protobuf/coded_input_stream/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
mod buf_read_iter;
mod buf_read_or_reader;
mod input_buf;
mod input_source;

use std::io;
use std::io::BufRead;
use std::io::Read;
use std::mem;
use std::mem::MaybeUninit;

#[cfg(feature = "bytes")]
use ::bytes::Bytes;

#[cfg(feature = "bytes")]
use crate::chars::Chars;
use crate::coded_input_stream::buf_read_iter::BufReadIter;
use crate::enums::Enum;
use crate::error::ProtobufError;
use crate::error::WireError;
use crate::misc::maybe_ununit_array_assume_init;
use crate::reflect::types::ProtobufTypeBool;
use crate::reflect::types::ProtobufTypeDouble;
use crate::reflect::types::ProtobufTypeFixed;
use crate::reflect::types::ProtobufTypeFixed32;
use crate::reflect::types::ProtobufTypeFixed64;
use crate::reflect::types::ProtobufTypeFloat;
use crate::reflect::types::ProtobufTypeInt32;
use crate::reflect::types::ProtobufTypeInt64;
use crate::reflect::types::ProtobufTypeSfixed32;
use crate::reflect::types::ProtobufTypeSfixed64;
use crate::reflect::types::ProtobufTypeSint32;
use crate::reflect::types::ProtobufTypeSint64;
use crate::reflect::types::ProtobufTypeTrait;
use crate::reflect::types::ProtobufTypeUint32;
use crate::reflect::types::ProtobufTypeUint64;
use crate::reflect::MessageDescriptor;
use crate::unknown::UnknownValue;
use crate::varint::decode::decode_varint32;
use crate::varint::decode::decode_varint64;
use crate::varint::MAX_VARINT_ENCODED_LEN;
use crate::wire_format;
use crate::wire_format::WireType;
use crate::zigzag::decode_zig_zag_32;
use crate::zigzag::decode_zig_zag_64;
use crate::EnumOrUnknown;
use crate::Message;
use crate::MessageDyn;

// Default recursion level limit. 100 is the default value of C++'s implementation.
const DEFAULT_RECURSION_LIMIT: u32 = 100;

// Max allocated vec when reading length-delimited from unknown input stream
pub(crate) const READ_RAW_BYTES_MAX_ALLOC: usize = 10_000_000;

/// Buffered read with handy utilities.
#[derive(Debug)]
pub struct CodedInputStream<'a> {
    source: BufReadIter<'a>,
    recursion_level: u32,
    recursion_limit: u32,
}

impl<'a> CodedInputStream<'a> {
    /// Wrap a `Read`.
    ///
    /// Note resulting `CodedInputStream` is buffered.
    ///
    /// If `Read` is buffered, the resulting stream will be double buffered,
    /// consider using [`from_buf_read`](Self::from_buf_read) instead.
    pub fn new(read: &'a mut dyn Read) -> CodedInputStream<'a> {
        CodedInputStream::from_buf_read_iter(BufReadIter::from_read(read))
    }

    /// Create from `BufRead`.
    ///
    /// `CodedInputStream` will utilize `BufRead` buffer.
    pub fn from_buf_read(buf_read: &'a mut dyn BufRead) -> CodedInputStream<'a> {
        CodedInputStream::from_buf_read_iter(BufReadIter::from_buf_read(buf_read))
    }

    /// Read from byte slice
    pub fn from_bytes(bytes: &'a [u8]) -> CodedInputStream<'a> {
        CodedInputStream::from_buf_read_iter(BufReadIter::from_byte_slice(bytes))
    }

    /// Read from `Bytes`.
    ///
    /// `CodedInputStream` operations like
    /// [`read_tokio_bytes`](crate::CodedInputStream::read_tokio_bytes)
    /// will return a shared copy of this bytes object.
    #[cfg(feature = "bytes")]
    pub fn from_tokio_bytes(bytes: &'a Bytes) -> CodedInputStream<'a> {
        CodedInputStream::from_buf_read_iter(BufReadIter::from_bytes(bytes))
    }

    fn from_buf_read_iter(source: BufReadIter<'a>) -> CodedInputStream<'a> {
        CodedInputStream {
            source,
            recursion_level: 0,
            recursion_limit: DEFAULT_RECURSION_LIMIT,
        }
    }

