1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An append-only collection of compactable update batches. The Spine below is
//! a fork of Differential Dataflow's [Spine] with minimal modifications. The
//! original Spine code is designed for incremental (via "fuel"ing) synchronous
//! merge of in-memory batches. Persist doesn't want compaction to block
//! incoming writes and, in fact, may in the future elect to push the work of
//! compaction onto another machine entirely via RPC. As a result, we abuse the
//! Spine code as follows:
//!
//! [Spine]: differential_dataflow::trace::implementations::spine_fueled::Spine
//!
//! - The normal Spine works in terms of [Batch] impls. A `Batch` is added to
//! the Spine. As progress is made, the Spine will merge two batches together
//! by: constructing a [Batch::Merger], giving it bits of fuel to
//! incrementally perform the merge (which spreads out the work, keeping
//! latencies even), and then once it's done fueling extracting the new single
//! output `Batch` and discarding the inputs.
//! - Persist instead represents a batch of blob data with a [HollowBatch]
//! pointer which contains the normal `Batch` metadata plus the keys necessary
//! to retrieve the updates.
//! - [SpineBatch] wraps `HollowBatch` and has a [FuelingMerge] companion
//! (analogous to `Batch::Merger`) that allows us to represent a merge as it
//! is fueling. Normally, this would represent real incremental compaction
//! progress, but in persist, it's simply a bookkeeping mechanism. Once fully
//! fueled, the `FuelingMerge` is turned into a fueled [SpineBatch],
//! which to the Spine is indistinguishable from a merged batch. At this
//! point, it is eligible for asynchronous compaction and a `FueledMergeReq`
//! is generated.
//! - At any later point, this request may be answered via
//! [Trace::apply_merge_res]. This internally replaces the
//! `SpineBatch`, which has no effect on the structure of `Spine`
//! but replaces the metadata in persist's state to point at the
//! new batch.
//! - `SpineBatch` is explictly allowed to accumulate a list of `HollowBatch`s.
//! This decouples compaction from Spine progress and also allows us to reduce
//! write amplification by merging `N` batches at once where `N` can be
//! greater than 2.
//!
//! [Batch]: differential_dataflow::trace::Batch
//! [Batch::Merger]: differential_dataflow::trace::Batch::Merger
use arrayvec::ArrayVec;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::fmt::Debug;
use std::mem;
use std::sync::Arc;
use crate::internal::paths::WriterKey;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::trace::Description;
use mz_ore::cast::CastFrom;
#[allow(unused_imports)] // False positive.
use mz_ore::fmt::FormatBuffer;
use serde::{Serialize, Serializer};
use timely::progress::frontier::AntichainRef;
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use crate::internal::state::HollowBatch;
#[derive(Debug, Clone, PartialEq)]
pub struct FueledMergeReq<T> {
pub id: SpineId,
pub desc: Description<T>,
pub inputs: Vec<IdHollowBatch<T>>,
}
#[derive(Debug)]
pub struct FueledMergeRes<T> {
pub output: HollowBatch<T>,
}
/// An append-only collection of compactable update batches.
///
/// In an effort to keep our fork of Spine as close as possible to the original,
/// we push as many changes as possible into this wrapper.
#[derive(Debug, Clone)]
pub struct Trace<T> {
spine: Spine<T>,
pub(crate) roundtrip_structure: bool,
}
#[cfg(any(test, debug_assertions))]
impl<T: PartialEq> PartialEq for Trace<T> {
fn eq(&self, other: &Self) -> bool {
// Deconstruct self and other so we get a compile failure if new fields
// are added.
let Trace {
spine: _,
roundtrip_structure: _,
} = self;
let Trace {
spine: _,
roundtrip_structure: _,
} = other;
// Intentionally use HollowBatches for this comparison so we ignore
// differences in spine layers.
self.batches().eq(other.batches())
}
}
impl<T: Timestamp + Lattice> Default for Trace<T> {
fn default() -> Self {
Self {
spine: Spine::new(),
roundtrip_structure: true,
}
}
}
#[derive(Clone, Debug, Serialize)]
pub struct ThinSpineBatch<T> {
pub(crate) level: usize,
pub(crate) desc: Description<T>,
pub(crate) parts: Vec<SpineId>,
/// NB: this exists to validate legacy batch bounds during the migration;
/// it can be deleted once the roundtrip_structure flag is permanently rolled out.
pub(crate) descs: Vec<Description<T>>,
}
impl<T: PartialEq> PartialEq for ThinSpineBatch<T> {
fn eq(&self, other: &Self) -> bool {
// Ignore the temporary descs vector when comparing for equality.
(self.level, &self.desc, &self.parts).eq(&(other.level, &other.desc, &other.parts))
}
}
#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
pub struct ThinMerge<T> {
pub(crate) since: Antichain<T>,
pub(crate) remaining_work: usize,
pub(crate) active_compaction: Option<ActiveCompaction>,
}
impl<T: Clone> ThinMerge<T> {
fn fueling(merge: &FuelingMerge<T>) -> Self {
ThinMerge {
since: merge.since.clone(),
remaining_work: merge.remaining_work,
active_compaction: None,
}
}
fn fueled(batch: &SpineBatch<T>) -> Self {
ThinMerge {
since: batch.desc.since().clone(),
remaining_work: 0,
active_compaction: batch.active_compaction.clone(),
}
}
}
/// This is a "flattened" representation of a Trace. Goals:
/// - small updates to the trace should result in small differences in the `FlatTrace`;
/// - two `FlatTrace`s should be efficient to diff;
/// - converting to and from a `Trace` should be relatively straightforward.
///
/// These goals are all somewhat in tension, and the space of possible representations is pretty
/// large. See individual fields for comments on some of the tradeoffs.
#[derive(Clone, Debug)]
pub struct FlatTrace<T> {
pub(crate) since: Antichain<T>,
/// Hollow batches without an associated ID. If this flattened trace contains spine batches,
/// we can figure out which legacy batch belongs in which spine batch by comparing the `desc`s.
/// Previously, we serialized a trace as just this list of batches. Keeping this data around
/// helps ensure backwards compatibility. In the near future, we may still keep some batches
/// here to help minimize the size of diffs -- rewriting all the hollow batches in a shard
/// can be prohibitively expensive. Eventually, we'd like to remove this in favour of the
/// collection below.
pub(crate) legacy_batches: BTreeMap<Arc<HollowBatch<T>>, ()>,
/// Hollow batches _with_ an associated ID. Spine batches can reference these hollow batches
/// by id directly.
pub(crate) hollow_batches: BTreeMap<SpineId, Arc<HollowBatch<T>>>,
/// Spine batches stored by ID. We reference hollow batches by ID, instead of inlining them,
/// to make differential updates smaller when two batches merge together. We also store the
/// level on the batch, instead of mapping from level to a list of batches... the level of a
/// spine batch doesn't change over time, but the list of batches at a particular level does.
pub(crate) spine_batches: BTreeMap<SpineId, ThinSpineBatch<T>>,
/// In-progress merges. We store this by spine id instead of level to prepare for some possible
/// generalizations to spine (merging N of M batches at a level). This is also a natural place
/// to store incremental merge progress in the future.
pub(crate) merges: BTreeMap<SpineId, ThinMerge<T>>,
}
impl<T: Timestamp + Lattice> Trace<T> {
pub(crate) fn flatten(&self) -> FlatTrace<T> {
let since = self.spine.since.clone();
let mut legacy_batches = BTreeMap::new();
let mut hollow_batches = BTreeMap::new();
let mut spine_batches = BTreeMap::new();
let mut merges = BTreeMap::new();
let mut push_spine_batch = |level: usize, batch: &SpineBatch<T>| {
let id = batch.id();
let desc = batch.desc.clone();
let mut parts = Vec::with_capacity(batch.parts.len());
let mut descs = Vec::with_capacity(batch.parts.len());
for IdHollowBatch { id, batch } in &batch.parts {
parts.push(*id);
descs.push(batch.desc.clone());
// Ideally, we'd like to put all batches in the hollow_batches collection, since
// tracking the spine id reduces ambiguity and makes diffing cheaper. However,
// we currently keep most batches in the legacy collection for backwards
// compatibility.
