1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! A complete, safe, native Rust implementation of [Apache Arrow](https://arrow.apache.org), a cross-language
//! development platform for in-memory data.
//!
//! Please see the [arrow crates.io](https://crates.io/crates/arrow)
//! page for feature flags and tips to improve performance.
//!
//! # Columnar Format
//!
//! The [`array`] module provides statically typed implementations of all the array types as defined
//! by the [Arrow Columnar Format](https://arrow.apache.org/docs/format/Columnar.html)
//!
//! For example, an [`Int32Array`](array::Int32Array) represents a nullable array of `i32`
//!
//! ```rust
//! # use arrow::array::{Array, Int32Array};
//! let array = Int32Array::from(vec![Some(1), None, Some(3)]);
//! assert_eq!(array.len(), 3);
//! assert_eq!(array.value(0), 1);
//! assert_eq!(array.is_null(1), true);
//!
//! let collected: Vec<_> = array.iter().collect();
//! assert_eq!(collected, vec![Some(1), None, Some(3)]);
//! assert_eq!(array.values(), &[1, 0, 3])
//! ```
//!
//! It is also possible to write generic code for different concrete types.
//! For example, since the following function is generic over all primitively
//! typed arrays, when invoked the Rust compiler will generate specialized implementations
//! with optimized code for each concrete type.
//!
//! ```rust
//! # use std::iter::Sum;
//! # use arrow::array::{Float32Array, PrimitiveArray, TimestampNanosecondArray};
//! # use arrow::datatypes::ArrowPrimitiveType;
//! #
//! fn sum<T: ArrowPrimitiveType>(array: &PrimitiveArray<T>) -> T::Native
//! where
//! T: ArrowPrimitiveType,
//! T::Native: Sum
//! {
//! array.iter().map(|v| v.unwrap_or_default()).sum()
//! }
//!
//! assert_eq!(sum(&Float32Array::from(vec![1.1, 2.9, 3.])), 7.);
//! assert_eq!(sum(&TimestampNanosecondArray::from(vec![1, 2, 3])), 6);
//! ```
//!
//! And the following uses [`ArrayAccessor`] to implement a generic function
//! over all arrays with comparable values.
//!
//! [`ArrayAccessor`]: array::ArrayAccessor
//!
//! ```rust
//! # use arrow::array::{ArrayAccessor, ArrayIter, Int32Array, StringArray};
//! # use arrow::datatypes::ArrowPrimitiveType;
//! #
//! fn min<T: ArrayAccessor>(array: T) -> Option<T::Item>
//! where
//! T::Item: Ord
//! {
//! ArrayIter::new(array).filter_map(|v| v).min()
//! }
//!
//! assert_eq!(min(&Int32Array::from(vec![4, 2, 1, 6])), Some(1));
//! assert_eq!(min(&StringArray::from(vec!["b", "a", "c"])), Some("a"));
//! ```
//!
//! **For more examples, and details consult the [arrow_array] docs.**
//!
//! # Type Erasure / Trait Objects
//!
//! It is common to write code that handles any type of array, without necessarily
//! knowing its concrete type. This is done using the [`Array`] trait and using
//! [`DataType`] to determine the appropriate `downcast_ref`.
//!
//! [`DataType`]: datatypes::DataType
//!
//! ```rust
//! # use arrow::array::{Array, Float32Array};
//! # use arrow::array::StringArray;
//! # use arrow::datatypes::DataType;
//! #
//! fn impl_string(array: &StringArray) {}
//! fn impl_f32(array: &Float32Array) {}
//!
//! fn impl_dyn(array: &dyn Array) {
//! match array.data_type() {
//! // downcast `dyn Array` to concrete `StringArray`
//! DataType::Utf8 => impl_string(array.as_any().downcast_ref().unwrap()),
//! // downcast `dyn Array` to concrete `Float32Array`
//! DataType::Float32 => impl_f32(array.as_any().downcast_ref().unwrap()),
//! _ => unimplemented!()
//! }
//! }
//! ```
//!
//! You can use the [`AsArray`] extension trait to facilitate downcasting:
//!
//! [`AsArray`]: crate::array::AsArray
//!
//! ```rust
//! # use arrow::array::{Array, Float32Array, AsArray};
//! # use arrow::array::StringArray;
//! # use arrow::datatypes::DataType;
//! #
//! fn impl_string(array: &StringArray) {}
//! fn impl_f32(array: &Float32Array) {}
//!
//! fn impl_dyn(array: &dyn Array) {
//! match array.data_type() {
//! DataType::Utf8 => impl_string(array.as_string()),
//! DataType::Float32 => impl_f32(array.as_primitive()),
//! _ => unimplemented!()
//! }
//! }
//! ```
//!