    /// Set the recursion limit.
    pub fn set_recursion_limit(&mut self, limit: u32) {
        self.recursion_limit = limit;
    }

    #[inline]
    pub(crate) fn incr_recursion(&mut self) -> crate::Result<()> {
        if self.recursion_level >= self.recursion_limit {
            return Err(ProtobufError::WireError(WireError::OverRecursionLimit).into());
        }
        self.recursion_level += 1;
        Ok(())
    }

    #[inline]
    pub(crate) fn decr_recursion(&mut self) {
        self.recursion_level -= 1;
    }

    /// How many bytes processed
    pub fn pos(&self) -> u64 {
        self.source.pos()
    }

    /// How many bytes until current limit
    pub fn bytes_until_limit(&self) -> u64 {
        self.source.bytes_until_limit()
    }

    /// Read bytes into given `buf`.
    #[inline]
    pub fn read_exact(&mut self, buf: &mut [MaybeUninit<u8>]) -> crate::Result<()> {
        self.source.read_exact(buf)
    }

    /// Read exact number of bytes as `Bytes` object.
    ///
    /// This operation returns a shared view if `CodedInputStream` is
    /// constructed with `Bytes` parameter.
    #[cfg(feature = "bytes")]
    fn read_raw_tokio_bytes(&mut self, count: usize) -> crate::Result<Bytes> {
        self.source.read_exact_bytes(count)
    }

    /// Read one byte
    #[inline(always)]
    pub fn read_raw_byte(&mut self) -> crate::Result<u8> {
        self.source.read_byte()
    }

    /// Push new limit, return previous limit.
    pub fn push_limit(&mut self, limit: u64) -> crate::Result<u64> {
        self.source.push_limit(limit)
    }

    /// Restore previous limit.
    pub fn pop_limit(&mut self, old_limit: u64) {
        self.source.pop_limit(old_limit);
    }

    /// Are we at EOF?
    #[inline(always)]
    pub fn eof(&mut self) -> crate::Result<bool> {
        self.source.eof()
    }

    /// Check we are at EOF.
    ///
    /// Return error if we are not at EOF.
    pub fn check_eof(&mut self) -> crate::Result<()> {
        let eof = self.eof()?;
        if !eof {
            return Err(ProtobufError::WireError(WireError::UnexpectedEof).into());
        }
        Ok(())
    }

    fn read_raw_varint64_slow(&mut self) -> crate::Result<u64> {
        let mut r: u64 = 0;
        let mut i = 0;
        loop {
            if i == MAX_VARINT_ENCODED_LEN {
                return Err(ProtobufError::WireError(WireError::IncorrectVarint).into());
            }
            let b = self.read_raw_byte()?;
            if i == 9 && (b & 0x7f) > 1 {
                return Err(ProtobufError::WireError(WireError::IncorrectVarint).into());
            }
            r = r | (((b & 0x7f) as u64) << (i * 7));
            i += 1;
            if b < 0x80 {
                return Ok(r);
            }
        }
    }

    fn read_raw_varint32_slow(&mut self) -> crate::Result<u32> {
        let v = self.read_raw_varint64_slow()?;
        if v > u32::MAX as u64 {
            return Err(ProtobufError::WireError(WireError::U32Overflow(v)).into());
        }
        Ok(v as u32)
    }

    /// Read varint
    #[inline]
    pub fn read_raw_varint64(&mut self) -> crate::Result<u64> {
        let rem = self.source.remaining_in_buf();

        match decode_varint64(rem)? {
            Some((r, c)) => {
                self.source.consume(c);
                Ok(r)
            }
            None => self.read_raw_varint64_slow(),
        }
    }

    /// Read varint
    #[inline]
    pub fn read_raw_varint32(&mut self) -> crate::Result<u32> {
        let rem = self.source.remaining_in_buf();

        match decode_varint32(rem)? {
            Some((r, c)) => {
                self.source.consume(c);
                Ok(r)
            }
            None => self.read_raw_varint32_slow(),
        }
    }

    #[inline]
    fn read_raw_varint32_or_eof(&mut self) -> crate::Result<Option<u32>> {
        let rem = self.source.remaining_in_buf();
        let v = decode_varint32(rem)?;
        match v {
            Some((r, c)) => {
                self.source.consume(c);
                Ok(Some(r))
            }
            None => {
                if self.eof()? {
                    Ok(None)
                } else {
                    let v = self.read_raw_varint32_slow()?;
                    Ok(Some(v))
                }
            }
        }
    }