// As an exception, we add batches with empty time ranges to hollow_batches:
// they're otherwise not guaranteed to be unique, and since we only started writing
// them down recently there's no backwards compatibility risk.
if batch.desc.lower() == batch.desc.upper() {
hollow_batches.insert(*id, Arc::clone(batch));
} else {
legacy_batches.insert(Arc::clone(batch), ());
}
}
let spine_batch = ThinSpineBatch {
level,
desc,
parts,
descs,
};
spine_batches.insert(id, spine_batch);
};
for (level, state) in self.spine.merging.iter().enumerate() {
for batch in &state.batches {
push_spine_batch(level, batch);
if let Some(c) = &batch.active_compaction {
let previous = merges.insert(batch.id, ThinMerge::fueled(batch));
assert!(
previous.is_none(),
"recording a compaction for a batch that already exists! (level={level}, id={:?}, compaction={c:?})",
batch.id,
)
}
}
if let Some(IdFuelingMerge { id, merge }) = state.merge.as_ref() {
let previous = merges.insert(*id, ThinMerge::fueling(merge));
assert!(
previous.is_none(),
"fueling a merge for a batch that already exists! (level={level}, id={id:?}, merge={merge:?})"
)
}
}
if !self.roundtrip_structure {
assert!(hollow_batches.is_empty());
spine_batches.clear();
merges.clear();
}
FlatTrace {
since,
legacy_batches,
hollow_batches,
spine_batches,
merges,
}
}
pub(crate) fn unflatten(value: FlatTrace<T>) -> Result<Self, String> {
let FlatTrace {
since,
legacy_batches,
mut hollow_batches,
spine_batches,
mut merges,
} = value;
// If the flattened representation has spine batches (or is empty)
// we know to preserve the structure for this trace.
let roundtrip_structure = !spine_batches.is_empty() || legacy_batches.is_empty();
// We need to look up legacy batches somehow, but we don't have a spine id for them.
// Instead, we rely on the fact that the spine must store them in antichain order.
// Our timestamp type may not be totally ordered, so we need to implement our own comparator
// here. Persist's invariants ensure that all the frontiers we're comparing are comparable,
// though.
let compare_chains = |left: &Antichain<T>, right: &Antichain<T>| {
if PartialOrder::less_than(left, right) {
Ordering::Less
} else if PartialOrder::less_than(right, left) {
Ordering::Greater
} else {
Ordering::Equal
}
};
let mut legacy_batches: Vec<_> = legacy_batches.into_iter().map(|(k, _)| k).collect();
legacy_batches.sort_by(|a, b| compare_chains(a.desc.lower(), b.desc.lower()).reverse());
let mut pop_batch =
|id: SpineId, expected_desc: Option<&Description<T>>| -> Result<_, String> {
if let Some(batch) = hollow_batches.remove(&id) {
if let Some(desc) = expected_desc {
assert_eq!(*desc, batch.desc);
}
return Ok(IdHollowBatch { id, batch });
}
let mut batch = legacy_batches
.pop()
.ok_or_else(|| format!("missing referenced hollow batch {id:?}"))?;
let Some(expected_desc) = expected_desc else {
return Ok(IdHollowBatch { id, batch });
};
if expected_desc.lower() != batch.desc.lower() {
return Err(format!(
"hollow batch lower {:?} did not match expected lower {:?}",
batch.desc.lower().elements(),
expected_desc.lower().elements()
));
}
// Empty legacy batches are not deterministic: different nodes may split them up
// in different ways. For now, we rearrange them such to match the spine data.
if batch.parts.is_empty() && batch.run_splits.is_empty() && batch.len == 0 {
let mut new_upper = batch.desc.upper().clone();
// While our current batch is too small, and there's another empty batch
// in the list, roll it in.
while PartialOrder::less_than(&new_upper, expected_desc.upper()) {
let Some(next_batch) = legacy_batches.pop() else {
break;
};
if next_batch.is_empty() {
new_upper.clone_from(next_batch.desc.upper());
} else {
legacy_batches.push(next_batch);
break;
}
}
// If our current batch is too large, split it by the expected upper
// and preserve the remainder.
if PartialOrder::less_than(expected_desc.upper(), &new_upper) {
legacy_batches.push(Arc::new(HollowBatch::empty(Description::new(
expected_desc.upper().clone(),
new_upper.clone(),
batch.desc.since().clone(),
))));
new_upper.clone_from(expected_desc.upper());
}
batch = Arc::new(HollowBatch::empty(Description::new(
batch.desc.lower().clone(),
new_upper,
expected_desc.since().clone(),
)))
}
if expected_desc.upper() != batch.desc.upper() {
return Err(format!(
"hollow batch upper {:?} did not match expected upper {:?}",
batch.desc.upper().elements(),
expected_desc.upper().elements()
));
}
Ok(IdHollowBatch { id, batch })
};
let (upper, next_id) = if let Some((id, batch)) = spine_batches.last_key_value() {
(batch.desc.upper().clone(), id.1)
} else {
(Antichain::from_elem(T::minimum()), 0)
};
let levels = spine_batches
.first_key_value()
.map(|(_, batch)| batch.level + 1)
.unwrap_or(0);
let mut merging = vec![MergeState::default(); levels];
for (id, batch) in spine_batches {
let level = batch.level;
let parts = batch
.parts
.into_iter()
.zip(batch.descs.iter().map(Some).chain(std::iter::repeat(None)))
.map(|(id, desc)| pop_batch(id, desc))
.collect::<Result<Vec<_>, _>>()?;
let len = parts.iter().map(|p| (*p).batch.len).sum();
let active_compaction = merges.remove(&id).and_then(|m| m.active_compaction);
let batch = SpineBatch {
id,
desc: batch.desc,
parts,
active_compaction,
len,
};
let state = &mut merging[level];
state.push_batch(batch);
if let Some(id) = state.id() {
if let Some(merge) = merges.remove(&id) {
state.merge = Some(IdFuelingMerge {
id,
merge: FuelingMerge {
since: merge.since,
remaining_work: merge.remaining_work,
},
})
}
}
}
let mut trace = Trace {
spine: Spine {
effort: 1,
next_id,
since,
upper,
merging,
},
roundtrip_structure,
};
fn check_empty(name: &str, len: usize) -> Result<(), String> {
if len != 0 {
Err(format!("{len} {name} left after reconstructing spine"))
} else {
Ok(())
}
}
if roundtrip_structure {
check_empty("legacy batches", legacy_batches.len())?;
} else {
// If the structure wasn't actually serialized, we may have legacy batches left over.
for batch in legacy_batches.into_iter().rev() {
trace.push_batch_no_merge_reqs(Arc::unwrap_or_clone(batch));
}
}
check_empty("hollow batches", hollow_batches.len())?;
check_empty("merges", merges.len())?;
debug_assert_eq!(trace.validate(), Ok(()), "{:?}", trace);
Ok(trace)
}
}
#[derive(Clone, Debug, Default)]
pub(crate) struct SpineMetrics {
pub compact_batches: u64,
pub compacting_batches: u64,
pub noncompact_batches: u64,
}
impl<T> Trace<T> {
pub fn since(&self) -> &Antichain<T> {
&self.spine.since
}
pub fn upper(&self) -> &Antichain<T> {
&self.spine.upper
}
pub fn map_batches<'a, F: FnMut(&'a HollowBatch<T>)>(&'a self, mut f: F) {
for batch in self.batches() {
f(batch);
}
}
pub fn batches(&self) -> impl Iterator<Item = &HollowBatch<T>> {
self.spine
.spine_batches()
.flat_map(|b| b.parts.as_slice())
.map(|b| &*b.batch)
}
pub fn num_spine_batches(&self) -> usize {
self.spine.spine_batches().count()
}
#[cfg(test)]
pub fn num_hollow_batches(&self) -> usize {
self.batches().count()
}
#[cfg(test)]
pub fn num_updates(&self) -> usize {
self.batches().map(|b| b.len).sum()
}
}
impl<T: Timestamp + Lattice> Trace<T> {
pub fn downgrade_since(&mut self, since: &Antichain<T>) {
self.spine.since.clone_from(since);
}
#[must_use]
pub fn push_batch(&mut self, batch: HollowBatch<T>) -> Vec<FueledMergeReq<T>> {
let mut merge_reqs = Vec::new();
self.spine.insert(
batch,
&mut SpineLog::Enabled {
merge_reqs: &mut merge_reqs,
},
);
debug_assert_eq!(self.spine.validate(), Ok(()), "{:?}", self);
// Spine::roll_up (internally used by insert) clears all batches out of
// levels below a target by walking up from level 0 and merging each
// level into the next (providing the necessary fuel). In practice, this
// means we'll get a series of requests like `(a, b), (a, b, c), ...`.
