lexical_core/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
//! Fast lexical conversion routines for a no_std environment.
//!
//! lexical-core is a low-level API for number-to-string and
//! string-to-number conversions, without requiring a system
//! allocator. If you would like to use a high-level API that
//! writes to and parses from `String` and `&str`, respectively,
//! please look at [lexical](https://crates.io/crates/lexical)
//! instead.
//!
//! Despite the low-level API and focus on performance, lexical-core
//! strives to be simple and yet configurable: despite supporting nearly
//! every float and integer format available, it only exports 4 write
//! functions and 4 parse functions.
//!
//! lexical-core is well-tested, and has been downloaded more than 5 million
//! times and currently has no known errors in correctness. lexical-core
//! prioritizes performance above all else, and aims to be competitive
//! or faster than any other float or integer parser and writer.
//!
//! In addition, despite having a large number of features, configurability,
//! and a focus on performance, we also strive for fast compile times.
//! Recent versions also add support for smaller binary sizes, as well
//! ideal for embedded or web environments, where executable bloat can
//! be much more detrimental than performance.
//!
//! # Getting Started
//!
//! ```rust
//! # #[cfg(all(
//! #     feature = "parse-floats",
//! #     feature = "parse-integers",
//! #     feature = "write-floats",
//! #     feature = "write-integers",
//! # ))]
//! # {
//!
//! // String to number using Rust slices.
//! // The argument is the byte string parsed.
//! let f: f32 = lexical_core::parse(b"3.5").unwrap();   // 3.5
//! let i: i32 = lexical_core::parse(b"15").unwrap();    // 15
//!
//! // All lexical_core parsers are checked, they validate the
//! // input data is entirely correct, and stop parsing when invalid data
//! // is found, or upon numerical overflow.
//! let r = lexical_core::parse::<u8>(b"256"); // Err(ErrorCode::Overflow.into())
//! let r = lexical_core::parse::<u8>(b"1a5"); // Err(ErrorCode::InvalidDigit.into())
//!
//! // In order to extract and parse a number from a substring of the input
//! // data, use `parse_partial`. These functions return the parsed value and
//! // the number of processed digits, allowing you to extract and parse the
//! // number in a single pass.
//! let r = lexical_core::parse_partial::<i8>(b"3a5"); // Ok((3, 1))
//!
//! // If an insufficiently long buffer is passed, the serializer will panic.
//!
//! // PANICS
//! let mut buf = [b'0'; 1];
//! //let slc = lexical_core::write::<i64>(15, &mut buf);
//!
//! // In order to guarantee the buffer is long enough, always ensure there
//! // are at least `T::FORMATTED_SIZE` bytes, which requires the
//! // `lexical_core::FormattedSize` trait to be in scope.
//! use lexical_core::FormattedSize;
//! let mut buf = [b'0'; f64::FORMATTED_SIZE];
//! let slc = lexical_core::write::<f64>(15.1, &mut buf);
//! assert_eq!(slc, b"15.1");
//!
//! // When the `radix` feature is enabled, for decimal floats, using
//! // `T::FORMATTED_SIZE` may significantly overestimate the space
//! // required to format the number. Therefore, the
//! // `T::FORMATTED_SIZE_DECIMAL` constants allow you to get a much
//! // tighter bound on the space required.
//! let mut buf = [b'0'; f64::FORMATTED_SIZE_DECIMAL];
//! let slc = lexical_core::write::<f64>(15.1, &mut buf);
//! assert_eq!(slc, b"15.1");
//! # }
//! ```
//!
//! # Conversion API
//!
#![cfg_attr(feature = "write", doc = " **Write**")]
#![cfg_attr(feature = "write", doc = "")]
#![cfg_attr(feature = "write", doc = " - [`write`]")]
#![cfg_attr(feature = "write", doc = " - [`write_unchecked`]")]
#![cfg_attr(feature = "write", doc = " - [`write_with_options`]")]
#![cfg_attr(feature = "write", doc = " - [`write_with_options_unchecked`]")]
//!
#![cfg_attr(feature = "write", doc = " **From String**")]
#![cfg_attr(feature = "write", doc = "")]
#![cfg_attr(feature = "parse", doc = " - [`parse`]")]
#![cfg_attr(feature = "parse", doc = " - [`parse_partial`]")]
#![cfg_attr(feature = "parse", doc = " - [`parse_with_options`]")]
#![cfg_attr(feature = "parse", doc = " - [`parse_partial_with_options`]")]
//!
//! # Features
//!
//! In accordance with the Rust ethos, all features are additive: the crate
//! may be build with `--all-features` without issue.  The following features are enabled
