target_lexicon/
triple.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
// This file defines the `Triple` type and support code shared by all targets.

use crate::data_model::CDataModel;
use crate::parse_error::ParseError;
use crate::targets::{
    default_binary_format, Architecture, ArmArchitecture, BinaryFormat, Environment,
    OperatingSystem, Riscv32Architecture, Vendor,
};
#[cfg(not(feature = "std"))]
use alloc::borrow::ToOwned;
use core::fmt;
use core::str::FromStr;

/// The target memory endianness.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum Endianness {
    Little,
    Big,
}

/// The width of a pointer (in the default address space).
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum PointerWidth {
    U16,
    U32,
    U64,
}

impl PointerWidth {
    /// Return the number of bits in a pointer.
    pub fn bits(self) -> u8 {
        match self {
            PointerWidth::U16 => 16,
            PointerWidth::U32 => 32,
            PointerWidth::U64 => 64,
        }
    }

    /// Return the number of bytes in a pointer.
    ///
    /// For these purposes, there are 8 bits in a byte.
    pub fn bytes(self) -> u8 {
        match self {
            PointerWidth::U16 => 2,
            PointerWidth::U32 => 4,
            PointerWidth::U64 => 8,
        }
    }
}

/// The calling convention, which specifies things like which registers are
/// used for passing arguments, which registers are callee-saved, and so on.
#[cfg_attr(feature = "rust_1_40", non_exhaustive)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum CallingConvention {
    /// "System V", which is used on most Unix-like platfoms. Note that the
    /// specific conventions vary between hardware architectures; for example,
    /// x86-32's "System V" is entirely different from x86-64's "System V".
    SystemV,

    /// The WebAssembly C ABI.
    /// https://github.com/WebAssembly/tool-conventions/blob/master/BasicCABI.md
    WasmBasicCAbi,

    /// "Windows Fastcall", which is used on Windows. Note that like "System V",
    /// this varies between hardware architectures. On x86-32 it describes what
    /// Windows documentation calls "fastcall", and on x86-64 it describes what
    /// Windows documentation often just calls the Windows x64 calling convention
    /// (though the compiler still recognizes "fastcall" as an alias for it).
    WindowsFastcall,

    /// Apple Aarch64 platforms use their own variant of the common Aarch64
    /// calling convention.
    ///
    /// <https://developer.apple.com/documentation/xcode/writing_arm64_code_for_apple_platforms>
    AppleAarch64,
}

/// A target "triple". Historically such things had three fields, though they've
/// added additional fields over time.
///
/// Note that `Triple` doesn't implement `Default` itself. If you want a type
/// which defaults to the host triple, or defaults to unknown-unknown-unknown,
/// use `DefaultToHost` or `DefaultToUnknown`, respectively.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Triple {
    /// The "architecture" (and sometimes the subarchitecture).
    pub architecture: Architecture,
    /// The "vendor" (whatever that means).
    pub vendor: Vendor,
    /// The "operating system" (sometimes also the environment).
    pub operating_system: OperatingSystem,
    /// The "environment" on top of the operating system (often omitted for
    /// operating systems with a single predominant environment).
    pub environment: Environment,
    /// The "binary format" (rarely used).
    pub binary_format: BinaryFormat,
}

impl Triple {
    /// Return the endianness of this target's architecture.
    pub fn endianness(&self) -> Result<Endianness, ()> {
        self.architecture.endianness()
    }

    /// Return the pointer width of this target's architecture.
    ///
    /// This function is aware of x32 and ilp32 ABIs on 64-bit architectures.
    pub fn pointer_width(&self) -> Result<PointerWidth, ()> {
        // Some ABIs have a different pointer width than the CPU architecture.
        match self.environment {
            Environment::Gnux32 | Environment::GnuIlp32 => return Ok(PointerWidth::U32),
            _ => {}
        }