// It's a waste to do all of these (we'll throw away the results), so we
// filter out any that are entirely covered by some other request.
Self::remove_redundant_merge_reqs(merge_reqs)
}
pub fn claim_compaction(&mut self, id: SpineId, compaction: ActiveCompaction) {
// TODO: we ought to be able to look up the id for a batch by binary searching the levels.
// In the meantime, search backwards, since most compactions are for recent batches.
for batch in self.spine.spine_batches_mut().rev() {
if batch.id == id {
batch.active_compaction = Some(compaction);
break;
}
}
}
/// The same as [Self::push_batch] but without the `FueledMergeReq`s, which
/// account for a surprising amount of cpu in prod. database-issues#5411
pub(crate) fn push_batch_no_merge_reqs(&mut self, batch: HollowBatch<T>) {
self.spine.insert(batch, &mut SpineLog::Disabled);
}
/// Apply some amount of effort to trace maintenance.
///
/// The units of effort are updates, and the method should be thought of as
/// analogous to inserting as many empty updates, where the trace is
/// permitted to perform proportionate work.
///
/// Returns true if this did work and false if it left the spine unchanged.
#[must_use]
pub fn exert(&mut self, fuel: usize) -> (Vec<FueledMergeReq<T>>, bool) {
let mut merge_reqs = Vec::new();
let did_work = self.spine.exert(
fuel,
&mut SpineLog::Enabled {
merge_reqs: &mut merge_reqs,
},
);
debug_assert_eq!(self.spine.validate(), Ok(()), "{:?}", self);
// See the comment in [Self::push_batch].
let merge_reqs = Self::remove_redundant_merge_reqs(merge_reqs);
(merge_reqs, did_work)
}
/// Validates invariants.
///
/// See `Spine::validate` for details.
pub fn validate(&self) -> Result<(), String> {
self.spine.validate()
}
pub fn apply_merge_res(&mut self, res: &FueledMergeRes<T>) -> ApplyMergeResult {
for batch in self.spine.spine_batches_mut().rev() {
let result = batch.maybe_replace(res);
if result.matched() {
return result;
}
}
ApplyMergeResult::NotAppliedNoMatch
}
/// Obtain all fueled merge reqs that either have no active compaction, or the previous
/// compaction was started at or before the threshold time, in order from oldest to newest.
pub(crate) fn fueled_merge_reqs_before_ms(
&self,
threshold_ms: u64,
threshold_writer: Option<WriterKey>,
) -> impl Iterator<Item = FueledMergeReq<T>> + '_ {
self.spine
.spine_batches()
.filter(move |b| {
let noncompact = !b.is_compact();
let old_writer = threshold_writer.as_ref().map_or(false, |min_writer| {
b.parts.iter().any(|b| {
b.batch
.parts
.iter()
.any(|p| p.writer_key().map_or(false, |writer| writer < *min_writer))
})
});
noncompact || old_writer
})
.filter(move |b| {
// Either there's no active compaction, or the last active compaction
// is not after the timeout timestamp.
b.active_compaction
.as_ref()
.map_or(true, move |c| c.start_ms <= threshold_ms)
})
.map(|b| FueledMergeReq {
id: b.id,
desc: b.desc.clone(),
inputs: b.parts.clone(),
})
}
// This is only called with the results of one `insert` and so the length of
// `merge_reqs` is bounded by the number of levels in the spine (or possibly
// some small constant multiple?). The number of levels is logarithmic in the
// number of updates in the spine, so this number should stay very small. As
// a result, we simply use the naive O(n^2) algorithm here instead of doing
// anything fancy with e.g. interval trees.
fn remove_redundant_merge_reqs(
mut merge_reqs: Vec<FueledMergeReq<T>>,
) -> Vec<FueledMergeReq<T>> {
// Returns true if b0 covers b1, false otherwise.
fn covers<T: PartialOrder>(b0: &FueledMergeReq<T>, b1: &FueledMergeReq<T>) -> bool {
// TODO: can we relax or remove this since check?
b0.id.covers(b1.id) && b0.desc.since() == b1.desc.since()
}
let mut ret = Vec::<FueledMergeReq<T>>::with_capacity(merge_reqs.len());
// In practice, merge_reqs will come in sorted such that the "large"
// requests are later. Take advantage of this by processing back to
// front.
while let Some(merge_req) = merge_reqs.pop() {
let covered = ret.iter().any(|r| covers(r, &merge_req));
if !covered {
// Now check if anything we've already staged is covered by this
// new req. In practice, the merge_reqs come in sorted and so
// this `retain` is a no-op.
ret.retain(|r| !covers(&merge_req, r));
ret.push(merge_req);
}
}
ret
}
pub fn spine_metrics(&self) -> SpineMetrics {
let mut metrics = SpineMetrics::default();
for batch in self.spine.spine_batches() {
if batch.is_compact() {
metrics.compact_batches += 1;
} else if batch.is_merging() {
metrics.compacting_batches += 1;
} else {
metrics.noncompact_batches += 1;
}
}
metrics
}
}
/// A log of what transitively happened during a Spine operation: e.g.
/// FueledMergeReqs were generated.
enum SpineLog<'a, T> {
Enabled {
merge_reqs: &'a mut Vec<FueledMergeReq<T>>,
},
Disabled,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct SpineId(pub usize, pub usize);
impl Serialize for SpineId {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let SpineId(lo, hi) = self;
serializer.serialize_str(&format!("{lo}-{hi}"))
}
}
impl SpineId {
fn covers(self, other: SpineId) -> bool {
self.0 <= other.0 && other.1 <= self.1
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct IdHollowBatch<T> {
pub id: SpineId,
pub batch: Arc<HollowBatch<T>>,
}
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub struct ActiveCompaction {
pub start_ms: u64,
}
#[derive(Debug, Clone, PartialEq)]
struct SpineBatch<T> {
id: SpineId,
desc: Description<T>,
parts: Vec<IdHollowBatch<T>>,
active_compaction: Option<ActiveCompaction>,
// A cached version of parts.iter().map(|x| x.len).sum()
len: usize,
}
impl<T> SpineBatch<T> {
fn merged(batch: IdHollowBatch<T>) -> Self
where
T: Clone,
{
Self {
id: batch.id,
desc: batch.batch.desc.clone(),
len: batch.batch.len,
parts: vec![batch],
active_compaction: None,
}
}
}
#[derive(Debug, Copy, Clone)]
pub enum ApplyMergeResult {
AppliedExact,
AppliedSubset,
NotAppliedNoMatch,
NotAppliedInvalidSince,
NotAppliedTooManyUpdates,
}
impl ApplyMergeResult {
pub fn applied(&self) -> bool {
match self {
ApplyMergeResult::AppliedExact | ApplyMergeResult::AppliedSubset => true,
_ => false,
}
}
pub fn matched(&self) -> bool {
match self {
ApplyMergeResult::AppliedExact
| ApplyMergeResult::AppliedSubset
| ApplyMergeResult::NotAppliedTooManyUpdates => true,
_ => false,
}
}
}
impl<T: Timestamp + Lattice> SpineBatch<T> {
pub fn lower(&self) -> &Antichain<T> {
self.desc().lower()
}
pub fn upper(&self) -> &Antichain<T> {
self.desc().upper()
}
fn id(&self) -> SpineId {
debug_assert_eq!(self.parts.first().map(|x| x.id.0), Some(self.id.0));
debug_assert_eq!(self.parts.last().map(|x| x.id.1), Some(self.id.1));
self.id
}
pub fn is_compact(&self) -> bool {
// This definition is extremely likely to change, but for now, we consider a batch
// "compact" if it has at most one hollow batch with at most one run.
