1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
// Copyright 2018 sqlparser-rs contributors. All rights reserved.
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// This file is derived from the sqlparser-rs project, available at
// https://github.com/andygrove/sqlparser-rs. It was incorporated
// directly into Materialize on December 21, 2019.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::fmt;
use std::str::FromStr;
use serde::{Deserialize, Serialize};
use crate::ast::display::{self, AstDisplay, AstFormatter};
use crate::ast::Ident;
#[derive(Debug)]
pub struct ValueError(pub(crate) String);
impl std::error::Error for ValueError {}
impl fmt::Display for ValueError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
/// Primitive SQL values.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Serialize, Deserialize)]
pub enum Value {
/// Numeric value.
Number(String),
/// String value.
String(String),
/// Hex string value.
HexString(String),
/// Boolean value.
Boolean(bool),
/// INTERVAL literals, roughly in the following format:
///
/// ```text
/// INTERVAL '<value>' <leading_field> [ TO <last_field>
/// [ (<fractional_seconds_precision>) ] ]
/// ```
/// e.g. `INTERVAL '123:45.678' MINUTE TO SECOND(2)`.
Interval(IntervalValue),
/// `NULL` value.
Null,
}
impl AstDisplay for Value {
fn fmt<W: fmt::Write>(&self, f: &mut AstFormatter<W>) {
if f.redacted() {
// When adding branches to this match statement, think about whether it is OK for us to collect
// the value as part of our telemetry. Check the data management policy to be sure!
match self {
Value::Number(_) | Value::String(_) | Value::HexString(_) => {
f.write_str("'<REDACTED>'");
return;
}
Value::Interval(_) => {
f.write_str("INTERVAL '<REDACTED>'");
return;
}
Value::Boolean(_) | Value::Null => {
// These are fine to log, so just fall through.
}
}
}
match self {
Value::Number(v) => f.write_str(v),
Value::String(v) => {
f.write_str("'");
f.write_node(&display::escape_single_quote_string(v));
f.write_str("'");
}
Value::HexString(v) => {
f.write_str("X'");
f.write_str(v);
f.write_str("'");
}
Value::Boolean(v) => f.write_str(v),
Value::Interval(interval_value) => {
f.write_str("INTERVAL '");
f.write_node(interval_value);
}
Value::Null => f.write_str("NULL"),
}
}
}
impl_display!(Value);
impl AstDisplay for IntervalValue {
fn fmt<W: fmt::Write>(&self, f: &mut AstFormatter<W>) {
if f.redacted() {
f.write_str("<REDACTED>'");
} else {
let IntervalValue {
value,
precision_high,
precision_low,
fsec_max_precision,
} = self;
f.write_node(&display::escape_single_quote_string(value));
f.write_str("'");
match (precision_high, precision_low, fsec_max_precision) {
(DateTimeField::Year, DateTimeField::Second, None) => {}
(DateTimeField::Year, DateTimeField::Second, Some(ns)) => {
f.write_str(" SECOND(");
f.write_str(ns);
f.write_str(")");
}
(DateTimeField::Year, low, None) => {
f.write_str(" ");
f.write_str(low);
}
(high, low, None) => {
f.write_str(" ");
f.write_str(high);
f.write_str(" TO ");
f.write_str(low);
}
(high, low, Some(ns)) => {
f.write_str(" ");
f.write_str(high);
f.write_str(" TO ");
f.write_str(low);
f.write_str("(");
f.write_str(ns);
f.write_str(")");
}
}
}
}
}
impl From<Ident> for Value {
fn from(ident: Ident) -> Self {
Self::String(ident.0)
}
}
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum DateTimeField {
Millennium,
Century,
Decade,
Year,
Month,
Day,
Hour,
Minute,
Second,
Milliseconds,
Microseconds,
}
impl fmt::Display for DateTimeField {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match self {
DateTimeField::Millennium => "MILLENNIUM",
DateTimeField::Century => "CENTURY",
DateTimeField::Decade => "DECADE",
DateTimeField::Year => "YEAR",
DateTimeField::Month => "MONTH",
DateTimeField::Day => "DAY",
DateTimeField::Hour => "HOUR",
DateTimeField::Minute => "MINUTE",
DateTimeField::Second => "SECOND",
DateTimeField::Milliseconds => "MILLISECONDS",
DateTimeField::Microseconds => "MICROSECONDS",
})
}
}
impl FromStr for DateTimeField {
type Err = String;
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
match s.to_uppercase().as_ref() {
"MILLENNIUM" | "MILLENNIA" | "MIL" | "MILS" => Ok(Self::Millennium),
"CENTURY" | "CENTURIES" | "CENT" | "C" => Ok(Self::Century),
"DECADE" | "DECADES" | "DEC" | "DECS" => Ok(Self::Decade),
"YEAR" | "YEARS" | "YR" | "YRS" | "Y" => Ok(Self::Year),
"MONTH" | "MONTHS" | "MON" | "MONS" => Ok(Self::Month),
"DAY" | "DAYS" | "D" => Ok(Self::Day),
"HOUR" | "HOURS" | "HR" | "HRS" | "H" => Ok(Self::Hour),
"MINUTE" | "MINUTES" | "MIN" | "MINS" | "M" => Ok(Self::Minute),
"SECOND" | "SECONDS" | "SEC" | "SECS" | "S" => Ok(Self::Second),
"MILLISECOND" | "MILLISECONDS" | "MILLISECON" | "MILLISECONS" | "MSECOND"
| "MSECONDS" | "MSEC" | "MSECS" | "MS" => Ok(Self::Milliseconds),
"MICROSECOND" | "MICROSECONDS" | "MICROSECON" | "MICROSECONS" | "USECOND"
| "USECONDS" | "USEC" | "USECS" | "US" => Ok(Self::Microseconds),
_ => Err(format!("invalid DateTimeField: {}", s)),
}
}
}
/// An intermediate value for Intervals, which tracks all data from
/// the user, as well as the computed ParsedDateTime.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Serialize, Deserialize)]
pub struct IntervalValue {
/// The raw `[value]` that was present in `INTERVAL '[value]'`
pub value: String,
/// The most significant DateTimeField to propagate to Interval in
/// compute_interval.
pub precision_high: DateTimeField,
/// The least significant DateTimeField to propagate to Interval in
/// compute_interval.
/// precision_low is also used to provide a TimeUnit if the final
/// part of `value` is ambiguous, e.g. INTERVAL '1-2 3' DAY uses
/// 'day' as the TimeUnit for 3.
pub precision_low: DateTimeField,
/// Maximum nanosecond precision can be specified in SQL source as
/// `INTERVAL '__' SECOND(_)`.
pub fsec_max_precision: Option<u64>,
}
impl Default for IntervalValue {
fn default() -> Self {
Self {
value: String::default(),
precision_high: DateTimeField::Year,
precision_low: DateTimeField::Second,
fsec_max_precision: None,
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Version(pub(crate) u64);
impl Version {
pub fn new(val: u64) -> Self {
Version(val)
}
pub fn into_inner(self) -> u64 {
self.0
}
}
impl AstDisplay for Version {
fn fmt<W>(&self, f: &mut AstFormatter<W>)
where
W: fmt::Write,
{
f.write_node(&self.0);
}
}
impl_display!(Version);