    /// Read little-endian 32-bit integer
    pub fn read_raw_little_endian32(&mut self) -> crate::Result<u32> {
        let mut bytes = [MaybeUninit::uninit(); 4];
        self.read_exact(&mut bytes)?;
        // SAFETY: `read_exact` guarantees that the buffer is filled.
        let bytes = unsafe { maybe_ununit_array_assume_init(bytes) };
        Ok(u32::from_le_bytes(bytes))
    }

    /// Read little-endian 64-bit integer
    pub fn read_raw_little_endian64(&mut self) -> crate::Result<u64> {
        let mut bytes = [MaybeUninit::uninit(); 8];
        self.read_exact(&mut bytes)?;
        // SAFETY: `read_exact` guarantees that the buffer is filled.
        let bytes = unsafe { maybe_ununit_array_assume_init(bytes) };
        Ok(u64::from_le_bytes(bytes))
    }

    /// Read tag number as `u32` or None if EOF is reached.
    #[inline]
    pub fn read_raw_tag_or_eof(&mut self) -> crate::Result<Option<u32>> {
        self.read_raw_varint32_or_eof()
    }

    /// Read tag
    #[inline]
    pub(crate) fn read_tag(&mut self) -> crate::Result<wire_format::Tag> {
        let v = self.read_raw_varint32()?;
        wire_format::Tag::new(v)
    }

    /// Read tag, return it is pair (field number, wire type)
    #[inline]
    pub(crate) fn read_tag_unpack(&mut self) -> crate::Result<(u32, WireType)> {
        self.read_tag().map(|t| t.unpack())
    }

    /// Read `double`
    pub fn read_double(&mut self) -> crate::Result<f64> {
        let bits = self.read_raw_little_endian64()?;
        Ok(f64::from_bits(bits))
    }

    /// Read `float`
    pub fn read_float(&mut self) -> crate::Result<f32> {
        let bits = self.read_raw_little_endian32()?;
        Ok(f32::from_bits(bits))
    }

    /// Read `int64`
    pub fn read_int64(&mut self) -> crate::Result<i64> {
        self.read_raw_varint64().map(|v| v as i64)
    }

    /// Read `int32`
    pub fn read_int32(&mut self) -> crate::Result<i32> {
        let v = self.read_int64()?;
        i32::try_from(v).map_err(|_| WireError::I32Overflow(v).into())
    }

    /// Read `uint64`
    pub fn read_uint64(&mut self) -> crate::Result<u64> {
        self.read_raw_varint64()
    }

    /// Read `uint32`
    pub fn read_uint32(&mut self) -> crate::Result<u32> {
        self.read_raw_varint32()
    }

    /// Read `sint64`
    pub fn read_sint64(&mut self) -> crate::Result<i64> {
        self.read_uint64().map(decode_zig_zag_64)
    }

    /// Read `sint32`
    pub fn read_sint32(&mut self) -> crate::Result<i32> {
        self.read_uint32().map(decode_zig_zag_32)
    }

    /// Read `fixed64`
    pub fn read_fixed64(&mut self) -> crate::Result<u64> {
        self.read_raw_little_endian64()
    }

    /// Read `fixed32`
    pub fn read_fixed32(&mut self) -> crate::Result<u32> {
        self.read_raw_little_endian32()
    }

    /// Read `sfixed64`
    pub fn read_sfixed64(&mut self) -> crate::Result<i64> {
        self.read_raw_little_endian64().map(|v| v as i64)
    }

    /// Read `sfixed32`
    pub fn read_sfixed32(&mut self) -> crate::Result<i32> {
        self.read_raw_little_endian32().map(|v| v as i32)
    }

    /// Read `bool`
    pub fn read_bool(&mut self) -> crate::Result<bool> {
        self.read_raw_varint64().map(|v| v != 0)
    }

    pub(crate) fn read_enum_value(&mut self) -> crate::Result<i32> {
        self.read_int32()
    }