//! by default:
//!
//! * `std`
//! * `write-integers`
//! * `write-floats`
//! * `parse-integers`
//! * `parse-floats`
//!
//! A complete description of supported features includes:
//!
//! ### std
//!
//! Enable use of the standard library. Currently, the standard library
//! is not used for any functionality, and may be disabled without any
//! change in functionality on stable.
//!
//! ### write-integers
//!
//! Enable support for writing integers to string.
//!
//! ### write-floats
//!
//! Enable support for writing floating-point numbers to string.
//!
//! ### parse-integers
//!
//! Enable support for parsing integers from string.
//!
//! ### parsing-floats
//!
//! Enable support for parsing floating-point numbers from string.
//!
//! ### format
//!
//! Adds support for the entire format API (using [`NumberFormatBuilder`]).
//! This allows extensive configurability for parsing and writing numbers
//! in custom formats, with different valid syntax requirements.
//!
//! For example, in JSON, the following floats are valid or invalid:
//!
//! ```text
//! -1          // valid
//! +1          // invalid
//! 1           // valid
//! 1.          // invalid
//! .1          // invalid
//! 0.1         // valid
//! nan         // invalid
//! inf         // invalid
//! Infinity    // invalid
//! ```
//!
//! All of the finite numbers are valid in Rust, and Rust provides constants
//! for non-finite floats. In order to parse standard-conforming JSON floats
//! using lexical, you may use the following approach:
//!
//! ```rust
//! # #[cfg(all(feature = "parse-floats", feature = "format"))] {
//! use lexical_core::{format, parse_with_options, ParseFloatOptions, Result};
//!
//! fn parse_json_float<Bytes: AsRef<[u8]>>(bytes: Bytes) -> Result<f64> {
//!     let options = ParseFloatOptions::new();
//!     parse_with_options::<_, { format::JSON }>(bytes.as_ref(), &options)
//! }
//! # }
//! ```
//!
//! See the [Number Format](#number-format) section below for more information.
//!
//! ### power-of-two
//!
//! Enable doing numeric conversions to and from strings with power-of-two
//! radixes. This avoids most of the overhead and binary bloat of the radix
//! feature, while enabling support for the most commonly-used radixes.
//!
//! ### radix
//!
//! Enable doing numeric conversions to and from strings for all radixes.
//! This requires substantially more static storage than `power-of-two`,
//! and increases compile times by a fair amount, but can be quite useful
//! for esoteric programming languages which use duodecimal floats, for
//! example.
//!
//! ### compact
//!
//! Reduce the generated code size at the cost of performance. This minimizes
//! the number of static tables, inlining, and generics used, drastically
//! reducing the size of the generated binaries.
//!
//! ### safe
//!
//! All numeric parsers are memory-safe by default, since parsing complex
//! input is a major source of memory vulnerabilities. However, numeric
//! writers often opt-in for unchecked writes, for major performance
//! improvements. This may be disabled entirely by enabling the `safe`
//! feature. In addition, to simplify memory safety guarantees, extensive
//! edge-cases, property-based tests, and fuzzing is done with both the
//! safe feature enabled and disabled, with the tests verified by Miri
//! and Valgrind.
//!
//! # Configuration API
//!
//! Lexical provides two main levels of configuration:
//! - The [`NumberFormatBuilder`], creating a packed struct with custom
//!     formatting options.
//! - The Options API.
//!
//! ## Number Format
//!
//! The number format class provides numerous flags to specify
//! number parsing or writing. When the `power-of-two` feature is
//! enabled, additional flags are added:
//! - The radix for the significant digits (default `10`).
//! - The radix for the exponent base (default `10`).
//! - The radix for the exponent digits (default `10`).
//!
//! When the `format` feature is enabled, numerous other syntax and
//! digit separator flags are enabled, including:
//! - A digit separator character, to group digits for increased legibility.
//! - Whether leading, trailing, internal, and consecutive digit separators are allowed.
//! - Toggling required float components, such as digits before the decimal point.
//! - Toggling whether special floats are allowed or are case-sensitive.
//!
//! Many pre-defined constants therefore exist to simplify common use-cases,
//! including:
