governor/state/keyed.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
//! Keyed rate limiters (those that can hold one state per key).
//!
//! These are rate limiters that have one set of parameters (burst capacity per time period) but
//! apply those to several sets of actual rate-limiting states, e.g. to enforce one API call rate
//! limit per API key.
//!
//! Rate limiters based on these types are constructed with
//! [the `RateLimiter` constructors](../struct.RateLimiter.html#keyed-rate-limiters---default-constructors)
use std::hash::Hash;
use std::num::NonZeroU32;
use std::prelude::v1::*;
use crate::state::StateStore;
use crate::{
clock::{self, Reference},
errors::InsufficientCapacity,
middleware::RateLimitingMiddleware,
nanos::Nanos,
Quota, RateLimiter,
};
/// A trait for state stores with one rate limiting state per key.
///
/// This is blanket-implemented by all [`StateStore`]s with hashable (`Eq + Hash + Clone`) key
/// associated types.
pub trait KeyedStateStore<K: Hash>: StateStore<Key = K> {}
impl<T, K: Hash> KeyedStateStore<K> for T
where
T: StateStore<Key = K>,
K: Eq + Clone + Hash,
{
}
/// # Keyed rate limiters - default constructors
impl<K> RateLimiter<K, DefaultKeyedStateStore<K>, clock::DefaultClock>
where
K: Clone + Hash + Eq,
{
/// Constructs a new keyed rate limiter backed by
/// the [`DefaultKeyedStateStore`].
pub fn keyed(quota: Quota) -> Self {
let state = DefaultKeyedStateStore::default();
let clock = clock::DefaultClock::default();
RateLimiter::new(quota, state, &clock)
}
#[cfg(all(feature = "std", feature = "dashmap"))]
/// Constructs a new keyed rate limiter explicitly backed by a [`DashMap`][::dashmap::DashMap].
pub fn dashmap(quota: Quota) -> Self {
let state = DashMapStateStore::default();
let clock = clock::DefaultClock::default();
RateLimiter::new(quota, state, &clock)
}
#[cfg(any(all(feature = "std", not(feature = "dashmap")), not(feature = "std")))]
/// Constructs a new keyed rate limiter explicitly backed by a
/// [`HashMap`][std::collections::HashMap].
pub fn hashmap(quota: Quota) -> Self {
let state = HashMapStateStore::default();
let clock = clock::DefaultClock::default();
RateLimiter::new(quota, state, &clock)
}
}
#[cfg(all(feature = "std", feature = "dashmap"))]
impl<K> RateLimiter<K, HashMapStateStore<K>, clock::DefaultClock>
where
K: Clone + Hash + Eq,
{
/// Constructs a new keyed rate limiter explicitly backed by a
/// [`HashMap`][std::collections::HashMap].
pub fn hashmap(quota: Quota) -> Self {
let state = HashMapStateStore::default();
let clock = clock::DefaultClock::default();
RateLimiter::new(quota, state, &clock)
}
}
/// # Keyed rate limiters - Manually checking cells
impl<K, S, C, MW> RateLimiter<K, S, C, MW>
where
S: KeyedStateStore<K>,
K: Hash,
C: clock::Clock,
MW: RateLimitingMiddleware<C::Instant>,
{
/// Allow a single cell through the rate limiter for the given key.
///
/// If the rate limit is reached, `check_key` returns information about the earliest
/// time that a cell might be allowed through again under that key.
pub fn check_key(&self, key: &K) -> Result<MW::PositiveOutcome, MW::NegativeOutcome> {
self.gcra.test_and_update::<K, C::Instant, S, MW>(
self.start,
key,
&self.state,
self.clock.now(),
)
}
/// Allow *only all* `n` cells through the rate limiter for the given key.
///
/// This method can succeed in only one way and fail in two ways:
/// * Success: If all `n` cells can be accommodated, it returns `Ok(Ok(()))`.
/// * Failure (but ok): Not all cells can make it through at the current time.
/// The result is `Ok(Err(NotUntil))`, which can
/// be interrogated about when the batch might next conform.
/// * Failure (the batch can never go through): The rate limit is too low for the given number
/// of cells. The result is `Err(InsufficientCapacity)`
///
/// ### Performance
/// This method diverges a little from the GCRA algorithm, using
/// multiplication to determine the next theoretical arrival time, and so
/// is not as fast as checking a single cell.
pub fn check_key_n(
&self,
key: &K,
n: NonZeroU32,
) -> Result<Result<MW::PositiveOutcome, MW::NegativeOutcome>, InsufficientCapacity> {
self.gcra.test_n_all_and_update::<K, C::Instant, S, MW>(
self.start,
key,
n,
&self.state,
self.clock.now(),
)
}
}
/// Keyed rate limiters that can be "cleaned up".
///
/// Any keyed state store implementing this trait allows users to evict elements that are
/// indistinguishable from fresh rate-limiting states (that is, if a key hasn't been used for
/// rate-limiting decisions for as long as the bucket capacity).