    /// Read `enum` as `ProtobufEnum`
    pub fn read_enum<E: Enum>(&mut self) -> crate::Result<E> {
        let i = self.read_enum_value()?;
        match Enum::from_i32(i) {
            Some(e) => Ok(e),
            None => Err(ProtobufError::WireError(WireError::InvalidEnumValue(E::NAME, i)).into()),
        }
    }

    /// Read `enum` as `ProtobufEnumOrUnknown`
    pub fn read_enum_or_unknown<E: Enum>(&mut self) -> crate::Result<EnumOrUnknown<E>> {
        Ok(EnumOrUnknown::from_i32(self.read_int32()?))
    }

    fn read_repeated_packed_fixed_into<T: ProtobufTypeFixed>(
        &mut self,
        target: &mut Vec<T::ProtobufValue>,
    ) -> crate::Result<()> {
        let len_bytes = self.read_raw_varint64()?;

        let reserve = if len_bytes <= READ_RAW_BYTES_MAX_ALLOC as u64 {
            (len_bytes as usize) / (T::ENCODED_SIZE as usize)
        } else {
            // prevent OOM on malformed input
            // probably should truncate
            READ_RAW_BYTES_MAX_ALLOC / (T::ENCODED_SIZE as usize)
        };

        target.reserve(reserve);

        let old_limit = self.push_limit(len_bytes)?;
        while !self.eof()? {
            target.push(T::read(self)?);
        }
        self.pop_limit(old_limit);
        Ok(())
    }

    fn read_repeated_packed_into<T: ProtobufTypeTrait>(
        &mut self,
        target: &mut Vec<T::ProtobufValue>,
    ) -> crate::Result<()> {
        let len_bytes = self.read_raw_varint64()?;

        // value is at least 1 bytes, so this is lower bound of element count
        let reserve = if len_bytes <= READ_RAW_BYTES_MAX_ALLOC as u64 {
            len_bytes as usize
        } else {
            // prevent OOM on malformed input
            READ_RAW_BYTES_MAX_ALLOC
        };

        target.reserve(reserve);

        let old_limit = self.push_limit(len_bytes)?;
        while !self.eof()? {
            target.push(T::read(self)?);
        }
        self.pop_limit(old_limit);
        Ok(())
    }

    /// Read repeated packed `double`
    pub fn read_repeated_packed_double_into(&mut self, target: &mut Vec<f64>) -> crate::Result<()> {
        self.read_repeated_packed_fixed_into::<ProtobufTypeDouble>(target)
    }

    /// Read repeated packed `float`
    pub fn read_repeated_packed_float_into(&mut self, target: &mut Vec<f32>) -> crate::Result<()> {
        self.read_repeated_packed_fixed_into::<ProtobufTypeFloat>(target)
    }

    /// Read repeated packed `int64`
    pub fn read_repeated_packed_int64_into(&mut self, target: &mut Vec<i64>) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeInt64>(target)
    }

    /// Read repeated packed `int32`
    pub fn read_repeated_packed_int32_into(&mut self, target: &mut Vec<i32>) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeInt32>(target)
    }

    /// Read repeated packed `uint64`
    pub fn read_repeated_packed_uint64_into(&mut self, target: &mut Vec<u64>) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeUint64>(target)
    }

    /// Read repeated packed `uint32`
    pub fn read_repeated_packed_uint32_into(&mut self, target: &mut Vec<u32>) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeUint32>(target)
    }

    /// Read repeated packed `sint64`
    pub fn read_repeated_packed_sint64_into(&mut self, target: &mut Vec<i64>) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeSint64>(target)
    }

    /// Read repeated packed `sint32`
    pub fn read_repeated_packed_sint32_into(&mut self, target: &mut Vec<i32>) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeSint32>(target)
    }

    /// Read repeated packed `fixed64`
    pub fn read_repeated_packed_fixed64_into(
        &mut self,
        target: &mut Vec<u64>,
    ) -> crate::Result<()> {
        self.read_repeated_packed_fixed_into::<ProtobufTypeFixed64>(target)
    }

    /// Read repeated packed `fixed32`
    pub fn read_repeated_packed_fixed32_into(
        &mut self,
        target: &mut Vec<u32>,
    ) -> crate::Result<()> {
        self.read_repeated_packed_fixed_into::<ProtobufTypeFixed32>(target)
    }