//! - JSON, XML, TOML, YAML, SQLite, and many more.
//! - Rust, Python, C#, FORTRAN, COBOL literals and strings, and many more.
//!
//! ## Options API
//!
//! The Options API provides high-level options to specify number parsing
//! or writing, options not intrinsically tied to a number format.
//! For example, the Options API provides:
//! - The exponent character (default `b'e'`, or `b'^'`).
//! - The decimal point character (default `b'.'`).
//! - Custom `NaN`, `Infinity` string representations.
//! - Whether to trim the fraction component from integral floats.
//! - The exponent break point for scientific notation.
//! - The maximum and minimum number of significant digits to write.
//! - The rounding mode when truncating significant digits while writing.
//!
//! The available options are:
//!
#![cfg_attr(feature = "parse-floats", doc = " - [`ParseFloatOptions`]")]
#![cfg_attr(feature = "parse-integers", doc = " - [`ParseIntegerOptions`]")]
#![cfg_attr(feature = "write-floats", doc = " - [`WriteFloatOptions`]")]
#![cfg_attr(feature = "write-integers", doc = " - [`WriteIntegerOptions`]")]
//!
//! In addition, pre-defined constants for each category of options may
//! be found in their respective modules.
//!
//! ## Example
//!
//! An example of creating your own options to parse European-style
//! numbers (which use commas as decimal points, and periods as digit
//! separators) is as follows:
//!
//! ```
//! # pub fn main() {
//! # #[cfg(all(feature = "parse_floats", feature = "format"))] {
//! // This creates a format to parse a European-style float number.
//! // The decimal point is a comma, and the digit separators (optional)
//! // are periods.
//! const EUROPEAN: u128 = lexical_core::NumberFormatBuilder::new()
//!     .digit_separator(b'.')
//!     .build();
//! let options = lexical_core::ParseFloatOptions::builder()
//!     .decimal_point(b',')
//!     .build()
//!     .unwrap();
//! assert_eq!(
//!     lexical_core::parse_with_options::<f32, EUROPEAN>(b"300,10", &options),
//!     Ok(300.10)
//! );
//!
//! // Another example, using a pre-defined constant for JSON.
//! const JSON: u128 = lexical_core::format::JSON;
//! let options = lexical_core::ParseFloatOptions::new();
//! assert_eq!(
//!     lexical_core::parse_with_options::<f32, JSON>(b"0e1", &options),
//!     Ok(0.0)
//! );
//! assert_eq!(
//!     lexical_core::parse_with_options::<f32, JSON>(b"1E+2", &options),
//!     Ok(100.0)
//! );
//! # }
//! # }
//! ```
//!
//! # Algorithms
//!
//! - [Parsing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-float/docs/Algorithm.md)
//! - [Parsing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-integer/docs/Algorithm.md)
//! - [Writing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-float/docs/Algorithm.md)
//! - [Writing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-integer/docs/Algorithm.md)
//!
//! # Benchmarks
//!
//! - [Parsing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-float/docs/Benchmarks.md)
//! - [Parsing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-integer/docs/Benchmarks.md)
//! - [Writing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-float/docs/Benchmarks.md)
//! - [Writing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-integer/docs/Benchmarks.md)
//!
//! # Design
//!
//! - [Binary Size](https://github.com/Alexhuszagh/rust-lexical/blob/main/docs/BinarySize.md)
//! - [Build Timings](https://github.com/Alexhuszagh/rust-lexical/blob/main/docs/BuildTimings.md)
//! - [Digit Separators](https://github.com/Alexhuszagh/rust-lexical/blob/main/docs/DigitSeparators.md)
//!
//! # Version Support
//!
//! The minimum, standard, required version is 1.51.0, for const generic
//! support. Older versions of lexical support older Rust versions.
//!
//! [`write`]: crate::write
//! [`write_unchecked`]: crate::write_unchecked
//! [`write_with_options`]: crate::write_with_options
//! [`write_with_options_unchecked`]: crate::write_with_options_unchecked
//! [`parse`]: crate::parse
//! [`parse_partial`]: crate::parse_partial
//! [`parse_with_options`]: crate::parse_with_options
//! [`parse_partial_with_options`]: crate::parse_partial_with_options
//!
//! [`NumberFormatBuilder`]: crate::NumberFormatBuilder
//! [`ParseFloatOptions`]: crate::ParseFloatOptions
//! [`ParseIntegerOptions`]: crate::ParseIntegerOptions
//! [`WriteFloatOptions`]: crate::WriteFloatOptions
//! [`WriteIntegerOptions`]: crate::WriteIntegerOptions