self.parts.len() <= 1 && self.parts.iter().all(|p| p.batch.run_splits.is_empty())
}
pub fn is_merging(&self) -> bool {
self.active_compaction.is_some()
}
fn desc(&self) -> &Description<T> {
&self.desc
}
pub fn len(&self) -> usize {
// NB: This is an upper bound on len for a non-compact batch; we won't know for sure until
// we compact it.
debug_assert_eq!(
self.len,
self.parts.iter().map(|x| x.batch.len).sum::<usize>()
);
self.len
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn empty(
id: SpineId,
lower: Antichain<T>,
upper: Antichain<T>,
since: Antichain<T>,
) -> Self {
SpineBatch::merged(IdHollowBatch {
id,
batch: Arc::new(HollowBatch::empty(Description::new(lower, upper, since))),
})
}
pub fn begin_merge(
bs: &[Self],
compaction_frontier: Option<AntichainRef<T>>,
) -> Option<IdFuelingMerge<T>> {
let from = bs.first()?.id().0;
let until = bs.last()?.id().1;
let id = SpineId(from, until);
let mut sinces = bs.iter().map(|b| b.desc().since());
let mut since = sinces.next()?.clone();
for b in bs {
since.join_assign(b.desc().since())
}
if let Some(compaction_frontier) = compaction_frontier {
since.join_assign(&compaction_frontier.to_owned());
}
let remaining_work = bs.iter().map(|x| x.len()).sum();
Some(IdFuelingMerge {
id,
merge: FuelingMerge {
since,
remaining_work,
},
})
}
// TODO: Roundtrip the SpineId through FueledMergeReq/FueledMergeRes?
fn maybe_replace(&mut self, res: &FueledMergeRes<T>) -> ApplyMergeResult {
// The spine's and merge res's sinces don't need to match (which could occur if Spine
// has been reloaded from state due to compare_and_set mismatch), but if so, the Spine
// since must be in advance of the merge res since.
if !PartialOrder::less_equal(res.output.desc.since(), self.desc().since()) {
return ApplyMergeResult::NotAppliedInvalidSince;
}
// If our merge result exactly matches a spine batch, we can swap it in directly
let exact_match = res.output.desc.lower() == self.desc().lower()
&& res.output.desc.upper() == self.desc().upper();
if exact_match {
// Spine internally has an invariant about a batch being at some level
// or higher based on the len. We could end up violating this invariant
// if we increased the length of the batch.
//
// A res output with length greater than the existing spine batch implies
// a compaction has already been applied to this range, and with a higher
// rate of consolidation than this one. This could happen as a result of
// compaction's memory bound limiting the amount of consolidation possible.
if res.output.len > self.len() {
return ApplyMergeResult::NotAppliedTooManyUpdates;
}
*self = SpineBatch::merged(IdHollowBatch {
id: self.id(),
batch: Arc::new(res.output.clone()),
});
return ApplyMergeResult::AppliedExact;
}
// It is possible the structure of the spine has changed since the merge res
// was created, such that it no longer exactly matches the description of a
// spine batch. This can happen if another merge has happened in the interim,
// or if spine needed to be rebuilt from state.
//
// When this occurs, we can still attempt to slot the merge res in to replace
// the parts of a fueled merge. e.g. if the res is for `[1,3)` and the parts
// are `[0,1),[1,2),[2,3),[3,4)`, we can swap out the middle two parts for res.
let SpineBatch {
id,
parts,
desc,
active_compaction: _,
len: _,
} = self;
// first, determine if a subset of parts can be cleanly replaced by the merge res
let mut lower = None;
let mut upper = None;
for (i, batch) in parts.iter().enumerate() {
if batch.batch.desc.lower() == res.output.desc.lower() {
lower = Some((i, batch.id.0));
}
if batch.batch.desc.upper() == res.output.desc.upper() {
upper = Some((i, batch.id.1));
}
if lower.is_some() && upper.is_some() {
break;
}
}
// next, replace parts with the merge res batch if we can
match (lower, upper) {
(Some((lower, id_lower)), Some((upper, id_upper))) => {
let mut new_parts = vec![];
new_parts.extend_from_slice(&parts[..lower]);
new_parts.push(IdHollowBatch {
id: SpineId(id_lower, id_upper),
batch: Arc::new(res.output.clone()),
});
new_parts.extend_from_slice(&parts[upper + 1..]);
let new_spine_batch = SpineBatch {
id: *id,
desc: desc.to_owned(),
len: new_parts.iter().map(|x| x.batch.len).sum(),
parts: new_parts,
active_compaction: None,
};
if new_spine_batch.len() > self.len() {
return ApplyMergeResult::NotAppliedTooManyUpdates;
}
*self = new_spine_batch;
ApplyMergeResult::AppliedSubset
}
_ => ApplyMergeResult::NotAppliedNoMatch,
}
}
#[cfg(test)]
fn describe(&self, extended: bool) -> String {
let SpineBatch {
id,
parts,
desc,
active_compaction,
len,
} = self;
let compaction = match active_compaction {
None => "".to_owned(),
Some(c) => format!(" (c@{})", c.start_ms),
};
match extended {
false => format!(
"[{}-{}]{:?}{:?}{}/{}{compaction}",
id.0,
id.1,
desc.lower().elements(),
desc.upper().elements(),
parts.len(),
len
),
true => {
format!(
"[{}-{}]{:?}{:?}{:?} {}/{}{}{compaction}",
id.0,
id.1,
desc.lower().elements(),
desc.upper().elements(),
desc.since().elements(),
parts.len(),
len,
parts
.iter()
.flat_map(|x| x.batch.parts.iter())
.map(|x| format!(" {}", x.printable_name()))
.collect::<Vec<_>>()
.join("")
)
}
}
}
}
#[derive(Debug, Clone, PartialEq, Serialize)]
pub struct FuelingMerge<T> {
pub(crate) since: Antichain<T>,
pub(crate) remaining_work: usize,
}
#[derive(Debug, Clone, PartialEq, Serialize)]
pub struct IdFuelingMerge<T> {
id: SpineId,
merge: FuelingMerge<T>,
}
impl<T: Timestamp + Lattice> FuelingMerge<T> {
/// Perform some amount of work, decrementing `fuel`.
///
/// If `fuel` is non-zero after the call, the merging is complete and one
/// should call `done` to extract the merged results.
// TODO(benesch): rewrite to avoid usage of `as`.
#[allow(clippy::as_conversions)]
fn work(&mut self, _: &[SpineBatch<T>], fuel: &mut isize) {
let used = std::cmp::min(*fuel as usize, self.remaining_work);
self.remaining_work = self.remaining_work.saturating_sub(used);
*fuel -= used as isize;
}
/// Extracts merged results.
