timely_bytes/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! A simplified implementation of the `bytes` crate, with different features, less safety.
//!
//! # Examples
//!
//! ```
//! use timely_bytes::arc::Bytes;
//!
//! let bytes = vec![0u8; 1024];
//! let mut shared1 = Bytes::from(bytes);
//! let mut shared2 = shared1.extract_to(100);
//! let mut shared3 = shared1.extract_to(100);
//! let mut shared4 = shared2.extract_to(60);
//!
//! assert_eq!(shared1.len(), 824);
//! assert_eq!(shared2.len(), 40);
//! assert_eq!(shared3.len(), 100);
//! assert_eq!(shared4.len(), 60);
//!
//! for byte in shared1.iter_mut() { *byte = 1u8; }
//! for byte in shared2.iter_mut() { *byte = 2u8; }
//! for byte in shared3.iter_mut() { *byte = 3u8; }
//! for byte in shared4.iter_mut() { *byte = 4u8; }
//!
//! // memory in slabs [4, 2, 3, 1]: merge back in arbitrary order.
//! shared2.try_merge(shared3).ok().expect("Failed to merge 2 and 3");
//! shared2.try_merge(shared1).ok().expect("Failed to merge 23 and 1");
//! shared4.try_merge(shared2).ok().expect("Failed to merge 4 and 231");
//!
//! assert_eq!(shared4.len(), 1024);
//! ```
#![forbid(missing_docs)]

/// An `Arc`-backed mutable byte slice backed by a common allocation.
pub mod arc {

    use std::ops::{Deref, DerefMut};
    use std::sync::Arc;
    use std::any::Any;

    /// A thread-safe byte buffer backed by a shared allocation.
    pub struct Bytes {
        /// Pointer to the start of this slice (not the allocation).
        ptr: *mut u8,
        /// Length of this slice.
        len: usize,
        /// Shared access to underlying resources.
        ///
        /// Importantly, this is unavailable for as long as the struct exists, which may
        /// prevent shared access to ptr[0 .. len]. I'm not sure I understand Rust's rules
        /// enough to make a stronger statement about this.
        sequestered: Arc<dyn Any>,
    }

    // Synchronization happens through `self.sequestered`, which mean to ensure that even
    // across multiple threads each region of the slice is uniquely "owned", if not in the
    // traditional Rust sense.
    unsafe impl Send for Bytes { }

    impl Bytes {

        /// Create a new instance from a byte allocation.
        pub fn from<B>(bytes: B) -> Bytes where B : DerefMut<Target=[u8]>+'static {

            // Sequester allocation behind an `Arc`, which *should* keep the address
            // stable for the lifetime of `sequestered`. The `Arc` also serves as our
            // source of truth for the allocation, which we use to re-connect slices
            // of the same allocation.
            let mut sequestered = Arc::new(bytes) as Arc<dyn Any>;
            let (ptr, len) =
            Arc::get_mut(&mut sequestered)
                .unwrap()
                .downcast_mut::<B>()
                .map(|a| (a.as_mut_ptr(), a.len()))
                .unwrap();

            Bytes {
                ptr,
                len,
                sequestered,
            }
        }

        /// Extracts [0, index) into a new `Bytes` which is returned, updating `self`.
        ///
        /// # Safety
        ///
        /// This method first tests `index` against `self.len`, which should ensure that both
        /// the returned `Bytes` contains valid memory, and that `self` can no longer access it.
        pub fn extract_to(&mut self, index: usize) -> Bytes {

            assert!(index <= self.len);

            let result = Bytes {
                ptr: self.ptr,
                len: index,
                sequestered: self.sequestered.clone(),
            };

            unsafe { self.ptr = self.ptr.offset(index as isize); }
            self.len -= index;

            result
        }

        /// Regenerates the Bytes if it is uniquely held.
        ///
        /// If uniquely held, this method recovers the initial pointer and length
        /// of the sequestered allocation and re-initializes the Bytes. The return
        /// value indicates whether this occurred.
        ///
        /// # Examples
        ///
        /// ```
        /// use timely_bytes::arc::Bytes;
        ///
        /// let bytes = vec![0u8; 1024];
        /// let mut shared1 = Bytes::from(bytes);
        /// let mut shared2 = shared1.extract_to(100);
        /// let mut shared3 = shared1.extract_to(100);
        /// let mut shared4 = shared2.extract_to(60);
        ///
        /// drop(shared1);
        /// drop(shared2);
        /// drop(shared4);
        /// assert!(shared3.try_regenerate::<Vec<u8>>());
        /// assert!(shared3.len() == 1024);
        /// ```
        pub fn try_regenerate<B>(&mut self) -> bool where B: DerefMut<Target=[u8]>+'static {
            // Only possible if this is the only reference to the sequestered allocation.
            if let Some(boxed) = Arc::get_mut(&mut self.sequestered) {
                let downcast = boxed.downcast_mut::<B>().expect("Downcast failed");
                self.ptr = downcast.as_mut_ptr();
                self.len = downcast.len();
                true
            }
            else {
                false
            }
        }

        /// Attempts to merge adjacent slices from the same allocation.
        ///
        /// If the merge succeeds then `other.len` is added to `self` and the result is `Ok(())`.
        /// If the merge fails self is unmodified and the result is `Err(other)`, returning the
        /// bytes supplied as input.
        ///
        /// # Examples
        ///
        /// ```
        /// use timely_bytes::arc::Bytes;
        ///
        /// let bytes = vec![0u8; 1024];
        /// let mut shared1 = Bytes::from(bytes);
        /// let mut shared2 = shared1.extract_to(100);
        /// let mut shared3 = shared1.extract_to(100);
        /// let mut shared4 = shared2.extract_to(60);
        ///
        /// // memory in slabs [4, 2, 3, 1]: merge back in arbitrary order.
        /// shared2.try_merge(shared3).ok().expect("Failed to merge 2 and 3");
        /// shared2.try_merge(shared1).ok().expect("Failed to merge 23 and 1");
        /// shared4.try_merge(shared2).ok().expect("Failed to merge 4 and 231");
        /// ```
        pub fn try_merge(&mut self, other: Bytes) -> Result<(), Bytes> {
            if Arc::ptr_eq(&self.sequestered, &other.sequestered) && ::std::ptr::eq(unsafe { self.ptr.offset(self.len as isize) }, other.ptr) {
                self.len += other.len;
                Ok(())
            }
            else {
                Err(other)
            }
        }
    }

    impl Deref for Bytes {
        type Target = [u8];
        fn deref(&self) -> &[u8] {
            unsafe { ::std::slice::from_raw_parts(self.ptr, self.len) }
        }
    }

    impl DerefMut for Bytes {
        fn deref_mut(&mut self) -> &mut [u8] {
            unsafe { ::std::slice::from_raw_parts_mut(self.ptr, self.len) }
        }
    }
}