// We want to have the same safety guarantees as Rust core,
// so we allow unused unsafe to clearly document safety guarantees.
#![allow(unused_unsafe)]
#![cfg_attr(feature = "lint", warn(unsafe_op_in_unsafe_fn))]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "parse-floats")]
use lexical_parse_float::{
    FromLexical as FromFloat,
    FromLexicalWithOptions as FromFloatWithOptions,
};
#[cfg(feature = "parse-integers")]
use lexical_parse_integer::{
    FromLexical as FromInteger,
    FromLexicalWithOptions as FromIntegerWithOptions,
};
#[cfg(feature = "parse")]
use lexical_util::{from_lexical, from_lexical_with_options};
#[cfg(feature = "write")]
use lexical_util::{to_lexical, to_lexical_with_options};
#[cfg(feature = "write-floats")]
use lexical_write_float::{ToLexical as ToFloat, ToLexicalWithOptions as ToFloatWithOptions};
#[cfg(feature = "write-integers")]
use lexical_write_integer::{ToLexical as ToInteger, ToLexicalWithOptions as ToIntegerWithOptions};

// Re-exports
#[cfg(feature = "parse-floats")]
pub use lexical_parse_float::{
    options as parse_float_options,
    Options as ParseFloatOptions,
    OptionsBuilder as ParseFloatOptionsBuilder,
};
#[cfg(feature = "parse-integers")]
pub use lexical_parse_integer::{
    options as parse_integer_options,
    Options as ParseIntegerOptions,
    OptionsBuilder as ParseIntegerOptionsBuilder,
};
#[cfg(feature = "f16")]
pub use lexical_util::bf16::bf16;
#[cfg(feature = "write")]
pub use lexical_util::constants::{FormattedSize, BUFFER_SIZE};
#[cfg(feature = "parse")]
pub use lexical_util::error::Error;
#[cfg(feature = "f16")]
pub use lexical_util::f16::f16;
pub use lexical_util::format::{self, format_error, format_is_valid, NumberFormatBuilder};
#[cfg(feature = "parse")]
pub use lexical_util::options::ParseOptions;
#[cfg(feature = "write")]
pub use lexical_util::options::WriteOptions;
#[cfg(feature = "parse")]
pub use lexical_util::result::Result;
#[cfg(feature = "write-floats")]
pub use lexical_write_float::{
    options as write_float_options,
    Options as WriteFloatOptions,
    OptionsBuilder as WriteFloatOptionsBuilder,
};
#[cfg(feature = "write-integers")]
pub use lexical_write_integer::{
    options as write_integer_options,
    Options as WriteIntegerOptions,
    OptionsBuilder as WriteIntegerOptionsBuilder,
};