///
/// This method should only be called after `work` has been called and has
/// not brought `fuel` to zero. Otherwise, the merge is still in progress.
fn done(
self,
bs: ArrayVec<SpineBatch<T>, BATCHES_PER_LEVEL>,
log: &mut SpineLog<'_, T>,
) -> Option<SpineBatch<T>> {
let first = bs.first()?;
let last = bs.last()?;
let id = SpineId(first.id().0, last.id().1);
assert!(id.0 < id.1);
let lower = first.desc().lower().clone();
let upper = last.desc().upper().clone();
let since = self.since;
// Special case empty batches.
if bs.iter().all(SpineBatch::is_empty) {
return Some(SpineBatch::empty(id, lower, upper, since));
}
let desc = Description::new(lower, upper, since);
let len = bs.iter().map(SpineBatch::len).sum();
// Pre-size the merged_parts Vec. Benchmarking has shown that, at least
// in the worst case, the double iteration is absolutely worth having
// merged_parts pre-sized.
let mut merged_parts_len = 0;
for b in &bs {
merged_parts_len += b.parts.len();
}
let mut merged_parts = Vec::with_capacity(merged_parts_len);
for b in bs {
merged_parts.extend(b.parts)
}
// Sanity check the pre-size code.
debug_assert_eq!(merged_parts.len(), merged_parts_len);
if let SpineLog::Enabled { merge_reqs } = log {
merge_reqs.push(FueledMergeReq {
id,
desc: desc.clone(),
inputs: merged_parts.clone(),
});
}
Some(SpineBatch {
id,
desc,
len,
parts: merged_parts,
active_compaction: None,
})
}
}
/// The maximum number of batches per level in the spine.
/// In practice, we probably want a larger max and a configurable soft cap, but using a
/// stack-friendly data structure and keeping this number low makes this safer during the
/// initial rollout.
const BATCHES_PER_LEVEL: usize = 2;
/// An append-only collection of update batches.
///
/// The `Spine` is a general-purpose trace implementation based on collection
/// and merging immutable batches of updates. It is generic with respect to the
/// batch type, and can be instantiated for any implementor of `trace::Batch`.
///
/// ## Design
///
/// This spine is represented as a list of layers, where each element in the
/// list is either
///
/// 1. MergeState::Vacant empty
/// 2. MergeState::Single a single batch
/// 3. MergeState::Double a pair of batches
///
/// Each "batch" has the option to be `None`, indicating a non-batch that
/// nonetheless acts as a number of updates proportionate to the level at which
/// it exists (for bookkeeping).
///
/// Each of the batches at layer i contains at most 2^i elements. The sequence
/// of batches should have the upper bound of one match the lower bound of the
/// next. Batches may be logically empty, with matching upper and lower bounds,
/// as a bookkeeping mechanism.
///
/// Each batch at layer i is treated as if it contains exactly 2^i elements,
/// even though it may actually contain fewer elements. This allows us to
/// decouple the physical representation from logical amounts of effort invested
/// in each batch. It allows us to begin compaction and to reduce the number of
/// updates, without compromising our ability to continue to move updates along
/// the spine. We are explicitly making the trade-off that while some batches
/// might compact at lower levels, we want to treat them as if they contained
/// their full set of updates for accounting reasons (to apply work to higher
/// levels).
///
/// We maintain the invariant that for any in-progress merge at level k there
/// should be fewer than 2^k records at levels lower than k. That is, even if we
/// were to apply an unbounded amount of effort to those records, we would not
/// have enough records to prompt a merge into the in-progress merge. Ideally,
/// we maintain the extended invariant that for any in-progress merge at level
/// k, the remaining effort required (number of records minus applied effort) is
/// less than the number of records that would need to be added to reach 2^k
/// records in layers below.
///
/// ## Mathematics
///
/// When a merge is initiated, there should be a non-negative *deficit* of
/// updates before the layers below could plausibly produce a new batch for the
/// currently merging layer. We must determine a factor of proportionality, so
/// that newly arrived updates provide at least that amount of "fuel" towards
/// the merging layer, so that the merge completes before lower levels invade.
///
/// ### Deficit:
///
/// A new merge is initiated only in response to the completion of a prior
/// merge, or the introduction of new records from outside. The latter case is
/// special, and will maintain our invariant trivially, so we will focus on the
/// former case.
///
/// When a merge at level k completes, assuming we have maintained our invariant
/// then there should be fewer than 2^k records at lower levels. The newly
/// created merge at level k+1 will require up to 2^k+2 units of work, and
/// should not expect a new batch until strictly more than 2^k records are
/// added. This means that a factor of proportionality of four should be
/// sufficient to ensure that the merge completes before a new merge is
/// initiated.
///
/// When new records get introduced, we will need to roll up any batches at
/// lower levels, which we treat as the introduction of records. Each of these
/// virtual records introduced should either be accounted for the fuel it should
/// contribute, as it results in the promotion of batches closer to in-progress
/// merges.
///
/// ### Fuel sharing
///
/// We like the idea of applying fuel preferentially to merges at *lower*
/// levels, under the idea that they are easier to complete, and we benefit from
/// fewer total merges in progress. This does delay the completion of merges at
/// higher levels, and may not obviously be a total win. If we choose to do
/// this, we should make sure that we correctly account for completed merges at
/// low layers: they should still extract fuel from new updates even though they
/// have completed, at least until they have paid back any "debt" to higher
/// layers by continuing to provide fuel as updates arrive.
#[derive(Debug, Clone)]
struct Spine<T> {
effort: usize,
next_id: usize,
since: Antichain<T>,
upper: Antichain<T>,
merging: Vec<MergeState<T>>,
}
impl<T> Spine<T> {
/// All batches in the spine, oldest to newest.
pub fn spine_batches(&self) -> impl Iterator<Item = &SpineBatch<T>> {
self.merging.iter().rev().flat_map(|m| &m.batches)
}
/// All (mutable) batches in the spine, oldest to newest.
pub fn spine_batches_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut SpineBatch<T>> {
self.merging.iter_mut().rev().flat_map(|m| &mut m.batches)
}
}
impl<T: Timestamp + Lattice> Spine<T> {
/// Allocates a fueled `Spine`.
///
/// This trace will merge batches progressively, with each inserted batch
/// applying a multiple of the batch's length in effort to each merge. The
/// `effort` parameter is that multiplier. This value should be at least one
/// for the merging to happen; a value of zero is not helpful.
pub fn new() -> Self {
Spine {
effort: 1,
next_id: 0,
since: Antichain::from_elem(T::minimum()),
upper: Antichain::from_elem(T::minimum()),
merging: Vec::new(),
}
}
/// Apply some amount of effort to trace maintenance.
///
/// The units of effort are updates, and the method should be thought of as
/// analogous to inserting as many empty updates, where the trace is
/// permitted to perform proportionate work.
///
/// Returns true if this did work and false if it left the spine unchanged.
fn exert(&mut self, effort: usize, log: &mut SpineLog<'_, T>) -> bool {
self.tidy_layers();
if self.reduced() {
return false;
}
if self.merging.iter().any(|b| b.merge.is_some()) {
let fuel = isize::try_from(effort).unwrap_or(isize::MAX);
// If any merges exist, we can directly call `apply_fuel`.
self.apply_fuel(&fuel, log);
} else {
// Otherwise, we'll need to introduce fake updates to move merges
// along.
// Introduce an empty batch with roughly *effort number of virtual updates.
let level = usize::cast_from(effort.next_power_of_two().trailing_zeros());
let id = self.next_id();
self.introduce_batch(
SpineBatch::empty(
id,
self.upper.clone(),
self.upper.clone(),
self.since.clone(),
),
level,
log,
);
}
true
}
pub fn next_id(&mut self) -> SpineId {
let id = self.next_id;
self.next_id += 1;
SpineId(id, self.next_id)
}
// Ideally, this method acts as insertion of `batch`, even if we are not yet
// able to begin merging the batch. This means it is a good time to perform
// amortized work proportional to the size of batch.
pub fn insert(&mut self, batch: HollowBatch<T>, log: &mut SpineLog<'_, T>) {
assert!(batch.desc.lower() != batch.desc.upper());
assert_eq!(batch.desc.lower(), &self.upper);
let id = self.next_id();
let batch = SpineBatch::merged(IdHollowBatch {
id,
batch: Arc::new(batch),
});
self.upper.clone_from(batch.upper());
// If `batch` and the most recently inserted batch are both empty,
// we can just fuse them.
if batch.is_empty() {
if let Some(position) = self.merging.iter().position(|m| !m.is_vacant()) {
if self.merging[position].is_single() && self.merging[position].is_empty() {
self.insert_at(batch, position);
// Since we just inserted a batch, we should always have work to complete...