    /// Read repeated packed `sfixed64`
    pub fn read_repeated_packed_sfixed64_into(
        &mut self,
        target: &mut Vec<i64>,
    ) -> crate::Result<()> {
        self.read_repeated_packed_fixed_into::<ProtobufTypeSfixed64>(target)
    }

    /// Read repeated packed `sfixed32`
    pub fn read_repeated_packed_sfixed32_into(
        &mut self,
        target: &mut Vec<i32>,
    ) -> crate::Result<()> {
        self.read_repeated_packed_fixed_into::<ProtobufTypeSfixed32>(target)
    }

    /// Read repeated packed `bool`
    pub fn read_repeated_packed_bool_into(&mut self, target: &mut Vec<bool>) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeBool>(target)
    }

    /// Read repeated packed enum values into the vector.
    pub(crate) fn read_repeated_packed_enum_values_into(
        &mut self,
        target: &mut Vec<i32>,
    ) -> crate::Result<()> {
        self.read_repeated_packed_into::<ProtobufTypeInt32>(target)
    }

    fn skip_group(&mut self) -> crate::Result<()> {
        while !self.eof()? {
            let wire_type = self.read_tag_unpack()?.1;
            if wire_type == WireType::EndGroup {
                break;
            }
            self.skip_field(wire_type)?;
        }
        Ok(())
    }

    /// Read `UnknownValue`
    pub fn read_unknown(&mut self, wire_type: WireType) -> crate::Result<UnknownValue> {
        match wire_type {
            WireType::Varint => self.read_raw_varint64().map(|v| UnknownValue::Varint(v)),
            WireType::Fixed64 => self.read_fixed64().map(|v| UnknownValue::Fixed64(v)),
            WireType::Fixed32 => self.read_fixed32().map(|v| UnknownValue::Fixed32(v)),
            WireType::LengthDelimited => {
                let len = self.read_raw_varint32()?;
                self.read_raw_bytes(len)
                    .map(|v| UnknownValue::LengthDelimited(v))
            }
            WireType::StartGroup => {
                self.skip_group()?;
                // We do not support groups, so just return something.
                Ok(UnknownValue::LengthDelimited(Vec::new()))
            }
            WireType::EndGroup => {
                Err(ProtobufError::WireError(WireError::UnexpectedWireType(wire_type)).into())
            }
        }
    }

    /// Skip field.
    pub fn skip_field(&mut self, wire_type: WireType) -> crate::Result<()> {
        match wire_type {
            WireType::Varint => self.read_raw_varint64().map(|_| ()),
            WireType::Fixed64 => self.read_fixed64().map(|_| ()),
            WireType::Fixed32 => self.read_fixed32().map(|_| ()),
            WireType::LengthDelimited => {
                let len = self.read_raw_varint32()?;
                self.skip_raw_bytes(len)
            }
            WireType::StartGroup => self.skip_group(),
            WireType::EndGroup => {
                Err(ProtobufError::WireError(WireError::UnexpectedWireType(wire_type)).into())
            }
        }
    }

    /// Read raw bytes into the supplied vector.  The vector will be resized as needed and
    /// overwritten.
    pub fn read_raw_bytes_into(&mut self, count: u32, target: &mut Vec<u8>) -> crate::Result<()> {
        self.source.read_exact_to_vec(count as usize, target)
    }

    /// Read exact number of bytes
    pub fn read_raw_bytes(&mut self, count: u32) -> crate::Result<Vec<u8>> {
        let mut r = Vec::new();
        self.read_raw_bytes_into(count, &mut r)?;
        Ok(r)
    }

    /// Skip exact number of bytes
    pub fn skip_raw_bytes(&mut self, count: u32) -> crate::Result<()> {
        self.source.skip_bytes(count)
    }

    /// Read `bytes` field, length delimited
    pub fn read_bytes(&mut self) -> crate::Result<Vec<u8>> {
        let mut r = Vec::new();
        self.read_bytes_into(&mut r)?;
        Ok(r)
    }

    /// Read `bytes` field, length delimited
    #[cfg(feature = "bytes")]
    pub fn read_tokio_bytes(&mut self) -> crate::Result<Bytes> {
        let len = self.read_raw_varint32()?;
        self.read_raw_tokio_bytes(len as usize)
    }