// API
// ---

#[cfg(feature = "parse")]
from_lexical!();
#[cfg(feature = "parse")]
from_lexical_with_options!();
#[cfg(feature = "write")]
to_lexical!();
#[cfg(feature = "write")]
to_lexical_with_options!();

/// Implement `FromLexical` and `FromLexicalWithOptions` for numeric type.
#[cfg(feature = "parse")]
macro_rules! from_lexical_impl {
    ($t:ident, $from:ident, $from_options:ident, $options:ident) => {
        impl FromLexical for $t {
            #[cfg_attr(not(feature = "compact"), inline)]
            fn from_lexical(bytes: &[u8]) -> Result<Self> {
                <Self as $from>::from_lexical(bytes)
            }

            #[cfg_attr(not(feature = "compact"), inline)]
            fn from_lexical_partial(bytes: &[u8]) -> Result<(Self, usize)> {
                <Self as $from>::from_lexical_partial(bytes)
            }
        }

        impl FromLexicalWithOptions for $t {
            type Options = $options;

            #[cfg_attr(not(feature = "compact"), inline)]
            fn from_lexical_with_options<const FORMAT: u128>(
                bytes: &[u8],
                options: &Self::Options,
            ) -> Result<Self> {
                <Self as $from_options>::from_lexical_with_options::<FORMAT>(bytes, options)
            }

            #[cfg_attr(not(feature = "compact"), inline)]
            fn from_lexical_partial_with_options<const FORMAT: u128>(
                bytes: &[u8],
                options: &Self::Options,
            ) -> Result<(Self, usize)> {
                <Self as $from_options>::from_lexical_partial_with_options::<FORMAT>(bytes, options)
            }
        }
    };
}

/// Implement `FromLexical` and `FromLexicalWithOptions` for integers.
#[cfg(feature = "parse-integers")]
macro_rules! integer_from_lexical {
    ($($t:ident)*) => ($(
        from_lexical_impl!($t, FromInteger, FromIntegerWithOptions, ParseIntegerOptions);
    )*);
}

#[cfg(feature = "parse-integers")]
integer_from_lexical! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize }

/// Implement `FromLexical` and `FromLexicalWithOptions` for floats.
#[cfg(feature = "parse-floats")]
macro_rules! float_from_lexical {
    ($($t:ident)*) => ($(
        from_lexical_impl!($t, FromFloat, FromFloatWithOptions, ParseFloatOptions);
    )*);
}

#[cfg(feature = "parse-floats")]
float_from_lexical! { f32 f64 }

// Implement ToLexical for numeric type.
#[cfg(feature = "write")]
macro_rules! to_lexical_impl {
    ($t:ident, $to:ident, $to_options:ident, $options:ident) => {
        impl ToLexical for $t {
            #[cfg_attr(not(feature = "compact"), inline)]
            unsafe fn to_lexical_unchecked<'a>(self, bytes: &'a mut [u8]) -> &'a mut [u8] {
                // SAFETY: safe as long as `bytes` is large enough to hold the significant digits.
                unsafe { <Self as $to>::to_lexical_unchecked(self, bytes) }
            }

            #[cfg_attr(not(feature = "compact"), inline)]
            fn to_lexical<'a>(self, bytes: &'a mut [u8]) -> &'a mut [u8] {
                <Self as $to>::to_lexical(self, bytes)
            }
        }

        impl ToLexicalWithOptions for $t {
            type Options = $options;

            #[cfg_attr(not(feature = "compact"), inline)]
            unsafe fn to_lexical_with_options_unchecked<'a, const FORMAT: u128>(
                self,
                bytes: &'a mut [u8],
                options: &Self::Options,
            ) -> &'a mut [u8] {
                // SAFETY: safe as long as `bytes` is large enough to hold the significant digits.
                unsafe {
                    <Self as $to_options>::to_lexical_with_options_unchecked::<FORMAT>(
                        self, bytes, options,
                    )
                }
            }