//! It is also common to want to write a function that returns one of a number of possible
//! array implementations. [`ArrayRef`] is a type-alias for [`Arc<dyn Array>`](array::Array)
//! which is frequently used for this purpose
//!
//! ```rust
//! # use std::str::FromStr;
//! # use std::sync::Arc;
//! # use arrow::array::{ArrayRef, Int32Array, PrimitiveArray};
//! # use arrow::datatypes::{ArrowPrimitiveType, DataType, Int32Type, UInt32Type};
//! # use arrow::compute::cast;
//! #
//! fn parse_to_primitive<'a, T, I>(iter: I) -> PrimitiveArray<T>
//! where
//! T: ArrowPrimitiveType,
//! T::Native: FromStr,
//! I: IntoIterator<Item=&'a str>,
//! {
//! PrimitiveArray::from_iter(iter.into_iter().map(|val| T::Native::from_str(val).ok()))
//! }
//!
//! fn parse_strings<'a, I>(iter: I, to_data_type: DataType) -> ArrayRef
//! where
//! I: IntoIterator<Item=&'a str>,
//! {
//! match to_data_type {
//! DataType::Int32 => Arc::new(parse_to_primitive::<Int32Type, _>(iter)) as _,
//! DataType::UInt32 => Arc::new(parse_to_primitive::<UInt32Type, _>(iter)) as _,
//! _ => unimplemented!()
//! }
//! }
//!
//! let array = parse_strings(["1", "2", "3"], DataType::Int32);
//! let integers = array.as_any().downcast_ref::<Int32Array>().unwrap();
//! assert_eq!(integers.values(), &[1, 2, 3])
//! ```
//!
//! # Compute Kernels
//!
//! The [`compute`] module provides optimised implementations of many common operations,
//! for example the `parse_strings` operation above could also be implemented as follows:
//!
//! ```
//! # use std::sync::Arc;
//! # use arrow::error::Result;
//! # use arrow::array::{ArrayRef, StringArray, UInt32Array};
//! # use arrow::datatypes::DataType;
//! #
//! fn parse_strings<'a, I>(iter: I, to_data_type: &DataType) -> Result<ArrayRef>
//! where
//! I: IntoIterator<Item=&'a str>,
//! {
//! let array = StringArray::from_iter(iter.into_iter().map(Some));
//! arrow::compute::cast(&array, to_data_type)
//! }
//!
//! let array = parse_strings(["1", "2", "3"], &DataType::UInt32).unwrap();
//! let integers = array.as_any().downcast_ref::<UInt32Array>().unwrap();
//! assert_eq!(integers.values(), &[1, 2, 3])
//! ```
//!
//! This module also implements many common vertical operations:
//!
//! * All mathematical binary operators, such as [`sub`](compute::kernels::numeric::sub)
//! * All boolean binary operators such as [`equality`](compute::kernels::cmp::eq)
//! * [`cast`](compute::kernels::cast::cast)
//! * [`filter`](compute::kernels::filter::filter)
//! * [`take`](compute::kernels::take::take)
//! * [`sort`](compute::kernels::sort::sort)
//! * some string operators such as [`substring`](compute::kernels::substring::substring) and [`length`](compute::kernels::length::length)
//!
//! ```
//! # use arrow::compute::kernels::cmp::gt;
//! # use arrow_array::cast::AsArray;
//! # use arrow_array::Int32Array;
//! # use arrow_array::types::Int32Type;
//! # use arrow_select::filter::filter;
//! let array = Int32Array::from_iter(0..100);
//! // Create a 32-bit integer scalar (single) value:
//! let scalar = Int32Array::new_scalar(60);
//! // find all rows in the array that are greater than 60
//! let predicate = gt(&array, &scalar).unwrap();
//! // copy all matching rows into a new array
//! let filtered = filter(&array, &predicate).unwrap();
//!
//! let expected = Int32Array::from_iter(61..100);
//! assert_eq!(&expected, filtered.as_primitive::<Int32Type>());
//! ```
//!
//! As well as some horizontal operations, such as:
//!
//! * [`min`](compute::kernels::aggregate::min) and [`max`](compute::kernels::aggregate::max)
//! * [`sum`](compute::kernels::aggregate::sum)
//!
//! # Tabular Representation
//!
//! It is common to want to group one or more columns together into a tabular representation. This
//! is provided by [`RecordBatch`] which combines a [`Schema`](datatypes::Schema)
//! and a corresponding list of [`ArrayRef`].
//!
//!
//! ```
//! # use std::sync::Arc;
//! # use arrow::array::{Float32Array, Int32Array};
//! # use arrow::record_batch::RecordBatch;
//! #
//! let col_1 = Arc::new(Int32Array::from_iter([1, 2, 3])) as _;
//! let col_2 = Arc::new(Float32Array::from_iter([1., 6.3, 4.])) as _;
//!