    /// Read `string` field, length delimited
    #[cfg(feature = "bytes")]
    pub fn read_tokio_chars(&mut self) -> crate::Result<Chars> {
        let bytes = self.read_tokio_bytes()?;
        Ok(Chars::from_bytes(bytes).map_err(ProtobufError::Utf8)?)
    }

    /// Read `bytes` field, length delimited
    pub fn read_bytes_into(&mut self, target: &mut Vec<u8>) -> crate::Result<()> {
        let len = self.read_raw_varint32()?;
        self.read_raw_bytes_into(len, target)?;
        Ok(())
    }

    /// Read `string` field, length delimited
    pub fn read_string(&mut self) -> crate::Result<String> {
        let mut r = String::new();
        self.read_string_into(&mut r)?;
        Ok(r)
    }

    /// Read `string` field, length delimited
    pub fn read_string_into(&mut self, target: &mut String) -> crate::Result<()> {
        target.clear();
        // take target's buffer
        let mut vec = mem::replace(target, String::new()).into_bytes();
        self.read_bytes_into(&mut vec)?;

        let s = match String::from_utf8(vec) {
            Ok(t) => t,
            Err(_) => return Err(ProtobufError::WireError(WireError::Utf8Error).into()),
        };
        *target = s;
        Ok(())
    }

    /// Read message, do not check if message is initialized
    pub fn merge_message<M: Message>(&mut self, message: &mut M) -> crate::Result<()> {
        self.incr_recursion()?;
        struct DecrRecursion<'a, 'b>(&'a mut CodedInputStream<'b>);
        impl<'a, 'b> Drop for DecrRecursion<'a, 'b> {
            fn drop(&mut self) {
                self.0.decr_recursion();
            }
        }

        let mut decr = DecrRecursion(self);

        let len = decr.0.read_raw_varint64()?;
        let old_limit = decr.0.push_limit(len)?;
        message.merge_from(&mut decr.0)?;
        decr.0.pop_limit(old_limit);
        Ok(())
    }

    /// Like `merge_message`, but for dynamic messages.
    pub fn merge_message_dyn(&mut self, message: &mut dyn MessageDyn) -> crate::Result<()> {
        let len = self.read_raw_varint64()?;
        let old_limit = self.push_limit(len)?;
        message.merge_from_dyn(self)?;
        self.pop_limit(old_limit);
        Ok(())
    }

    /// Read message
    pub fn read_message<M: Message>(&mut self) -> crate::Result<M> {
        let mut r: M = Message::new();
        self.merge_message(&mut r)?;
        r.check_initialized()?;
        Ok(r)
    }

    /// Read message.
    pub fn read_message_dyn(
        &mut self,
        descriptor: &MessageDescriptor,
    ) -> crate::Result<Box<dyn MessageDyn>> {
        let mut r = descriptor.new_instance();
        self.merge_message_dyn(&mut *r)?;
        r.check_initialized_dyn()?;
        Ok(r)
    }
}

impl<'a> Read for CodedInputStream<'a> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.source.read(buf).map_err(Into::into)
    }
}

impl<'a> BufRead for CodedInputStream<'a> {
    fn fill_buf(&mut self) -> io::Result<&[u8]> {
        self.source.fill_buf().map_err(Into::into)
    }

    fn consume(&mut self, amt: usize) {
        self.source.consume(amt)
    }
}

#[cfg(test)]
mod test {

    use std::fmt::Debug;
    use std::io;
    use std::io::BufRead;
    use std::io::Read;

    use super::CodedInputStream;
    use super::READ_RAW_BYTES_MAX_ALLOC;
    use crate::error::ProtobufError;
    use crate::hex::decode_hex;
    use crate::wire_format::Tag;
    use crate::wire_format::WireType;
    use crate::CodedOutputStream;

    fn test_read_partial<F>(hex: &str, mut callback: F)
    where
        F: FnMut(&mut CodedInputStream),
    {
        let d = decode_hex(hex);
        // Test with buffered reader.
        {
            let mut reader = io::Cursor::new(&d);
            let mut is = CodedInputStream::from_buf_read(&mut reader as &mut dyn BufRead);
            assert_eq!(0, is.pos());
            callback(&mut is);
        }
        // Test from bytes.
        {
            let mut is = CodedInputStream::from_bytes(&d);
            assert_eq!(0, is.pos());
            callback(&mut is);
        }
    }