            #[cfg_attr(not(feature = "compact"), inline)]
            fn to_lexical_with_options<'a, const FORMAT: u128>(
                self,
                bytes: &'a mut [u8],
                options: &Self::Options,
            ) -> &'a mut [u8] {
                <Self as $to_options>::to_lexical_with_options::<FORMAT>(self, bytes, options)
            }
        }
    };
}

/// Implement `ToLexical` and `ToLexicalWithOptions` for integers.
#[cfg(feature = "write-integers")]
macro_rules! integer_to_lexical {
    ($($t:ident)*) => ($(
        to_lexical_impl!($t, ToInteger, ToIntegerWithOptions, WriteIntegerOptions);
    )*);
}

#[cfg(feature = "write-integers")]
integer_to_lexical! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize }

/// Implement `ToLexical` and `ToLexicalWithOptions` for floats.
#[cfg(feature = "write-floats")]
macro_rules! float_to_lexical {
    ($($t:ident)*) => ($(
        to_lexical_impl!($t, ToFloat, ToFloatWithOptions, WriteFloatOptions);
    )*);
}

#[cfg(feature = "write-floats")]
float_to_lexical! { f32 f64 }

/// Write number to string.
///
/// Returns a subslice of the input buffer containing the written bytes,
/// starting from the same address in memory as the input slice.
///
/// * `value`   - Number to serialize.
/// * `bytes`   - Buffer to write number to.
///
/// # Panics
///
/// Panics if the buffer may not be large enough to hold the serialized
/// number. In order to ensure the function will not panic, provide a
/// buffer with at least `{integer}::FORMATTED_SIZE` elements.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "write-floats")] {
/// // import `BUFFER_SIZE` to get the maximum bytes written by the number.
/// use lexical_core::BUFFER_SIZE;
///
/// let mut buffer = [0u8; BUFFER_SIZE];
/// let float = 3.14159265359_f32;
///
/// lexical_core::write(float, &mut buffer);
///
/// assert_eq!(&buffer[0..9], b"3.1415927");
/// # }
/// # }
/// ```
///
/// This will panic, because the buffer is not large enough:
///
/// ```should_panic
/// # #[cfg(feature = "write-floats")] {
/// // note: the buffer is only one byte large
/// let mut buffer = [0u8; 1];
/// let float = 3.14159265359_f32;
///
/// lexical_core::write(float, &mut buffer);
/// # }
/// # #[cfg(not(feature = "write-floats"))] {
/// #     panic!("");
/// # }
/// ```
#[inline]
#[cfg(feature = "write")]
pub fn write<N: ToLexical>(n: N, bytes: &mut [u8]) -> &mut [u8] {
    n.to_lexical(bytes)
}

/// Write number to string, without bounds checking the buffer.
///
/// Returns a subslice of the input buffer containing the written bytes,
/// starting from the same address in memory as the input slice.
///
/// * `value`   - Number to serialize.
/// * `bytes`   - Buffer to write number to.
///
/// # Safety
///
/// If the buffer is not be large enough to hold the serialized number,
/// it will overflow the buffer unless the `safe` feature is enabled.
/// Buffer overflows are severe security vulnerabilities, and therefore
/// to ensure the function will not overwrite the buffer, provide a
/// buffer with at least `{integer}::FORMATTED_SIZE` elements.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "write-floats")] {
/// // import `BUFFER_SIZE` to get the maximum bytes written by the number.
/// use lexical_core::BUFFER_SIZE;
///
/// let mut buffer = [0u8; BUFFER_SIZE];
/// let float = 3.14159265359_f32;
///
/// unsafe {
///     lexical_core::write_unchecked(float, &mut buffer);
/// }
///
/// assert_eq!(&buffer[0..9], b"3.1415927");
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "write")]
pub unsafe fn write_unchecked<N: ToLexical>(n: N, bytes: &mut [u8]) -> &mut [u8] {
    // SAFETY: safe if the provided buffer is large enough for the numerical string
    unsafe { n.to_lexical_unchecked(bytes) }
}

