differential_dataflow/input.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
//! Input sessions for simplified collection updates.
//!
//! Although users can directly manipulate timely dataflow streams as collection inputs,
//! the `InputSession` type can make this more efficient and less error-prone. Specifically,
//! the type batches up updates with their logical times and ships them with coarsened
//! timely dataflow capabilities, exposing more concurrency to the operator implementations
//! than are evident from the logical times, which appear to execute in sequence.
use timely::progress::Timestamp;
use timely::dataflow::operators::Input as TimelyInput;
use timely::dataflow::operators::input::Handle;
use timely::dataflow::scopes::ScopeParent;
use crate::Data;
use crate::difference::Semigroup;
use crate::collection::{Collection, AsCollection};
/// Create a new collection and input handle to control the collection.
pub trait Input : TimelyInput {
/// Create a new collection and input handle to subsequently control the collection.
///
/// # Examples
///
/// ```
/// use timely::Config;
/// use differential_dataflow::input::Input;
///
/// ::timely::execute(Config::thread(), |worker| {
///
/// let (mut handle, probe) = worker.dataflow::<(),_,_>(|scope| {
/// // create input handle and collection.
/// let (handle, data) = scope.new_collection();
/// let probe = data.map(|x| x * 2)
/// .inspect(|x| println!("{:?}", x))
/// .probe();
/// (handle, probe)
/// });
///
/// handle.insert(1);
/// handle.insert(5);
///
/// }).unwrap();
/// ```
fn new_collection<D, R>(&mut self) -> (InputSession<<Self as ScopeParent>::Timestamp, D, R>, Collection<Self, D, R>)
where D: Data, R: Semigroup+'static;
/// Create a new collection and input handle from initial data.
///
/// # Examples
///
/// ```
/// use timely::Config;
/// use differential_dataflow::input::Input;
///
/// ::timely::execute(Config::thread(), |worker| {
///
/// let (mut handle, probe) = worker.dataflow::<(),_,_>(|scope| {
/// // create input handle and collection.
/// let (handle, data) = scope.new_collection_from(0 .. 10);
/// let probe = data.map(|x| x * 2)
/// .inspect(|x| println!("{:?}", x))
/// .probe();
/// (handle, probe)
/// });
///
/// handle.insert(1);
/// handle.insert(5);
///
/// }).unwrap();
/// ```
fn new_collection_from<I>(&mut self, data: I) -> (InputSession<<Self as ScopeParent>::Timestamp, I::Item, isize>, Collection<Self, I::Item, isize>)
where I: IntoIterator+'static, I::Item: Data;
/// Create a new collection and input handle from initial data.
///
/// # Examples
///
/// ```
/// use timely::Config;
/// use differential_dataflow::input::Input;
///
/// ::timely::execute(Config::thread(), |worker| {
///
/// let (mut handle, probe) = worker.dataflow::<(),_,_>(|scope| {
/// // create input handle and collection.
/// let (handle, data) = scope.new_collection_from(0 .. 10);
/// let probe = data.map(|x| x * 2)
/// .inspect(|x| println!("{:?}", x))
/// .probe();
/// (handle, probe)
/// });
///
/// handle.insert(1);
/// handle.insert(5);
///
/// }).unwrap();
/// ```
fn new_collection_from_raw<D, R, I>(&mut self, data: I) -> (InputSession<<Self as ScopeParent>::Timestamp, D, R>, Collection<Self, D, R>)
where I: IntoIterator<Item=(D,<Self as ScopeParent>::Timestamp,R)>+'static, D: Data, R: Semigroup+'static;
}
use crate::lattice::Lattice;
impl<G: TimelyInput> Input for G where <G as ScopeParent>::Timestamp: Lattice {
fn new_collection<D, R>(&mut self) -> (InputSession<<G as ScopeParent>::Timestamp, D, R>, Collection<G, D, R>)
where D: Data, R: Semigroup+'static{
let (handle, stream) = self.new_input();
(InputSession::from(handle), stream.as_collection())
}
fn new_collection_from<I>(&mut self, data: I) -> (InputSession<<G as ScopeParent>::Timestamp, I::Item, isize>, Collection<G, I::Item, isize>)
where I: IntoIterator+'static, I::Item: Data {
self.new_collection_from_raw(data.into_iter().map(|d| (d, <G::Timestamp as timely::progress::Timestamp>::minimum(), 1)))
}
fn new_collection_from_raw<D,R,I>(&mut self, data: I) -> (InputSession<<G as ScopeParent>::Timestamp, D, R>, Collection<G, D, R>)
where
D: Data,
R: Semigroup+'static,
I: IntoIterator<Item=(D,<Self as ScopeParent>::Timestamp,R)>+'static,
{
use timely::dataflow::operators::ToStream;
let (handle, stream) = self.new_input();
let source = data.to_stream(self).as_collection();
(InputSession::from(handle), stream.as_collection().concat(&source))
}}
/// An input session wrapping a single timely dataflow capability.
///
/// Each timely dataflow message has a corresponding capability, which is a logical time in the
/// timely dataflow system. Differential dataflow updates can happen at a much higher rate than
/// timely dataflow's progress tracking infrastructure supports, because the logical times are
/// promoted to data and updates are batched together. The `InputSession` type does this batching.