    fn test_read<F>(hex: &str, mut callback: F)
    where
        F: FnMut(&mut CodedInputStream),
    {
        let len = decode_hex(hex).len();
        test_read_partial(hex, |reader| {
            callback(reader);
            assert!(reader.eof().expect("eof"));
            assert_eq!(len as u64, reader.pos());
        });
    }

    fn test_read_v<F, V>(hex: &str, v: V, mut callback: F)
    where
        F: FnMut(&mut CodedInputStream) -> crate::Result<V>,
        V: PartialEq + Debug,
    {
        test_read(hex, |reader| {
            assert_eq!(v, callback(reader).unwrap());
        });
    }

    #[test]
    fn test_input_stream_read_raw_byte() {
        test_read("17", |is| {
            assert_eq!(23, is.read_raw_byte().unwrap());
        });
    }

    #[test]
    fn test_input_stream_read_raw_varint() {
        test_read_v("07", 7, |reader| reader.read_raw_varint32());
        test_read_v("07", 7, |reader| reader.read_raw_varint64());

        test_read_v("96 01", 150, |reader| reader.read_raw_varint32());
        test_read_v("96 01", 150, |reader| reader.read_raw_varint64());

        test_read_v(
            "ff ff ff ff ff ff ff ff ff 01",
            0xffffffffffffffff,
            |reader| reader.read_raw_varint64(),
        );

        test_read_v("ff ff ff ff 0f", 0xffffffff, |reader| {
            reader.read_raw_varint32()
        });
        test_read_v("ff ff ff ff 0f", 0xffffffff, |reader| {
            reader.read_raw_varint64()
        });
    }

    #[test]
    fn test_input_stream_read_raw_varint_out_of_range() {
        test_read_partial("ff ff ff ff ff ff ff ff ff 02", |is| {
            assert!(is.read_raw_varint64().is_err());
        });
        test_read_partial("ff ff ff ff ff ff ff ff ff 02", |is| {
            assert!(is.read_raw_varint32().is_err());
        });
    }

    #[test]
    fn test_input_stream_read_raw_varint_too_long() {
        // varint cannot have length > 10
        test_read_partial("ff ff ff ff ff ff ff ff ff ff 01", |reader| {
            let error = reader.read_raw_varint64().unwrap_err().0;
            match *error {
                ProtobufError::WireError(..) => (),
                _ => panic!(),
            }
        });
        test_read_partial("ff ff ff ff ff ff ff ff ff ff 01", |reader| {
            let error = reader.read_raw_varint32().unwrap_err().0;
            match *error {
                ProtobufError::WireError(..) => (),
                _ => panic!(),
            }
        });
    }

    #[test]
    fn test_input_stream_read_raw_varint_unexpected_eof() {
        test_read_partial("96 97", |reader| {
            let error = reader.read_raw_varint32().unwrap_err().0;
            match *error {
                ProtobufError::WireError(..) => (),
                _ => panic!(),
            }
        });
    }

    #[test]
    fn test_input_stream_read_raw_varint_pos() {
        test_read_partial("95 01 98", |reader| {
            assert_eq!(149, reader.read_raw_varint32().unwrap());
            assert_eq!(2, reader.pos());
        });
    }

    #[test]
    fn test_input_stream_read_int32() {
        test_read_v("02", 2, |reader| reader.read_int32());
    }

    #[test]
    fn test_input_stream_read_float() {
        test_read_v("95 73 13 61", 17e19, |is| is.read_float());
    }

    #[test]
    fn test_input_stream_read_double() {
        test_read_v("40 d5 ab 68 b3 07 3d 46", 23e29, |is| is.read_double());
    }

    #[test]
    fn test_input_stream_skip_raw_bytes() {
        test_read("", |reader| {
            reader.skip_raw_bytes(0).unwrap();
        });
        test_read("aa bb", |reader| {
            reader.skip_raw_bytes(2).unwrap();
        });
        test_read("aa bb cc dd ee ff", |reader| {
            reader.skip_raw_bytes(6).unwrap();
        });
    }

    #[test]
    fn test_input_stream_read_raw_bytes() {
        test_read("", |reader| {
            assert_eq!(
                Vec::from(&b""[..]),
                reader.read_raw_bytes(0).expect("read_raw_bytes")
            );
        })
    }