/// Write number to string with custom options.
///
/// Returns a subslice of the input buffer containing the written bytes,
/// starting from the same address in memory as the input slice.
///
/// * `FORMAT`  - Packed struct containing the number format.
/// * `value`   - Number to serialize.
/// * `bytes`   - Buffer to write number to.
/// * `options` - Options to customize number parsing.
///
/// # Panics
///
/// Panics if the buffer may not be large enough to hold the serialized
/// number. In order to ensure the function will not panic, provide a
/// buffer with at least `{integer}::FORMATTED_SIZE` elements. If you
/// are using custom digit precision control or exponent break points
/// for writing floats, these constants may be insufficient to store
/// the serialized number, and up to 1200 bytes may be required with
/// radix support.
///
/// If the provided `FORMAT` is not valid, the function may panic. Please
/// ensure `is_valid()` is called prior to using the format, or checking
/// its validity using a static assertion.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "write-floats")] {
/// // import `BUFFER_SIZE` to get the maximum bytes written by the number.
/// use lexical_core::BUFFER_SIZE;
///
/// let mut buffer = [0u8; BUFFER_SIZE];
/// let float = 3.14159265359_f32;
///
/// const FORMAT: u128 = lexical_core::format::STANDARD;
/// let options = lexical_core::WriteFloatOptions::new();
/// lexical_core::write_with_options::<_, FORMAT>(float, &mut buffer, &options);
///
/// assert_eq!(&buffer[0..9], b"3.1415927");
/// # }
/// # }
/// ```
///
/// This will panic, because the buffer is not large enough:
///
/// ```should_panic
/// # #[cfg(feature = "write-floats")] {
/// // note: the buffer is only one byte large
/// let mut buffer = [0u8; 1];
/// let float = 3.14159265359_f32;
///
/// const FORMAT: u128 = lexical_core::format::STANDARD;
/// let options = lexical_core::WriteFloatOptions::new();
/// lexical_core::write_with_options::<_, FORMAT>(float, &mut buffer, &options);
/// # }
/// # #[cfg(not(feature = "write-floats"))] {
/// #     panic!("");
/// # }
/// ```
#[inline]
#[cfg(feature = "write")]
pub fn write_with_options<'a, N: ToLexicalWithOptions, const FORMAT: u128>(
    n: N,
    bytes: &'a mut [u8],
    options: &N::Options,
) -> &'a mut [u8] {
    n.to_lexical_with_options::<FORMAT>(bytes, options)
}

/// Write number to string with custom options.
///
/// Returns a subslice of the input buffer containing the written bytes,
/// starting from the same address in memory as the input slice.
///
/// * `FORMAT`  - Packed struct containing the number format.
/// * `value`   - Number to serialize.
/// * `bytes`   - Buffer to write number to.
/// * `options` - Options to customize number parsing.
///
/// # Safety
///
/// If the buffer is not be large enough to hold the serialized number,
/// it will overflow the buffer unless the `safe` feature is enabled.
/// Buffer overflows are severe security vulnerabilities, and therefore
/// to ensure the function will not overwrite the buffer, provide a
/// buffer with at least `{integer}::FORMATTED_SIZE` elements. If you
/// are using custom digit precision control or exponent break points
/// for writing floats, these constants may be insufficient to store
/// the serialized number, and up to 1200 bytes may be required with
/// radix support.
///
/// # Panics
///
/// If the provided `FORMAT` is not valid, the function may panic. Please
/// ensure `is_valid()` is called prior to using the format, or checking
/// its validity using a static assertion.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "write-floats")] {
/// // import `BUFFER_SIZE` to get the maximum bytes written by the number.
/// use lexical_core::BUFFER_SIZE;
///
/// let mut buffer = [0u8; BUFFER_SIZE];
/// let float = 3.14159265359_f32;
///
/// const FORMAT: u128 = lexical_core::format::STANDARD;
/// let options = lexical_core::WriteFloatOptions::new();
/// unsafe {
///     lexical_core::write_with_options_unchecked::<_, FORMAT>(float, &mut buffer, &options);
/// }
///
/// assert_eq!(&buffer[0..9], b"3.1415927");
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "write")]
pub unsafe fn write_with_options_unchecked<'a, N: ToLexicalWithOptions, const FORMAT: u128>(
    n: N,
    bytes: &'a mut [u8],
    options: &N::Options,
) -> &'a mut [u8] {
    // SAFETY: safe if the provided buffer is large enough for the numerical string
    unsafe { n.to_lexical_with_options_unchecked::<FORMAT>(bytes, options) }
}

