1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Bindings for jemalloc as an allocator
//!
//! This crate provides bindings to jemalloc as a memory allocator for Rust.
//! This crate mainly exports, one type, `Jemalloc`, which implements the
//! `GlobalAlloc` trait and optionally the `Alloc` trait,
//! and is suitable both as a memory allocator and as a global allocator.
#![cfg_attr(feature = "alloc_trait", feature(allocator_api))]
// TODO: rename the following lint on next minor bump
#![allow(renamed_and_removed_lints)]
#![deny(missing_docs, broken_intra_doc_links)]
#![no_std]
#[cfg(feature = "alloc_trait")]
use core::alloc::{Alloc, AllocErr, CannotReallocInPlace, Excess};
use core::alloc::{GlobalAlloc, Layout};
#[cfg(feature = "alloc_trait")]
use core::ptr::NonNull;
use libc::{c_int, c_void};
// This constant equals _Alignof(max_align_t) and is platform-specific. It
// contains the _maximum_ alignment that the memory allocations returned by the
// C standard library memory allocation APIs (e.g. `malloc`) are guaranteed to
// have.
//
// The memory allocation APIs are required to return memory that can fit any
// object whose fundamental aligment is <= _Alignof(max_align_t).
//
// In C, there are no ZSTs, and the size of all types is a multiple of their
// alignment (size >= align). So for allocations with size <=
// _Alignof(max_align_t), the malloc-APIs return memory whose alignment is
// either the requested size if its a power-of-two, or the next smaller
// power-of-two.
#[cfg(any(
target_arch = "arm",
target_arch = "mips",
target_arch = "mipsel",
target_arch = "powerpc"
))]
const ALIGNOF_MAX_ALIGN_T: usize = 8;
#[cfg(any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "aarch64",
target_arch = "powerpc64",
target_arch = "powerpc64le",
target_arch = "loongarch64",
target_arch = "mips64",
target_arch = "riscv64",
target_arch = "s390x",
target_arch = "sparc64"
))]
const ALIGNOF_MAX_ALIGN_T: usize = 16;
/// If `align` is less than `_Alignof(max_align_t)`, and if the requested
/// allocation `size` is larger than the alignment, we are guaranteed to get a
/// suitably aligned allocation by default, without passing extra flags, and
/// this function returns `0`.
///
/// Otherwise, it returns the alignment flag to pass to the jemalloc APIs.
fn layout_to_flags(align: usize, size: usize) -> c_int {
if align <= ALIGNOF_MAX_ALIGN_T && align <= size {
0
} else {
ffi::MALLOCX_ALIGN(align)
}
}
// Assumes a condition that always must hold.
macro_rules! assume {
($e:expr) => {
debug_assert!($e);
if !($e) {
core::hint::unreachable_unchecked();
}
};
}
/// Handle to the jemalloc allocator
///
/// This type implements the `GlobalAllocAlloc` trait, allowing usage a global allocator.
///
/// When the `alloc_trait` feature of this crate is enabled, it also implements the `Alloc` trait,
/// allowing usage in collections.
#[derive(Copy, Clone, Default, Debug)]
pub struct Jemalloc;
unsafe impl GlobalAlloc for Jemalloc {
#[inline]
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
assume!(layout.size() != 0);
let flags = layout_to_flags(layout.align(), layout.size());
let ptr = if flags == 0 {
ffi::malloc(layout.size())
} else {
ffi::mallocx(layout.size(), flags)
};
ptr as *mut u8
}
#[inline]
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
assume!(layout.size() != 0);
let flags = layout_to_flags(layout.align(), layout.size());
let ptr = if flags == 0 {
ffi::calloc(1, layout.size())
} else {
ffi::mallocx(layout.size(), flags | ffi::MALLOCX_ZERO)
};
ptr as *mut u8
}
#[inline]
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
assume!(!ptr.is_null());
assume!(layout.size() != 0);
let flags = layout_to_flags(layout.align(), layout.size());
ffi::sdallocx(ptr as *mut c_void, layout.size(), flags)
}
#[inline]
unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
assume!(layout.size() != 0);
assume!(new_size != 0);
let flags = layout_to_flags(layout.align(), new_size);
let ptr = if flags == 0 {
ffi::realloc(ptr as *mut c_void, new_size)
} else {
ffi::rallocx(ptr as *mut c_void, new_size, flags)
};
ptr as *mut u8
}
}
#[cfg(feature = "alloc_trait")]
unsafe impl Alloc for Jemalloc {
#[inline]
unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
NonNull::new(GlobalAlloc::alloc(self, layout)).ok_or(AllocErr)
}
#[inline]
unsafe fn alloc_zeroed(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
NonNull::new(GlobalAlloc::alloc_zeroed(self, layout)).ok_or(AllocErr)
}
#[inline]
unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
GlobalAlloc::dealloc(self, ptr.as_ptr(), layout)
}
#[inline]
unsafe fn realloc(
&mut self,
ptr: NonNull<u8>,
layout: Layout,
new_size: usize,
) -> Result<NonNull<u8>, AllocErr> {
NonNull::new(GlobalAlloc::realloc(self, ptr.as_ptr(), layout, new_size)).ok_or(AllocErr)
}
#[inline]
unsafe fn alloc_excess(&mut self, layout: Layout) -> Result<Excess, AllocErr> {
let flags = layout_to_flags(layout.align(), layout.size());
let ptr = ffi::mallocx(layout.size(), flags);
if let Some(nonnull) = NonNull::new(ptr as *mut u8) {
let excess = ffi::nallocx(layout.size(), flags);
Ok(Excess(nonnull, excess))
} else {
Err(AllocErr)
}
}
#[inline]
unsafe fn realloc_excess(
&mut self,
ptr: NonNull<u8>,
layout: Layout,
new_size: usize,
) -> Result<Excess, AllocErr> {
let flags = layout_to_flags(layout.align(), new_size);
let ptr = ffi::rallocx(ptr.cast().as_ptr(), new_size, flags);
if let Some(nonnull) = NonNull::new(ptr as *mut u8) {
let excess = ffi::nallocx(new_size, flags);
Ok(Excess(nonnull, excess))
} else {
Err(AllocErr)
}
}
#[inline]
fn usable_size(&self, layout: &Layout) -> (usize, usize) {
let flags = layout_to_flags(layout.align(), layout.size());
unsafe {
let max = ffi::nallocx(layout.size(), flags);
(layout.size(), max)
}
}
#[inline]
unsafe fn grow_in_place(
&mut self,
ptr: NonNull<u8>,
layout: Layout,
new_size: usize,
) -> Result<(), CannotReallocInPlace> {
let flags = layout_to_flags(layout.align(), new_size);
let usable_size = ffi::xallocx(ptr.cast().as_ptr(), new_size, 0, flags);
if usable_size >= new_size {
Ok(())
} else {
// `xallocx` returns a size smaller than the requested one to
// indicate that the allocation could not be grown in place
//
// the old allocation remains unaltered
Err(CannotReallocInPlace)
}
}
#[inline]
unsafe fn shrink_in_place(
&mut self,
ptr: NonNull<u8>,
layout: Layout,
new_size: usize,
) -> Result<(), CannotReallocInPlace> {
if new_size == layout.size() {
return Ok(());
}
let flags = layout_to_flags(layout.align(), new_size);
let usable_size = ffi::xallocx(ptr.cast().as_ptr(), new_size, 0, flags);
if usable_size < layout.size() {
// If `usable_size` is smaller than the original size, the
// size-class of the allocation was shrunk to the size-class of
// `new_size`, and it is safe to deallocate the allocation with
// `new_size`:
Ok(())
} else if usable_size == ffi::nallocx(new_size, flags) {
// If the allocation was not shrunk and the size class of `new_size`
// is the same as the size-class of `layout.size()`, then the
// allocation can be properly deallocated using `new_size` (and also
// using `layout.size()` because the allocation did not change)
// note: when the allocation is not shrunk, `xallocx` returns the
// usable size of the original allocation, which in this case matches
// that of the requested allocation:
debug_assert_eq!(
ffi::nallocx(new_size, flags),
ffi::nallocx(layout.size(), flags)
);
Ok(())
} else {
// If the allocation was not shrunk, but the size-class of
// `new_size` is not the same as that of the original allocation,
// then shrinking the allocation failed:
Err(CannotReallocInPlace)
}
}
}
/// Return the usable size of the allocation pointed to by ptr.
///
/// The return value may be larger than the size that was requested during allocation.
/// This function is not a mechanism for in-place `realloc()`;
/// rather it is provided solely as a tool for introspection purposes.
/// Any discrepancy between the requested allocation size
/// and the size reported by this function should not be depended on,
/// since such behavior is entirely implementation-dependent.
///
/// # Safety
///
/// `ptr` must have been allocated by `Jemalloc` and must not have been freed yet.
pub unsafe fn usable_size<T>(ptr: *const T) -> usize {
ffi::malloc_usable_size(ptr as *const c_void)
}
/// Raw bindings to jemalloc
mod ffi {
pub use tikv_jemalloc_sys::*;
}