    #[test]
    fn test_input_stream_limits() {
        test_read("aa bb cc", |is| {
            let old_limit = is.push_limit(1).unwrap();
            assert_eq!(1, is.bytes_until_limit());
            let r1 = is.read_raw_bytes(1).unwrap();
            assert_eq!(&[0xaa as u8], &r1[..]);
            is.pop_limit(old_limit);
            let r2 = is.read_raw_bytes(2).unwrap();
            assert_eq!(&[0xbb as u8, 0xcc], &r2[..]);
        });
    }

    #[test]
    fn test_input_stream_io_read() {
        test_read("aa bb cc", |is| {
            let mut buf = [0; 3];
            assert_eq!(Read::read(is, &mut buf).expect("io::Read"), 3);
            assert_eq!(buf, [0xaa, 0xbb, 0xcc]);
        });
    }

    #[test]
    fn test_input_stream_io_bufread() {
        test_read("aa bb cc", |is| {
            assert_eq!(
                BufRead::fill_buf(is).expect("io::BufRead::fill_buf"),
                &[0xaa, 0xbb, 0xcc]
            );
            BufRead::consume(is, 3);
        });
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow for this test.
    fn test_input_stream_read_raw_bytes_into_huge() {
        let mut v = Vec::new();
        for i in 0..READ_RAW_BYTES_MAX_ALLOC + 1000 {
            v.push((i % 10) as u8);
        }

        let mut slice: &[u8] = v.as_slice();

        let mut is = CodedInputStream::new(&mut slice);

        let mut buf = Vec::new();

        is.read_raw_bytes_into(READ_RAW_BYTES_MAX_ALLOC as u32 + 10, &mut buf)
            .expect("read");

        assert_eq!(READ_RAW_BYTES_MAX_ALLOC + 10, buf.len());

        buf.clear();

        is.read_raw_bytes_into(1000 - 10, &mut buf).expect("read");

        assert_eq!(1000 - 10, buf.len());

        assert!(is.eof().expect("eof"));
    }

    // Copy of this test: https://tinyurl.com/34hfavtz
    #[test]
    fn test_skip_group() {
        // Create an output stream with a group in:
        // Field 1: string "field 1"
        // Field 2: group containing:
        //   Field 1: fixed int32 value 100
        //   Field 2: string "ignore me"
        //   Field 3: nested group containing
        //      Field 1: fixed int64 value 1000
        // Field 3: string "field 3"

        let mut vec = Vec::new();
        let mut os = CodedOutputStream::new(&mut vec);
        os.write_tag(1, WireType::LengthDelimited).unwrap();
        os.write_string_no_tag("field 1").unwrap();

        // The outer group...
        os.write_tag(2, WireType::StartGroup).unwrap();
        os.write_tag(1, WireType::Fixed32).unwrap();
        os.write_fixed32_no_tag(100).unwrap();
        os.write_tag(3, WireType::LengthDelimited).unwrap();
        os.write_string_no_tag("ignore me").unwrap();
        // The nested group...
        os.write_tag(3, WireType::StartGroup).unwrap();
        os.write_tag(1, WireType::Fixed64).unwrap();
        os.write_fixed64_no_tag(1000).unwrap();
        // Note: Not sure the field number is relevant for end group...
        os.write_tag(3, WireType::EndGroup).unwrap();

        // End the outer group
        os.write_tag(2, WireType::EndGroup).unwrap();

        os.write_tag(3, WireType::LengthDelimited).unwrap();
        os.write_string_no_tag("field 3").unwrap();
        os.flush().unwrap();
        drop(os);

        let mut input = CodedInputStream::from_bytes(&vec);
        // Now act like a generated client
        assert_eq!(
            Tag::make(1, WireType::LengthDelimited),
            input.read_tag().unwrap()
        );
        assert_eq!("field 1", &input.read_string().unwrap());
        assert_eq!(
            Tag::make(2, WireType::StartGroup),
            input.read_tag().unwrap()
        );
        input.skip_field(WireType::StartGroup).unwrap();
        assert_eq!(
            Tag::make(3, WireType::LengthDelimited),
            input.read_tag().unwrap()
        );
        assert_eq!("field 3", input.read_string().unwrap());
    }
}