// but otherwise we just leave this layer vacant.
if let Some(merged) = self.complete_at(position, log) {
self.merging[position] = MergeState::single(merged);
}
return;
}
}
}
// Normal insertion for the batch.
let index = batch.len().next_power_of_two();
self.introduce_batch(batch, usize::cast_from(index.trailing_zeros()), log);
}
/// True iff there is at most one HollowBatch in `self.merging`.
///
/// When true, there is no maintenance work to perform in the trace, other
/// than compaction. We do not yet have logic in place to determine if
/// compaction would improve a trace, so for now we are ignoring that.
fn reduced(&self) -> bool {
self.spine_batches()
.flat_map(|b| b.parts.as_slice())
.count()
< 2
}
/// Describes the merge progress of layers in the trace.
///
/// Intended for diagnostics rather than public consumption.
#[allow(dead_code)]
fn describe(&self) -> Vec<(usize, usize)> {
self.merging
.iter()
.map(|b| (b.batches.len(), b.len()))
.collect()
}
/// Introduces a batch at an indicated level.
///
/// The level indication is often related to the size of the batch, but it
/// can also be used to artificially fuel the computation by supplying empty
/// batches at non-trivial indices, to move merges along.
fn introduce_batch(
&mut self,
batch: SpineBatch<T>,
batch_index: usize,
log: &mut SpineLog<'_, T>,
) {
// Step 0. Determine an amount of fuel to use for the computation.
//
// Fuel is used to drive maintenance of the data structure,
// and in particular are used to make progress through merges
// that are in progress. The amount of fuel to use should be
// proportional to the number of records introduced, so that
// we are guaranteed to complete all merges before they are
// required as arguments to merges again.
//
// The fuel use policy is negotiable, in that we might aim
// to use relatively less when we can, so that we return
// control promptly, or we might account more work to larger
// batches. Not clear to me which are best, of if there
// should be a configuration knob controlling this.
// The amount of fuel to use is proportional to 2^batch_index, scaled by
// a factor of self.effort which determines how eager we are in
// performing maintenance work. We need to ensure that each merge in
// progress receives fuel for each introduced batch, and so multiply by
// that as well.
if batch_index > 32 {
println!("Large batch index: {}", batch_index);
}
// We believe that eight units of fuel is sufficient for each introduced
// record, accounted as four for each record, and a potential four more
// for each virtual record associated with promoting existing smaller
// batches. We could try and make this be less, or be scaled to merges
// based on their deficit at time of instantiation. For now, we remain
// conservative.
let mut fuel = 8 << batch_index;
// Scale up by the effort parameter, which is calibrated to one as the
// minimum amount of effort.
fuel *= self.effort;
// Convert to an `isize` so we can observe any fuel shortfall.
// TODO(benesch): avoid dangerous usage of `as`.
#[allow(clippy::as_conversions)]
let fuel = fuel as isize;
// Step 1. Apply fuel to each in-progress merge.
//
// Before we can introduce new updates, we must apply any
// fuel to in-progress merges, as this fuel is what ensures
// that the merges will be complete by the time we insert
// the updates.
self.apply_fuel(&fuel, log);
// Step 2. We must ensure the invariant that adjacent layers do not
// contain two batches will be satisfied when we insert the
// batch. We forcibly completing all merges at layers lower
// than and including `batch_index`, so that the new batch is
// inserted into an empty layer.
//
// We could relax this to "strictly less than `batch_index`"
// if the layer above has only a single batch in it, which
// seems not implausible if it has been the focus of effort.
//
// This should be interpreted as the introduction of some
// volume of fake updates, and we will need to fuel merges
// by a proportional amount to ensure that they are not
// surprised later on. The number of fake updates should
// correspond to the deficit for the layer, which perhaps
// we should track explicitly.
self.roll_up(batch_index, log);
// Step 3. This insertion should be into an empty layer. It is a logical
// error otherwise, as we may be violating our invariant, from
// which all wonderment derives.
self.insert_at(batch, batch_index);
// Step 4. Tidy the largest layers.
//
// It is important that we not tidy only smaller layers,
// as their ascension is what ensures the merging and
// eventual compaction of the largest layers.
self.tidy_layers();
}
/// Ensures that an insertion at layer `index` will succeed.
///
/// This method is subject to the constraint that all existing batches
/// should occur at higher levels, which requires it to "roll up" batches
/// present at lower levels before the method is called. In doing this, we
/// should not introduce more virtual records than 2^index, as that is the
/// amount of excess fuel we have budgeted for completing merges.
fn roll_up(&mut self, index: usize, log: &mut SpineLog<'_, T>) {
// Ensure entries sufficient for `index`.
while self.merging.len() <= index {
self.merging.push(MergeState::default());
}
// We only need to roll up if there are non-vacant layers.
if self.merging[..index].iter().any(|m| !m.is_vacant()) {
// Collect and merge all batches at layers up to but not including
// `index`.
let mut merged = None;
for i in 0..index {
if let Some(merged) = merged.take() {
self.insert_at(merged, i);
}
merged = self.complete_at(i, log);
}
// The merged results should be introduced at level `index`, which
// should be ready to absorb them (possibly creating a new merge at
// the time).
if let Some(merged) = merged {
self.insert_at(merged, index);
}
// If the insertion results in a merge, we should complete it to
// ensure the upcoming insertion at `index` does not panic.
if self.merging[index].is_full() {
let merged = self.complete_at(index, log).expect("double batch");
self.insert_at(merged, index + 1);
}
}
}
/// Applies an amount of fuel to merges in progress.
///
/// The supplied `fuel` is for each in progress merge, and if we want to
/// spend the fuel non-uniformly (e.g. prioritizing merges at low layers) we
/// could do so in order to maintain fewer batches on average (at the risk
/// of completing merges of large batches later, but tbh probably not much
/// later).
pub fn apply_fuel(&mut self, fuel: &isize, log: &mut SpineLog<'_, T>) {
// For the moment our strategy is to apply fuel independently to each
// merge in progress, rather than prioritizing small merges. This sounds
// like a great idea, but we need better accounting in place to ensure
// that merges that borrow against later layers but then complete still
// "acquire" fuel to pay back their debts.
for index in 0..self.merging.len() {
// Give each level independent fuel, for now.
let mut fuel = *fuel;
// Pass along various logging stuffs, in case we need to report
// success.
self.merging[index].work(&mut fuel);
// `fuel` could have a deficit at this point, meaning we over-spent
// when we took a merge step. We could ignore this, or maintain the
// deficit and account future fuel against it before spending again.
// It isn't clear why that would be especially helpful to do; we
// might want to avoid overspends at multiple layers in the same
// invocation (to limit latencies), but there is probably a rich
// policy space here.
// If a merge completes, we can immediately merge it in to the next
// level, which is "guaranteed" to be complete at this point, by our
// fueling discipline.
if self.merging[index].is_complete() {
let complete = self.complete_at(index, log).expect("complete batch");
self.insert_at(complete, index + 1);
}
}
}
/// Inserts a batch at a specific location.