        self.architecture.pointer_width()
    }

    /// Return the default calling convention for the given target triple.
    pub fn default_calling_convention(&self) -> Result<CallingConvention, ()> {
        Ok(match self.operating_system {
            OperatingSystem::Darwin
            | OperatingSystem::Ios
            | OperatingSystem::Tvos
            | OperatingSystem::MacOSX { .. }
            | OperatingSystem::Watchos => match self.architecture {
                Architecture::Aarch64(_) => CallingConvention::AppleAarch64,
                _ => CallingConvention::SystemV,
            },
            OperatingSystem::Aix
            | OperatingSystem::Bitrig
            | OperatingSystem::Cloudabi
            | OperatingSystem::Dragonfly
            | OperatingSystem::Freebsd
            | OperatingSystem::Fuchsia
            | OperatingSystem::Haiku
            | OperatingSystem::Hermit
            | OperatingSystem::L4re
            | OperatingSystem::Linux
            | OperatingSystem::Netbsd
            | OperatingSystem::Openbsd
            | OperatingSystem::Redox
            | OperatingSystem::Solaris => CallingConvention::SystemV,
            OperatingSystem::Windows => CallingConvention::WindowsFastcall,
            OperatingSystem::Nebulet
            | OperatingSystem::Emscripten
            | OperatingSystem::Wasi
            | OperatingSystem::Unknown => match self.architecture {
                Architecture::Wasm32 => CallingConvention::WasmBasicCAbi,
                _ => return Err(()),
            },
            _ => return Err(()),
        })
    }

    /// The C data model for a given target. If the model is not known, returns `Err(())`.
    pub fn data_model(&self) -> Result<CDataModel, ()> {
        match self.pointer_width()? {
            PointerWidth::U64 => {
                if self.operating_system == OperatingSystem::Windows {
                    Ok(CDataModel::LLP64)
                } else if self.default_calling_convention() == Ok(CallingConvention::SystemV)
                    || self.architecture == Architecture::Wasm64
                {
                    Ok(CDataModel::LP64)
                } else {
                    Err(())
                }
            }
            PointerWidth::U32 => {
                if self.operating_system == OperatingSystem::Windows
                    || self.default_calling_convention() == Ok(CallingConvention::SystemV)
                    || self.architecture == Architecture::Wasm32
                {
                    Ok(CDataModel::ILP32)
                } else {
                    Err(())
                }
            }
            // TODO: on 16-bit machines there is usually a distinction
            // between near-pointers and far-pointers.
            // Additionally, code pointers sometimes have a different size than data pointers.
            // We don't handle this case.
            PointerWidth::U16 => Err(()),
        }
    }

    /// Return a `Triple` with all unknown fields.
    pub fn unknown() -> Self {
        Self {
            architecture: Architecture::Unknown,
            vendor: Vendor::Unknown,
            operating_system: OperatingSystem::Unknown,
            environment: Environment::Unknown,
            binary_format: BinaryFormat::Unknown,
        }
    }
}

impl fmt::Display for Triple {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if let Some(res) = self.special_case_display(f) {
            return res;
        }

        let implied_binary_format = default_binary_format(&self);

        write!(f, "{}", self.architecture)?;
        if self.vendor == Vendor::Unknown
            && (self.environment != Environment::HermitKernel
                && self.environment != Environment::LinuxKernel)
            && ((self.operating_system == OperatingSystem::Linux
                && (self.environment == Environment::Android
                    || self.environment == Environment::Androideabi
                    || self.environment == Environment::Kernel))
                || self.operating_system == OperatingSystem::Fuchsia
                || self.operating_system == OperatingSystem::Wasi
                || self.operating_system == OperatingSystem::WasiP1
                || self.operating_system == OperatingSystem::WasiP2
                || (self.operating_system == OperatingSystem::None_
                    && (self.architecture == Architecture::Arm(ArmArchitecture::Armv4t)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Armv5te)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Armebv7r)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Armv7a)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Armv7r)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Thumbv4t)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Thumbv5te)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Thumbv6m)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Thumbv7em)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Thumbv7m)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Thumbv8mBase)
                        || self.architecture == Architecture::Arm(ArmArchitecture::Thumbv8mMain)
                        || self.architecture == Architecture::Msp430)))
        {
            // As a special case, omit the vendor for Android, Fuchsia, Wasi, and sometimes
            // None_, depending on the hardware architecture. This logic is entirely
            // ad-hoc, and is just sufficient to handle the current set of recognized
            // triples.
            write!(f, "-{}", self.operating_system)?;
        } else if self.architecture.is_clever() && self.operating_system == OperatingSystem::Unknown
        {
            write!(f, "-{}", self.vendor)?;
        } else {
            write!(f, "-{}-{}", self.vendor, self.operating_system)?;
        }