///
/// As this does not make sense for not all keyed state stores (e.g. stores that auto-expire like
/// memcache), this is an optional trait. All the keyed state stores in this crate implement
/// shrinking.
pub trait ShrinkableKeyedStateStore<K: Hash>: KeyedStateStore<K> {
/// Remove those keys with state older than `drop_below`.
fn retain_recent(&self, drop_below: Nanos);
/// Shrinks the capacity of the state store, if possible.
///
/// If the state store does not support shrinking, this method is a no-op.
fn shrink_to_fit(&self) {}
/// Returns the number of "live" keys stored in the state store.
///
/// Depending on how the state store is implemented, this may
/// return an estimate or an out-of-date result.
fn len(&self) -> usize;
/// Returns `true` if `self` has no keys stored in it.
///
/// As with [`len`](#tymethod.len), this method may return
/// imprecise results (indicating that the state store is empty
/// while a concurrent rate-limiting operation is taking place).
fn is_empty(&self) -> bool;
}
/// # Keyed rate limiters - Housekeeping
///
/// As the inputs to a keyed rate-limiter can be arbitrary keys, the set of retained keys retained
/// grows, while the number of active keys may stay smaller. To save on space, a keyed rate-limiter
/// allows removing those keys that are "stale", i.e., whose values are no different from keys' that
/// aren't present in the rate limiter state store.
impl<K, S, C, MW> RateLimiter<K, S, C, MW>
where
S: ShrinkableKeyedStateStore<K>,
K: Hash,
C: clock::Clock,
MW: RateLimitingMiddleware<C::Instant>,
{
/// Retains all keys in the rate limiter that were used recently enough.
///
/// Any key whose rate limiting state is indistinguishable from a "fresh" state (i.e., the
/// theoretical arrival time lies in the past).
pub fn retain_recent(&self) {
// calculate the minimum retention parameter: Any key whose state store's theoretical
// arrival time is larger than a starting state for the bucket gets to stay, everything
// else (that's indistinguishable from a starting state) goes.
let now = self.clock.now();
let drop_below = now.duration_since(self.start);
self.state.retain_recent(drop_below);
}
/// Shrinks the capacity of the rate limiter's state store, if possible.
pub fn shrink_to_fit(&self) {
self.state.shrink_to_fit();
}
/// Returns the number of "live" keys in the rate limiter's state store.
///
/// Depending on how the state store is implemented, this may
/// return an estimate or an out-of-date result.
pub fn len(&self) -> usize {
self.state.len()
}
/// Returns `true` if the rate limiter has no keys in it.
///
/// As with [`len`](#method.len), this method may return
/// imprecise results (indicating that the state store is empty
/// while a concurrent rate-limiting operation is taking place).
pub fn is_empty(&self) -> bool {
self.state.is_empty()
}
}
mod hashmap;
pub use hashmap::HashMapStateStore;
#[cfg(all(feature = "std", feature = "dashmap"))]
mod dashmap;
#[cfg(all(feature = "std", feature = "dashmap"))]
pub use self::dashmap::DashMapStateStore;
#[cfg(feature = "std")]
mod future;
#[cfg(any(all(feature = "std", not(feature = "dashmap")), not(feature = "std")))]
/// The default keyed rate limiter type: a mutex-wrapped [`HashMap`][std::collections::HashMap].
pub type DefaultKeyedStateStore<K> = HashMapStateStore<K>;
#[cfg(all(feature = "std", feature = "dashmap"))]
/// The default keyed rate limiter type: the concurrent [`DashMap`][::dashmap::DashMap].
pub type DefaultKeyedStateStore<K> = DashMapStateStore<K>;
#[cfg(test)]
mod test {
use std::marker::PhantomData;
use nonzero_ext::nonzero;
use crate::{
clock::{Clock, FakeRelativeClock},
middleware::NoOpMiddleware,
};
use super::*;
#[test]
fn default_nonshrinkable_state_store_coverage() {
#[derive(Default)]
struct NaiveKeyedStateStore<K>(PhantomData<K>);
impl<K: Hash + Eq + Clone> StateStore for NaiveKeyedStateStore<K> {
type Key = K;
fn measure_and_replace<T, F, E>(&self, _key: &Self::Key, f: F) -> Result<T, E>
where
F: Fn(Option<Nanos>) -> Result<(T, Nanos), E>,
{
f(None).map(|(res, _)| res)
}
}
impl<K: Hash + Eq + Clone> ShrinkableKeyedStateStore<K> for NaiveKeyedStateStore<K> {
fn retain_recent(&self, _drop_below: Nanos) {
// nothing to do
}
fn len(&self) -> usize {
0
}
fn is_empty(&self) -> bool {
true
}
}
let lim: RateLimiter<
u32,
NaiveKeyedStateStore<u32>,
FakeRelativeClock,
NoOpMiddleware<<FakeRelativeClock as Clock>::Instant>,
> = RateLimiter::new(
Quota::per_second(nonzero!(1_u32)),
NaiveKeyedStateStore::default(),
&FakeRelativeClock::default(),
);
assert_eq!(lim.check_key(&1u32), Ok(()));
assert!(lim.is_empty());
assert_eq!(lim.len(), 0);
lim.retain_recent();
lim.shrink_to_fit();
}
}