///
/// # Examples
///
/// ```
/// use timely::Config;
/// use differential_dataflow::input::Input;
///
/// ::timely::execute(Config::thread(), |worker| {
///
/// let (mut handle, probe) = worker.dataflow(|scope| {
/// // create input handle and collection.
/// let (handle, data) = scope.new_collection_from(0 .. 10);
/// let probe = data.map(|x| x * 2)
/// .inspect(|x| println!("{:?}", x))
/// .probe();
/// (handle, probe)
/// });
///
/// handle.insert(3);
/// handle.advance_to(1);
/// handle.insert(5);
/// handle.advance_to(2);
/// handle.flush();
///
/// while probe.less_than(handle.time()) {
/// worker.step();
/// }
///
/// handle.remove(5);
/// handle.advance_to(3);
/// handle.flush();
///
/// while probe.less_than(handle.time()) {
/// worker.step();
/// }
///
/// }).unwrap();
/// ```
pub struct InputSession<T: Timestamp+Clone, D: Data, R: Semigroup+'static> {
time: T,
buffer: Vec<(D, T, R)>,
handle: Handle<T,(D,T,R)>,
}
impl<T: Timestamp+Clone, D: Data> InputSession<T, D, isize> {
/// Adds an element to the collection.
pub fn insert(&mut self, element: D) { self.update(element, 1); }
/// Removes an element from the collection.
pub fn remove(&mut self, element: D) { self.update(element,-1); }
}
// impl<T: Timestamp+Clone, D: Data> InputSession<T, D, i64> {
// /// Adds an element to the collection.
// pub fn insert(&mut self, element: D) { self.update(element, 1); }
// /// Removes an element from the collection.
// pub fn remove(&mut self, element: D) { self.update(element,-1); }
// }
// impl<T: Timestamp+Clone, D: Data> InputSession<T, D, i32> {
// /// Adds an element to the collection.
// pub fn insert(&mut self, element: D) { self.update(element, 1); }
// /// Removes an element from the collection.
// pub fn remove(&mut self, element: D) { self.update(element,-1); }
// }
impl<T: Timestamp+Clone, D: Data, R: Semigroup+'static> InputSession<T, D, R> {
/// Introduces a handle as collection.
pub fn to_collection<G: TimelyInput>(&mut self, scope: &mut G) -> Collection<G, D, R>
where
G: ScopeParent<Timestamp=T>,
{
scope
.input_from(&mut self.handle)
.as_collection()
}
/// Allocates a new input handle.
pub fn new() -> Self {
let handle: Handle<T,_> = Handle::new();
InputSession {
time: handle.time().clone(),
buffer: Vec::new(),
handle,
}
}
/// Creates a new session from a reference to an input handle.
pub fn from(handle: Handle<T,(D,T,R)>) -> Self {
InputSession {
time: handle.time().clone(),
buffer: Vec::new(),
handle,
}
}
/// Adds to the weight of an element in the collection.
pub fn update(&mut self, element: D, change: R) {
if self.buffer.len() == self.buffer.capacity() {
if !self.buffer.is_empty() {
self.handle.send_batch(&mut self.buffer);
}
// TODO : This is a fairly arbitrary choice; should probably use `Context::default_size()` or such.
self.buffer.reserve(1024);
}
self.buffer.push((element, self.time.clone(), change));
}
/// Adds to the weight of an element in the collection at a future time.
pub fn update_at(&mut self, element: D, time: T, change: R) {
assert!(self.time.less_equal(&time));
if self.buffer.len() == self.buffer.capacity() {
if !self.buffer.is_empty() {
self.handle.send_batch(&mut self.buffer);
}
// TODO : This is a fairly arbitrary choice; should probably use `Context::default_size()` or such.
self.buffer.reserve(1024);
}
self.buffer.push((element, time, change));
}
/// Forces buffered data into the timely dataflow input, and advances its time to match that of the session.
///
/// It is important to call `flush` before expecting timely dataflow to report progress. Until this method is
/// called, all updates may still be in internal buffers and not exposed to timely dataflow. Once the method is
/// called, all buffers are flushed and timely dataflow is advised that some logical times are no longer possible.
pub fn flush(&mut self) {
self.handle.send_batch(&mut self.buffer);
if self.handle.epoch().less_than(&self.time) {
self.handle.advance_to(self.time.clone());
}
}
/// Advances the logical time for future records.
///
/// Importantly, this method does **not** immediately inform timely dataflow of the change. This happens only when
/// the session is dropped or flushed. It is not correct to use this time as a basis for a computation's `step_while`
/// method unless the session has just been flushed.
pub fn advance_to(&mut self, time: T) {
assert!(self.handle.epoch().less_equal(&time));
assert!(&self.time.less_equal(&time));
self.time = time;
}
/// Reveals the current time of the session.
pub fn epoch(&self) -> &T { &self.time }
/// Reveals the current time of the session.
pub fn time(&self) -> &T { &self.time }
/// Closes the input, flushing and sealing the wrapped timely input.
pub fn close(self) { }
}
impl<T: Timestamp+Clone, D: Data, R: Semigroup+'static> Drop for InputSession<T, D, R> {
fn drop(&mut self) {
self.flush();
}
}