auto_impl/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! A proc-macro attribute for automatically implementing a trait for
//! references, some common smart pointers and closures.
//!
//! ## Simple example
//!
//! ```
//! use auto_impl::auto_impl;
//!
//! // This will generate two additional impl blocks: one `for &T` and one
//! // `for Box<T>` where `T: Foo`.
//! #[auto_impl(&, Box)]
//! trait Foo {
//!     fn foo(&self);
//! }
//!
//! impl Foo for i32 {
//!     fn foo(&self) {}
//! }
//!
//! fn requires_foo(_: impl Foo) {}
//!
//!
//! requires_foo(0i32);  // works: through the impl we defined above
//! requires_foo(&0i32); // works: through the generated impl
//! requires_foo(Box::new(0i32)); // works: through the generated impl
//! ```
//!
//!
//! # Basic syntax and supported types
//!
//! You can annotate your trait with the `#[auto_impl(...)]` attribute. That
//! attribute can only be used on traits and not on structs, enums or anything
//! else.
//!
//! In the attribute, you have to specify all so called *proxy types* (the
//! types you want to generate impls for) as a comma separated list. Each proxy
//! type has a short abbreviation that you have to list there.
//!
//! Currently the following proxy types are supported:
//!
//! | Abbreviation | Example generated impl |
//! | ------------ | ---------------------- |
//! | `&`          | `impl<T: Trait> Trait for &T` |
//! | `&mut`       | `impl<T: Trait> Trait for &mut T` |
//! | `Box`        | `impl<T: Trait> Trait for Box<T>` |
//! | `Rc`         | `impl<T: Trait> Trait for Rc<T>` |
//! | `Arc`        | `impl<T: Trait> Trait for Arc<T>` |
//! | `Fn`         | `impl<T: Fn()> Trait for T` |
//! | `FnMut`      | `impl<T: FnMut()> Trait for T` |
//! | `FnOnce`     | `impl<T: FnOnce()> Trait for T` |
//!
//!
//! # More examples
//!
//! More examples can be found in [the examples folder][examples]. In
//! particular, the `greet_closure` example shows how to use the `Fn*` proxy
//! types.
//!
//! [examples]: https://github.com/auto-impl-rs/auto_impl/tree/master/examples
//!
//! The following example shows that a trait can contain associated consts,
//! associated types and complex methods (with generics, bounds, ...).
//!
//! ```
//! use auto_impl::auto_impl;
//! use std::{fmt, rc::Rc};
//!
//!
//! #[auto_impl(&, &mut, Box, Rc)]
//! trait Animal {
//!     const NUMBER_OF_LEGS: u8;
//!
//!     type Name: fmt::Display;
//!     fn name(&self) -> Self::Name;
//!
//!     fn select_favorite<'a, I>(&self, toys: I) -> &'a str
//!     where
//!         I: Iterator<Item = &'a str>;
//! }
//!
//! struct Dog(String);
//!
//! impl Animal for Dog {
//!     const NUMBER_OF_LEGS: u8 = 4;
//!
//!     type Name = String;
//!     fn name(&self) -> Self::Name {
//!         self.0.clone()
//!     }
//!
//!     fn select_favorite<'a, I>(&self, mut toys: I) -> &'a str
//!     where
//!         I: Iterator<Item = &'a str>
//!     {
//!         toys.next().unwrap()
//!     }
//! }
//!
//! fn require_animal(_: impl Animal) {}
//!
//! // All these calls work, as the `#[auto_impl]` attribute generated four
//! // impls for all those proxy types
//! require_animal(Dog("Doggo".into()));
//! require_animal(&Dog("Doggo".into()));
//! require_animal(&mut Dog("Doggo".into()));
//! require_animal(Box::new(Dog("Doggo".into())));
//! require_animal(Rc::new(Dog("Doggo".into())));
//! ```
//!
//!
//! # Restriction of references and smart pointers
//!
//! Not every trait can be implemented for every proxy type. As an easy
//! example, consider this trait:
//!
//! ```
//! trait Bar {
//!     fn bar(&mut self);
//! }
//! ```
//!
//! If we try to implement it for immutable references via `#[auto_impl(&)]`
//! the following impl would be generated:
//!
//! ```ignore
//! impl<T: Bar> Bar for &T {
//!     fn bar(&mut self) {
//!         T::bar(*self)  // fails to compile
//!     }
//! }
//! ```
//!
//! As you can easily see, this won't work because we can't call `bar` through
//! an immutable reference. There are similar restrictions for many other
//! smart pointers and references.
//!
//! In the following table you can see which methods can be implemented for
//! which proxy type. If a trait contains at least one method that cannot be
//! implemented for a proxy type, you cannot implement the trait for that proxy
//! type.
//!
//! | Trait contains method with... | `&` | `&mut` | `Box` | `Rc` | `Arc` |
//! | ----------------------------- | --- | ------ | ----- | ---- | ----- |
//! | `&self` receiver              | ✔   | ✔      | ✔     | ✔    | ✔     |
//! | `&mut self` receiver          | ✗   | ✔      | ✔     | ✗    | ✗     |
//! | `self` receiver               | ✗   | ✗      | ✔     | ✗    | ✗     |
//! | no `self` receiver            | ✔   | ✔      | ✔     | ✔    | ✔     |
//!
//! References and smart pointers have **no restriction in regard to associated
//! types and associated consts**! Meaning: traits with associated types/consts
//! can always be implemented for references and smart pointers as long as the
//! methods of that trait can be implemented.
//!
//!
//! # Restriction of closure types (`Fn*` traits)
//!
//! The `Fn*` proxy types have a lot more restrictions than references and
//! smart pointer:
//! - the trait must not define any associated types or consts
//! - the trait must define **exactly one** method
//!     - the method must have a `self` receiver
//!     - the method must not return anything borrowed from `self`
//!     - the method must not have generic type or const parameters
//!
//! Additionally, some `Fn*` traits cannot be implemented for all `self`
//! receiver types:
//!
//! | `self` Receiver | `Fn` | `FnMut` | `FnOnce` |
//! | --------------- | ---- | ------- | -------- |
//! | `&self`         | ✔    | ✗       | ✗        |
//! | `&mut self`     | ✔    | ✔       | ✗        |
//! | `self`          | ✔    | ✔       | ✔        |
//!
//! Lastly, the impls generated for the `Fn*` proxy types contain `for T`. This
//! is the most general blanket impl. So just be aware of the problems with
//! coherence and orphan rules that can emerge due to this impl.
//!
//!
//! # The `keep_default_for` attribute for methods
//!
//! By default, the impls generated by `auto_impl` will overwrite all methods
//! of the trait, even those with default implementation. Sometimes, you want
//! to not overwrite default methods and instead use the default
//! implementation. You can do that by adding the
//! `#[auto_impl(keep_default_for(...))]` attribute to a default method. In the
//! parenthesis you need to list all proxy types for which the default method
//! should be kept.
//!
//! From [the `keep_default_for` example](
//! https://github.com/auto-impl-rs/auto_impl/blob/master/examples/keep_default_for.rs):
//!
//! ```
//! # use auto_impl::auto_impl;
//! #[auto_impl(&, Box)]
//! trait Foo {
//!     fn required(&self) -> String;
//!
//!     // The generated impl for `&T` will not override this method.
//!     #[auto_impl(keep_default_for(&))]
//!     fn provided(&self) {
//!         println!("Hello {}", self.required());
//!     }
//! }
//! ```