        match (&self.vendor, self.operating_system, self.environment) {
            (Vendor::Nintendo, OperatingSystem::Horizon, Environment::Newlib)
            | (Vendor::Espressif, OperatingSystem::Espidf, Environment::Newlib) => {
                // The triple representations of these platforms don't have an environment field.
            }
            (_, _, Environment::Unknown) => {
                // Don't print out the environment if it is unknown.
            }
            _ => {
                write!(f, "-{}", self.environment)?;
            }
        }

        if self.binary_format != implied_binary_format {
            write!(f, "-{}", self.binary_format)?;
        }
        Ok(())
    }
}

impl FromStr for Triple {
    type Err = ParseError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if let Some(triple) = Triple::special_case_from_str(s) {
            return Ok(triple);
        }

        let mut parts = s.split('-');
        let mut result = Self::unknown();
        let mut current_part;

        current_part = parts.next();
        if let Some(s) = current_part {
            if let Ok(architecture) = Architecture::from_str(s) {
                result.architecture = architecture;
                current_part = parts.next();
            } else {
                // Insist that the triple start with a valid architecture.
                return Err(ParseError::UnrecognizedArchitecture(s.to_owned()));
            }
        }

        let mut has_vendor = false;
        let mut has_operating_system = false;
        if let Some(s) = current_part {
            if let Ok(vendor) = Vendor::from_str(s) {
                has_vendor = true;
                result.vendor = vendor;
                current_part = parts.next();
            }
        }

        if !has_operating_system {
            if let Some(s) = current_part {
                if let Ok(operating_system) = OperatingSystem::from_str(s) {
                    has_operating_system = true;
                    result.operating_system = operating_system;
                    current_part = parts.next();
                }
            }
        }

        let mut has_environment = false;

        if !has_environment {
            if let Some(s) = current_part {
                if let Ok(environment) = Environment::from_str(s) {
                    has_environment = true;
                    result.environment = environment;
                    current_part = parts.next();
                }
            }
        }

        let mut has_binary_format = false;
        if let Some(s) = current_part {
            if let Ok(binary_format) = BinaryFormat::from_str(s) {
                has_binary_format = true;
                result.binary_format = binary_format;
                current_part = parts.next();
            }
        }

        // The binary format is frequently omitted; if that's the case here,
        // infer it from the other fields.
        if !has_binary_format {
            result.binary_format = default_binary_format(&result);
        }

        if let Some(s) = current_part {
            Err(
                if !has_vendor && !has_operating_system && !has_environment && !has_binary_format {
                    ParseError::UnrecognizedVendor(s.to_owned())
                } else if !has_operating_system && !has_environment && !has_binary_format {
                    ParseError::UnrecognizedOperatingSystem(s.to_owned())
                } else if !has_environment && !has_binary_format {
                    ParseError::UnrecognizedEnvironment(s.to_owned())
                } else if !has_binary_format {
                    ParseError::UnrecognizedBinaryFormat(s.to_owned())
                } else {
                    ParseError::UnrecognizedField(s.to_owned())
                },
            )
        } else {
            Ok(result)
        }
    }
}

impl Triple {
    /// Handle special cases in the `Display` implementation.
    fn special_case_display(&self, f: &mut fmt::Formatter) -> Option<fmt::Result> {
        let res = match self {
            Triple {
                architecture: Architecture::Arm(ArmArchitecture::Armv6k),
                vendor: Vendor::Nintendo,
                operating_system: OperatingSystem::Horizon,
                ..
            } => write!(f, "{}-{}-3ds", self.architecture, self.vendor),
            Triple {
                architecture: Architecture::Riscv32(Riscv32Architecture::Riscv32imc),
                vendor: Vendor::Espressif,
                operating_system: OperatingSystem::Espidf,
                ..
            } => write!(f, "{}-esp-{}", self.architecture, self.operating_system),
            _ => return None,
        };
        Some(res)
    }

