pow5: &Self::Power) -> (u64, bool) {
let r = umul96_upper64(u, *pow5);
(r >> 32, (r as u32) == 0)
}
#[inline(always)]
fn compute_mul_parity(two_f: u64, pow5: &Self::Power, beta: i32) -> (bool, bool) {
debug_assert!((1..64).contains(&beta));
let r = umul96_lower64(two_f, *pow5);
let parity = (r >> (64 - beta)) & 1;
let is_integer = r >> (32 - beta);
(parity != 0, is_integer == 0)
}
#[inline(always)]
fn compute_delta(pow5: &Self::Power, beta: i32) -> u32 {
(*pow5 >> (64 - 1 - beta)) as u32
}
#[inline(always)]
fn process_trailing_zeros(mantissa: u64, exponent: i32) -> (u64, i32) {
// Policy is to remove the trailing zeros.
let (mantissa, trailing) = Self::remove_trailing_zeros(mantissa);
(mantissa, exponent + trailing)
}
#[inline(always)]
fn remove_trailing_zeros(mantissa: u64) -> (u64, i32) {
debug_assert!(mantissa <= u32::MAX as u64);
debug_assert!(mantissa != 0);
let mut n = mantissa as u32;
let mut quo: u32;
let mut s: i32 = 0;
loop {
quo = rotr32(n.wrapping_mul(MOD_INV_25_U32), 2);
if quo <= u32::MAX / 100 {
n = quo;
s += 2;
} else {
break;
}
}
quo = rotr32(n.wrapping_mul(MOD_INV_5_U32), 1);
if quo <= u32::MAX / 10 {
n = quo;
s |= 1;
}
(n as u64, s)
}
#[inline(always)]
fn check_div_pow10(n: u32) -> (u32, bool) {
check_div_pow10!(n, 1, f32, F32_DIV10_INFO)
}
#[inline(always)]
fn div_pow10(n: u32) -> u32 {
div_pow10!(n, F32_DIV10_INFO)
}
#[inline(always)]
fn divide_by_pow10(n: u64, exp: u32, _: u64) -> u64 {
divide_by_pow10_32(n as u32, exp) as u64
}
}
impl DragonboxFloat for f64 {
const KAPPA: u32 = 2;
const DECIMAL_DIGITS: usize = 17;
type Power = (u64, u64);
#[inline(always)]
fn digit_count(mantissa: u64) -> usize {
mantissa.decimal_count()
}
#[inline(always)]
fn write_digits(bytes: &mut [u8], mantissa: u64) -> usize {
// NOTE: These digits are after shifting, so it can be 2**64 - 1.
write_digits_u64(bytes, mantissa)
}
#[inline(always)]
unsafe fn dragonbox_power(exponent: i32) -> Self::Power {
debug_assert!((SMALLEST_F64_POW5..=LARGEST_F64_POW5).contains(&exponent));
let index = (exponent - SMALLEST_F64_POW5) as usize;
// SAFETY: safe if the exponent is in the correct range.
unsafe { index_unchecked!(DRAGONBOX64_POWERS_OF_FIVE[index]) }
}
#[inline(always)]
fn compute_left_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
compute_left_endpoint_u64::<Self>(high(pow5), beta_minus_1)
}
#[inline(always)]
fn compute_right_endpoint(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
compute_right_endpoint_u64::<Self>(high(pow5), beta_minus_1)
}
#[inline(always)]
fn compute_round_up(pow5: &Self::Power, beta_minus_1: i32) -> u64 {
compute_round_up_u64::<Self>(high(pow5), beta_minus_1)
}
#[inline(always)]
fn compute_mul(u: u64, pow5: &Self::Power) -> (u64, bool) {
let (hi, lo) = umul192_upper128(u, high(pow5), low(pow5));
(hi, lo == 0)
}
#[inline(always)]
fn compute_mul_parity(two_f: u64, pow5: &Self::Power, beta: i32) -> (bool, bool) {
debug_assert!((1..64).contains(&beta));
let (rhi, rlo) = umul192_lower128(two_f, high(pow5), low(pow5));
let parity = (rhi >> (64 - beta)) & 1;
let is_integer = (rhi << beta) | (rlo >> (64 - beta));
(parity != 0, is_integer == 0)
}
#[inline(always)]
fn compute_delta(pow5: &Self::Power, beta: i32) -> u32 {
(high(pow5) >> (64 - 1 - beta)) as u32
}
#[inline(always)]
fn process_trailing_zeros(mantissa: u64, exponent: i32) -> (u64, i32) {
// Policy is to remove the trailing zeros.