extern crate proc_macro;
#[macro_use]
extern crate quote;

use proc_macro::TokenStream;
use proc_macro2::TokenStream as TokenStream2;
use proc_macro_error::{abort_call_site, proc_macro_error, set_dummy};
use quote::ToTokens;

mod analyze;
mod attr;
mod gen;
mod proxy;

/// See crate documentation for more information.
#[proc_macro_error]
#[proc_macro_attribute]
pub fn auto_impl(args: TokenStream, input: TokenStream) -> TokenStream {
    // Make sure that we emit a dummy in case of error
    let input: TokenStream2 = input.into();
    set_dummy(input.clone());

    // Try to parse the token stream from the attribute to get a list of proxy
    // types.
    let proxy_types = proxy::parse_types(args);

    match syn::parse2::<syn::ItemTrait>(input) {
        // The attribute was applied to a valid trait. Now it's time to execute
        // the main step: generate a token stream which contains an impl of the
        // trait for each proxy type.
        Ok(mut trait_def) => {
            let generated = gen::gen_impls(&proxy_types, &trait_def);

            // Before returning the trait definition, we have to remove all
            // `#[auto_impl(...)]` attributes on all methods.
            attr::remove_our_attrs(&mut trait_def);

            // We emit modified input instead of the original one
            // since it's better to remove our attributes even in case of error
            set_dummy(trait_def.to_token_stream());

            quote!(#trait_def #generated).into()
        }

        // If the token stream could not be parsed as trait, this most
        // likely means that the attribute was applied to a non-trait item.
        // Even if the trait definition was syntactically incorrect, the
        // compiler usually does some kind of error recovery to proceed. We
        // get the recovered tokens.
        Err(e) => abort_call_site!(
            "couldn't parse trait item";
            note = e;
            note = "the #[auto_impl] attribute can only be applied to traits!";
        ),
    }
}