    /// Handle special cases in the `FromStr` implementation.
    fn special_case_from_str(s: &str) -> Option<Self> {
        let mut triple = Triple::unknown();

        match s {
            "armv6k-nintendo-3ds" => {
                triple.architecture = Architecture::Arm(ArmArchitecture::Armv6k);
                triple.vendor = Vendor::Nintendo;
                triple.operating_system = OperatingSystem::Horizon;
                triple.environment = Environment::Newlib;
                triple.binary_format = default_binary_format(&triple);
            }
            "riscv32imc-esp-espidf" => {
                triple.architecture = Architecture::Riscv32(Riscv32Architecture::Riscv32imc);
                triple.vendor = Vendor::Espressif;
                triple.operating_system = OperatingSystem::Espidf;
                triple.environment = Environment::Newlib;
                triple.binary_format = default_binary_format(&triple);
            }
            _ => return None,
        }

        Some(triple)
    }
}

/// A convenient syntax for triple literals.
///
/// This currently expands to code that just calls `Triple::from_str` and does
/// an `expect`, though in the future it would be cool to use procedural macros
/// or so to report errors at compile time instead.
#[macro_export]
macro_rules! triple {
    ($str:tt) => {
        <$crate::Triple as core::str::FromStr>::from_str($str).expect("invalid triple literal")
    };
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn parse_errors() {
        assert_eq!(
            Triple::from_str(""),
            Err(ParseError::UnrecognizedArchitecture("".to_owned()))
        );
        assert_eq!(
            Triple::from_str("foo"),
            Err(ParseError::UnrecognizedArchitecture("foo".to_owned()))
        );
        assert_eq!(
            Triple::from_str("unknown-unknown-foo"),
            Err(ParseError::UnrecognizedOperatingSystem("foo".to_owned()))
        );
        assert_eq!(
            Triple::from_str("unknown-unknown-unknown-foo"),
            Err(ParseError::UnrecognizedEnvironment("foo".to_owned()))
        );
        assert_eq!(
            Triple::from_str("unknown-unknown-unknown-unknown-foo"),
            Err(ParseError::UnrecognizedBinaryFormat("foo".to_owned()))
        );
        assert_eq!(
            Triple::from_str("unknown-unknown-unknown-unknown-unknown-foo"),
            Err(ParseError::UnrecognizedField("foo".to_owned()))
        );
    }

    #[test]
    fn defaults() {
        assert_eq!(
            Triple::from_str("unknown-unknown-unknown"),
            Ok(Triple::unknown())
        );
        assert_eq!(
            Triple::from_str("unknown-unknown-unknown-unknown"),
            Ok(Triple::unknown())
        );
        assert_eq!(
            Triple::from_str("unknown-unknown-unknown-unknown-unknown"),
            Ok(Triple::unknown())
        );
    }

    #[test]
    fn unknown_properties() {
        assert_eq!(Triple::unknown().endianness(), Err(()));
        assert_eq!(Triple::unknown().pointer_width(), Err(()));
        assert_eq!(Triple::unknown().default_calling_convention(), Err(()));
    }

    #[test]
    fn apple_calling_convention() {
        for triple in &[
            "aarch64-apple-darwin",
            "aarch64-apple-ios",
            "aarch64-apple-ios-macabi",
            "aarch64-apple-tvos",
            "aarch64-apple-watchos",
        ] {
            assert_eq!(
                Triple::from_str(triple)
                    .unwrap()
                    .default_calling_convention()
                    .unwrap(),
                CallingConvention::AppleAarch64
            );
        }

        for triple in &["aarch64-linux-android", "x86_64-apple-ios"] {
            assert_eq!(
                Triple::from_str(triple)
                    .unwrap()
                    .default_calling_convention()
                    .unwrap(),
                CallingConvention::SystemV
            );
        }
    }

    #[test]
    fn p32_abi() {
        // Test that special 32-bit pointer ABIs on 64-bit architectures are
        // reported as having 32-bit pointers.
        for triple in &[
            "x86_64-unknown-linux-gnux32",
            "aarch64_be-unknown-linux-gnu_ilp32",
            "aarch64-unknown-linux-gnu_ilp32",
        ] {
            assert_eq!(
                Triple::from_str(triple).unwrap().pointer_width().unwrap(),
                PointerWidth::U32
            );
        }

        // Test that the corresponding ABIs have 64-bit pointers.
        for triple in &[
            "x86_64-unknown-linux-gnu",
            "aarch64_be-unknown-linux-gnu",
            "aarch64-unknown-linux-gnu",
        ] {
            assert_eq!(
                Triple::from_str(triple).unwrap().pointer_width().unwrap(),
                PointerWidth::U64
            );
        }
    }
}