/// Parse complete number from string.
///
/// This method parses the entire string, returning an error if
/// any invalid digits are found during parsing.
///
/// * `bytes`   - Byte slice containing a numeric string.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "parse-floats")] {
/// let string = "3.14159265359";
/// let result = lexical_core::parse::<f32>(string.as_bytes());
/// assert_eq!(result, Ok(3.14159265359_f32));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse<N: FromLexical>(bytes: &[u8]) -> Result<N> {
    N::from_lexical(bytes)
}

/// Parse partial number from string.
///
/// This method parses until an invalid digit is found (or the end
/// of the string), returning the number of processed digits
/// and the parsed value until that point.
///
/// * `bytes`   - Byte slice containing a numeric string.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "parse-floats")] {
/// let string = "3.14159265359 hello";
/// let result = lexical_core::parse_partial::<f32>(string.as_bytes());
/// assert_eq!(result, Ok((3.14159265359_f32, 13)));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse_partial<N: FromLexical>(bytes: &[u8]) -> Result<(N, usize)> {
    N::from_lexical_partial(bytes)
}

/// Parse complete number from string with custom parsing options.
///
/// This method parses the entire string, returning an error if
/// any invalid digits are found during parsing.
///
/// * `FORMAT`  - Packed struct containing the number format.
/// * `bytes`   - Byte slice containing a numeric string.
/// * `options` - Options to customize number parsing.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(all(feature = "parse-floats", feature = "format"))] {
/// const JSON: u128 = lexical_core::format::JSON;
/// let options = lexical_core::ParseFloatOptions::new();
/// let string = "3.14159265359";
/// let result = lexical_core::parse_with_options::<f32, JSON>(string.as_bytes(), &options);
/// assert_eq!(result, Ok(3.14159265359_f32));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse_with_options<N: FromLexicalWithOptions, const FORMAT: u128>(
    bytes: &[u8],
    options: &N::Options,
) -> Result<N> {
    N::from_lexical_with_options::<FORMAT>(bytes, options)
}

/// Parse partial number from string with custom parsing options.
///
/// This method parses until an invalid digit is found (or the end
/// of the string), returning the number of processed digits
/// and the parsed value until that point.
///
/// * `FORMAT`  - Packed struct containing the number format.
/// * `bytes`   - Byte slice containing a numeric string.
/// * `options` - Options to customize number parsing.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(all(feature = "parse-floats", feature = "format"))] {
/// const JSON: u128 = lexical_core::format::JSON;
/// let options = lexical_core::ParseFloatOptions::new();
/// let string = "3.14159265359 hello";
/// let result = lexical_core::parse_partial_with_options::<f32, JSON>(string.as_bytes(), &options);
/// assert_eq!(result, Ok((3.14159265359_f32, 13)));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse_partial_with_options<N: FromLexicalWithOptions, const FORMAT: u128>(
    bytes: &[u8],
    options: &N::Options,
) -> Result<(N, usize)> {
    N::from_lexical_partial_with_options::<FORMAT>(bytes, options)
}