///
/// This is a non-public internal method that can panic if we try and insert
/// into a layer which already contains two batches (and is still in the
/// process of merging).
fn insert_at(&mut self, batch: SpineBatch<T>, index: usize) {
// Ensure the spine is large enough.
while self.merging.len() <= index {
self.merging.push(MergeState::default());
}
// Insert the batch at the location.
let merging = &mut self.merging[index];
merging.push_batch(batch);
if merging.batches.is_full() {
let compaction_frontier = Some(self.since.borrow());
merging.merge = SpineBatch::begin_merge(&merging.batches[..], compaction_frontier)
}
}
/// Completes and extracts what ever is at layer `index`, leaving this layer vacant.
fn complete_at(&mut self, index: usize, log: &mut SpineLog<'_, T>) -> Option<SpineBatch<T>> {
self.merging[index].complete(log)
}
/// Attempts to draw down large layers to size appropriate layers.
fn tidy_layers(&mut self) {
// If the largest layer is complete (not merging), we can attempt to
// draw it down to the next layer. This is permitted if we can maintain
// our invariant that below each merge there are at most half the
// records that would be required to invade the merge.
if !self.merging.is_empty() {
let mut length = self.merging.len();
if self.merging[length - 1].is_single() {
// To move a batch down, we require that it contain few enough
// records that the lower level is appropriate, and that moving
// the batch would not create a merge violating our invariant.
let appropriate_level = usize::cast_from(
self.merging[length - 1]
.len()
.next_power_of_two()
.trailing_zeros(),
);
// Continue only as far as is appropriate
while appropriate_level < length - 1 {
let current = &mut self.merging[length - 2];
if current.is_vacant() {
// Vacant batches can be absorbed.
self.merging.remove(length - 2);
length = self.merging.len();
} else {
if !current.is_full() {
// Single batches may initiate a merge, if sizes are
// within bounds, but terminate the loop either way.
// Determine the number of records that might lead
// to a merge. Importantly, this is not the number
// of actual records, but the sum of upper bounds
// based on indices.
let mut smaller = 0;
for (index, batch) in self.merging[..(length - 2)].iter().enumerate() {
smaller += batch.batches.len() << index;
}
if smaller <= (1 << length) / 8 {
// Remove the batch under consideration (shifting the deeper batches up a level),
// then merge in the single batch at the current level.
let state = self.merging.remove(length - 2);
assert_eq!(state.batches.len(), 1);
for batch in state.batches {
self.insert_at(batch, length - 2);
}
}
}
break;
}
}
}
}
}
/// Checks invariants:
/// - The lowers and uppers of all batches "line up".
/// - The lower of the "minimum" batch is `antichain[T::minimum]`.
/// - The upper of the "maximum" batch is `== self.upper`.
/// - The since of each batch is `less_equal self.since`.
/// - The `SpineIds` all "line up" and cover from `0` to `self.next_id`.
/// - TODO: Verify fuel and level invariants.
fn validate(&self) -> Result<(), String> {
let mut id = SpineId(0, 0);
let mut frontier = Antichain::from_elem(T::minimum());
for x in self.merging.iter().rev() {
if x.is_full() != x.merge.is_some() {
return Err(format!(
"all (and only) full batches should have fueling merges (full={}, merge={:?})",
x.is_full(),
x.merge,
));
}
if let Some(m) = &x.merge {
if !x.is_full() {
return Err(format!(
"merge should only exist for full batches (len={:?}, merge={:?})",
x.batches.len(),
m.id,
));
}
if x.id() != Some(m.id) {
return Err(format!(
"merge id should match the range of the batch ids (batch={:?}, merge={:?})",
x.id(),
m.id,
));
}
}
// TODO: Anything we can validate about x.merge? It'd
// be nice to assert that it's bigger than the len of the
// two batches, but apply_merge_res might swap those lengths
// out from under us.
for batch in &x.batches {
if batch.id().0 != id.1 {
return Err(format!(
"batch id {:?} does not match the previous id {:?}: {:?}",
batch.id(),
id,
self
));
}
id = batch.id();
if batch.desc().lower() != &frontier {
return Err(format!(
"batch lower {:?} does not match the previous upper {:?}: {:?}",
batch.desc().lower(),
frontier,
self
));
}
frontier.clone_from(batch.desc().upper());
if !PartialOrder::less_equal(batch.desc().since(), &self.since) {
return Err(format!(
"since of batch {:?} past the spine since {:?}: {:?}",
batch.desc().since(),
self.since,
self
));
}
}
}
if self.next_id != id.1 {
return Err(format!(
"spine next_id {:?} does not match the last batch's id {:?}: {:?}",
self.next_id, id, self
));
}
if self.upper != frontier {
return Err(format!(
"spine upper {:?} does not match the last batch's upper {:?}: {:?}",
self.upper, frontier, self
));
}
Ok(())
}
}
/// Describes the state of a layer.
///
/// A layer can be empty, contain a single batch, or contain a pair of batches
/// that are in the process of merging into a batch for the next layer.
#[derive(Debug, Clone)]
struct MergeState<T> {
batches: ArrayVec<SpineBatch<T>, BATCHES_PER_LEVEL>,
merge: Option<IdFuelingMerge<T>>,
}
impl<T> Default for MergeState<T> {
fn default() -> Self {
Self {
batches: ArrayVec::new(),
merge: None,
}
}
}
impl<T: Timestamp + Lattice> MergeState<T> {
/// An id that covers all the batches in the given merge state, assuming there are any.
fn id(&self) -> Option<SpineId> {
if let (Some(first), Some(last)) = (self.batches.first(), self.batches.last()) {
Some(SpineId(first.id().0, last.id().1))
} else {
None
}
}
/// A new single-batch merge state.
fn single(batch: SpineBatch<T>) -> Self {
let mut state = Self::default();
state.push_batch(batch);
state
}
/// Push a new batch at this level, checking invariants.
fn push_batch(&mut self, batch: SpineBatch<T>) {
if let Some(last) = self.batches.last() {
assert_eq!(last.id().1, batch.id().0);
assert_eq!(last.upper(), batch.lower());
}
assert!(
self.merge.is_none(),
"Attempted to insert batch into incomplete merge! (batch={:?}, batch_count={})",
batch.id,
self.batches.len(),
);
self.batches
.try_push(batch)
.expect("Attempted to insert batch into full layer!");
}
/// The number of actual updates contained in the level.
fn len(&self) -> usize {
self.batches.iter().map(SpineBatch::len).sum()
}
/// True if this merge state contains no updates.
fn is_empty(&self) -> bool {
self.batches.iter().all(SpineBatch::is_empty)
}
/// True if this level contains no batches.
fn is_vacant(&self) -> bool {
self.batches.is_empty()
}
/// True only for a single-batch state.
fn is_single(&self) -> bool {
self.batches.len() == 1
}
/// True if this merge cannot hold any more batches.
/// (i.e. for a binary merge tree, true if this layer holds two batches.)
fn is_full(&self) -> bool {
self.batches.is_full()
}
/// Immediately complete any merge.
///
/// The result is either a batch, if there is a non-trivial batch to return
/// or `None` if there is no meaningful batch to return.
///
/// There is the additional option of input batches.
fn complete(&mut self, log: &mut SpineLog<'_, T>) -> Option<SpineBatch<T>> {
let mut this = mem::take(self);
if this.batches.len() <= 1 {
this.batches.pop()
} else {
// Merge the remaining batches, regardless of whether we have a fully fueled merge.
let id_merge = this
.merge
.or_else(|| SpineBatch::begin_merge(&self.batches[..], None))?;
id_merge.merge.done(this.batches, log)
}
}
/// True iff the layer is a complete merge, ready for extraction.
fn is_complete(&self) -> bool {
match &self.merge {
Some(IdFuelingMerge { merge, .. }) => merge.remaining_work == 0,
None => false,
}
}
/// Performs a bounded amount of work towards a merge.
fn work(&mut self, fuel: &mut isize) {
// We only perform work for merges in progress.
if let Some(IdFuelingMerge { merge, .. }) = &mut self.merge {
merge.work(&self.batches[..], fuel)
}
}
}
#[cfg(test)]
pub mod datadriven {
use crate::internal::datadriven::DirectiveArgs;
use super::*;
/// Shared state for a single [crate::internal::trace] [datadriven::TestFile].