// This differs from dragonbox proper, but leads to faster benchmarks.
let (mantissa, trailing) = Self::remove_trailing_zeros(mantissa);
(mantissa, exponent + trailing)
}
#[inline(always)]
fn remove_trailing_zeros(mantissa: u64) -> (u64, i32) {
debug_assert!(mantissa != 0);
// This magic number is `ceil(2^90 / 10^8)`.
let magic_number = 12379400392853802749u64;
let nm = mantissa as u128 * magic_number as u128;
// Is n is divisible by 10^8?
let high = (nm >> 64) as u64;
let mask = (1 << (90 - 64)) - 1;
let low = nm as u64;
if high & mask == 0 && low < magic_number {
// If yes, work with the quotient.
let mut n = (high >> (90 - 64)) as u32;
let mut s: i32 = 8;
let mut quo: u32;
loop {
quo = rotr32(n.wrapping_mul(MOD_INV_25_U32), 2);
if quo <= u32::MAX / 100 {
n = quo;
s += 2;
} else {
break;
}
}
quo = rotr32(n.wrapping_mul(MOD_INV_5_U32), 1);
if quo <= u32::MAX / 10 {
n = quo;
s |= 1;
}
(n as u64, s)
} else {
// If n is not divisible by 10^8, work with n itself.
let mut n = mantissa;
let mut s: i32 = 0;
let mut quo: u64;
loop {
quo = rotr64(n.wrapping_mul(MOD_INV_25_U64), 2);
if quo <= u64::MAX / 100 {
n = quo;
s += 2;
} else {
break;
}
}
quo = rotr64(n.wrapping_mul(MOD_INV_5_U64), 1);
if quo <= u64::MAX / 10 {
n = quo;
s |= 1;
}
(n, s)
}
}
#[inline(always)]
fn check_div_pow10(n: u32) -> (u32, bool) {
check_div_pow10!(n, 2, f64, F64_DIV10_INFO)
}
#[inline(always)]
fn div_pow10(n: u32) -> u32 {
div_pow10!(n, F64_DIV10_INFO)
}
#[inline(always)]
fn divide_by_pow10(n: u64, exp: u32, n_max: u64) -> u64 {
divide_by_pow10_64(n, exp, n_max)
}
}
#[cfg(feature = "f16")]
macro_rules! dragonbox_unimpl {
($($t:ident)*) => ($(
impl DragonboxFloat for $t {
const KAPPA: u32 = 0;
const DECIMAL_DIGITS: usize = 0;
type Power = u64;
#[inline(always)]
fn digit_count(_: u64) -> usize {
unimplemented!()
}
#[inline(always)]
fn write_digits(_: &mut [u8], _: u64) -> usize {
unimplemented!()
}
#[inline(always)]
unsafe fn dragonbox_power(_: i32) -> Self::Power {
unimplemented!()
}
#[inline(always)]
fn compute_left_endpoint(_: &Self::Power, _: i32) -> u64 {
unimplemented!()
}
#[inline(always)]
fn compute_right_endpoint(_: &Self::Power, _: i32) -> u64 {
unimplemented!()
}
#[inline(always)]
fn compute_round_up(_: &Self::Power, _: i32) -> (u64, bool) {
unimplemented!()
}
#[inline(always)]
fn compute_mul(_: u64, _: &Self::Power) -> (u64, bool) {
unimplemented!()
}
#[inline(always)]
fn compute_mul_parity(_: u64, _: &Self::Power, _: i32) -> (bool, bool) {
unimplemented!()
}
#[inline(always)]
fn compute_delta(_: &Self::Power, _: i32) -> u32 {
unimplemented!()
}
#[inline(always)]
fn process_trailing_zeros(_: u64, _: i32) -> (u64, i32) {
unimplemented!()
}
#[inline(always)]
fn remove_trailing_zeros(_: u64) -> (u64, i32) {
unimplemented!()
}
#[inline(always)]
fn check_div_pow10(_: u32) -> (u32, bool) {
unimplemented!()
}
#[inline(always)]
fn div_pow10(_: u32) -> u32 {
unimplemented!()
}
}
)*);
}
#[cfg(feature = "f16")]
dragonbox_unimpl! { bf16 f16 }