#[derive(Debug, Default)]
pub struct TraceState {
pub trace: Trace<u64>,
pub merge_reqs: Vec<FueledMergeReq<u64>>,
}
pub fn since_upper(
datadriven: &TraceState,
_args: DirectiveArgs,
) -> Result<String, anyhow::Error> {
Ok(format!(
"{:?}{:?}\n",
datadriven.trace.since().elements(),
datadriven.trace.upper().elements()
))
}
pub fn batches(datadriven: &TraceState, _args: DirectiveArgs) -> Result<String, anyhow::Error> {
let mut s = String::new();
for b in datadriven.trace.spine.spine_batches() {
s.push_str(b.describe(true).as_str());
s.push('\n');
}
Ok(s)
}
pub fn insert(
datadriven: &mut TraceState,
args: DirectiveArgs,
) -> Result<String, anyhow::Error> {
for x in args
.input
.trim()
.split('\n')
.map(DirectiveArgs::parse_hollow_batch)
{
datadriven
.merge_reqs
.append(&mut datadriven.trace.push_batch(x));
}
Ok("ok\n".to_owned())
}
pub fn downgrade_since(
datadriven: &mut TraceState,
args: DirectiveArgs,
) -> Result<String, anyhow::Error> {
let since = args.expect("since");
datadriven
.trace
.downgrade_since(&Antichain::from_elem(since));
Ok("ok\n".to_owned())
}
pub fn take_merge_req(
datadriven: &mut TraceState,
_args: DirectiveArgs,
) -> Result<String, anyhow::Error> {
let mut s = String::new();
for merge_req in std::mem::take(&mut datadriven.merge_reqs) {
write!(
s,
"{:?}{:?}{:?} {}\n",
merge_req.desc.lower().elements(),
merge_req.desc.upper().elements(),
merge_req.desc.since().elements(),
merge_req
.inputs
.iter()
.flat_map(|x| x.batch.parts.iter())
.map(|x| x.printable_name())
.collect::<Vec<_>>()
.join(" ")
);
}
Ok(s)
}
pub fn apply_merge_res(
datadriven: &mut TraceState,
args: DirectiveArgs,
) -> Result<String, anyhow::Error> {
let res = FueledMergeRes {
output: DirectiveArgs::parse_hollow_batch(args.input),
};
match datadriven.trace.apply_merge_res(&res) {
ApplyMergeResult::AppliedExact => Ok("applied exact\n".into()),
ApplyMergeResult::AppliedSubset => Ok("applied subset\n".into()),
ApplyMergeResult::NotAppliedNoMatch => Ok("no-op\n".into()),
ApplyMergeResult::NotAppliedInvalidSince => Ok("no-op invalid since\n".into()),
ApplyMergeResult::NotAppliedTooManyUpdates => Ok("no-op too many updates\n".into()),
}
}
}
#[cfg(test)]
pub(crate) mod tests {
use std::ops::Range;
use proptest::prelude::*;
use semver::Version;
use crate::internal::state::tests::any_hollow_batch;
use super::*;
pub fn any_trace<T: Arbitrary + Timestamp + Lattice>(
num_batches: Range<usize>,
) -> impl Strategy<Value = Trace<T>> {
Strategy::prop_map(
(
any::<Option<T>>(),
proptest::collection::vec(any_hollow_batch::<T>(), num_batches),
any::<bool>(),
any::<u64>(),
),
|(since, mut batches, roundtrip_structure, timeout_ms)| {
let mut trace = Trace::<T>::default();
trace.downgrade_since(&since.map_or_else(Antichain::new, Antichain::from_elem));
// Fix up the arbitrary HollowBatches so the lowers and uppers
// align.
batches.sort_by(|x, y| x.desc.upper().elements().cmp(y.desc.upper().elements()));
let mut lower = Antichain::from_elem(T::minimum());
for mut batch in batches {
// Overall trace since has to be past each batch's since.
if PartialOrder::less_than(trace.since(), batch.desc.since()) {
trace.downgrade_since(batch.desc.since());
}
batch.desc = Description::new(
lower.clone(),
batch.desc.upper().clone(),
batch.desc.since().clone(),
);
lower.clone_from(batch.desc.upper());
let _merge_req = trace.push_batch(batch);
}
let reqs: Vec<_> = trace
.fueled_merge_reqs_before_ms(timeout_ms, None)
.collect();
for req in reqs {
trace.claim_compaction(req.id, ActiveCompaction { start_ms: 0 })
}
trace.roundtrip_structure = roundtrip_structure;
trace
},
)
}
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // proptest is too heavy for miri!
fn test_roundtrips() {
fn check(trace: Trace<i64>) {
trace.validate().unwrap();
let flat = trace.flatten();
let unflat = Trace::unflatten(flat).unwrap();
assert_eq!(trace, unflat);
}
proptest!(|(trace in any_trace::<i64>(1..10))| { check(trace) })
}
#[mz_ore::test]
fn fueled_merge_reqs() {
let mut trace: Trace<u64> = Trace::default();
let fueled_reqs = trace.push_batch(crate::internal::state::tests::hollow(
0,
10,
&["n0011500/p3122e2a1-a0c7-429f-87aa-1019bf4f5f86"],
1000,
));
assert!(fueled_reqs.is_empty());
assert_eq!(
trace.fueled_merge_reqs_before_ms(u64::MAX, None).count(),
0,
"no merge reqs when not filtering by version"
);
assert_eq!(
trace
.fueled_merge_reqs_before_ms(
u64::MAX,
Some(WriterKey::for_version(&Version::new(0, 50, 0)))
)
.count(),
0,
"zero batches are older than a past version"
);
assert_eq!(
trace
.fueled_merge_reqs_before_ms(
u64::MAX,
Some(WriterKey::for_version(&Version::new(99, 99, 0)))
)
.count(),
1,
"one batch is older than a future version"
);
}
#[mz_ore::test]
fn remove_redundant_merge_reqs() {
fn req(lower: u64, upper: u64) -> FueledMergeReq<u64> {
FueledMergeReq {
id: SpineId(usize::cast_from(lower), usize::cast_from(upper)),
desc: Description::new(
Antichain::from_elem(lower),
Antichain::from_elem(upper),
Antichain::new(),
),
inputs: vec![],
}
}
// Empty
assert_eq!(Trace::<u64>::remove_redundant_merge_reqs(vec![]), vec![]);
// Single
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(0, 1)]),
vec![req(0, 1)]
);
// Duplicate
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(0, 1), req(0, 1)]),
vec![req(0, 1)]
);
// Nothing covered
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(0, 1), req(1, 2)]),
vec![req(1, 2), req(0, 1)]
);
// Covered
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(1, 2), req(0, 3)]),
vec![req(0, 3)]
);
// Covered, lower equal
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(0, 2), req(0, 3)]),
vec![req(0, 3)]
);
// Covered, upper equal
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(1, 3), req(0, 3)]),
vec![req(0, 3)]
);
// Covered, unexpected order (doesn't happen in practice)
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(0, 3), req(1, 2)]),
vec![req(0, 3)]
);
// Partially overlapping
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(0, 2), req(1, 3)]),
vec![req(1, 3), req(0, 2)]
);
// Partially overlapping, the other order
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(1, 3), req(0, 2)]),
vec![req(0, 2), req(1, 3)]
);
// Different sinces (doesn't happen in practice)
let req015 = FueledMergeReq {
id: SpineId(0, 1),
desc: Description::new(
Antichain::from_elem(0),
Antichain::from_elem(1),
Antichain::from_elem(5),
),
inputs: vec![],
};
assert_eq!(
Trace::remove_redundant_merge_reqs(vec![req(0, 1), req015.clone()]),
vec![req015, req(0, 1)]
);
}
}