//! let batch = RecordBatch::try_from_iter([("col1", col_1), ("col_2", col_2)]).unwrap();
//! ```
//!
//! # IO
//!
//! This crate provides readers and writers for various formats to/from [`RecordBatch`]
//!
//! * JSON: [`Reader`](json::reader::Reader) and [`Writer`](json::writer::Writer)
//! * CSV: [`Reader`](csv::reader::Reader) and [`Writer`](csv::writer::Writer)
//! * IPC: [`Reader`](ipc::reader::StreamReader) and [`Writer`](ipc::writer::FileWriter)
//!
//! Parquet is published as a [separate crate](https://crates.io/crates/parquet)
//!
//! # Serde Compatibility
//!
//! [`arrow_json::reader::Decoder`] provides a mechanism to convert arbitrary, serde-compatible
//! structures into [`RecordBatch`].
//!
//! Whilst likely less performant than implementing a custom builder, as described in
//! [arrow_array::builder], this provides a simple mechanism to get up and running quickly
//!
//! ```
//! # use std::sync::Arc;
//! # use arrow_json::ReaderBuilder;
//! # use arrow_schema::{DataType, Field, Schema};
//! # use serde::Serialize;
//! # use arrow_array::cast::AsArray;
//! # use arrow_array::types::{Float32Type, Int32Type};
//! #
//! #[derive(Serialize)]
//! struct MyStruct {
//! int32: i32,
//! string: String,
//! }
//!
//! let schema = Schema::new(vec![
//! Field::new("int32", DataType::Int32, false),
//! Field::new("string", DataType::Utf8, false),
//! ]);
//!
//! let rows = vec![
//! MyStruct{ int32: 5, string: "bar".to_string() },
//! MyStruct{ int32: 8, string: "foo".to_string() },
//! ];
//!
//! let mut decoder = ReaderBuilder::new(Arc::new(schema)).build_decoder().unwrap();
//! decoder.serialize(&rows).unwrap();
//!
//! let batch = decoder.flush().unwrap().unwrap();
//!
//! // Expect batch containing two columns
//! let int32 = batch.column(0).as_primitive::<Int32Type>();
//! assert_eq!(int32.values(), &[5, 8]);
//!
//! let string = batch.column(1).as_string::<i32>();
//! assert_eq!(string.value(0), "bar");
//! assert_eq!(string.value(1), "foo");
//! ```
//!
//! # Crate Topology
//!
//! The [`arrow`] project is implemented as multiple sub-crates, which are then re-exported by
//! this top-level crate.
//!
//! Crate authors can choose to depend on this top-level crate, or just
//! the sub-crates they need.
//!
//! The current list of sub-crates is:
//!
//! * [`arrow-arith`][arrow_arith] - arithmetic kernels
//! * [`arrow-array`][arrow_array] - type-safe arrow array abstractions
//! * [`arrow-buffer`][arrow_buffer] - buffer abstractions for arrow arrays
//! * [`arrow-cast`][arrow_cast] - cast kernels for arrow arrays
//! * [`arrow-csv`][arrow_csv] - read/write CSV to arrow format
//! * [`arrow-data`][arrow_data] - the underlying data of arrow arrays
//! * [`arrow-ipc`][arrow_ipc] - read/write IPC to arrow format
//! * [`arrow-json`][arrow_json] - read/write JSON to arrow format
//! * [`arrow-ord`][arrow_ord] - ordering kernels for arrow arrays
//! * [`arrow-row`][arrow_row] - comparable row format
//! * [`arrow-schema`][arrow_schema] - the logical types for arrow arrays
//! * [`arrow-select`][arrow_select] - selection kernels for arrow arrays
//! * [`arrow-string`][arrow_string] - string kernels for arrow arrays
//!
//! Some functionality is also distributed independently of this crate:
//!
//! * [`arrow-flight`] - support for [Arrow Flight RPC]
//! * [`arrow-integration-test`] - support for [Arrow JSON Test Format]
//! * [`parquet`](https://docs.rs/parquet/latest/parquet/) - support for [Apache Parquet]
//!
//! # Safety and Security
//!
//! Like many crates, this crate makes use of unsafe where prudent. However, it endeavours to be
//! sound. Specifically, **it should not be possible to trigger undefined behaviour using safe APIs.**
//!
//! If you think you have found an instance where this is possible, please file
//! a ticket in our [issue tracker] and it will be triaged and fixed. For more information on
//! arrow's use of unsafe, see [here](https://github.com/apache/arrow-rs/tree/master/arrow#safety).
//!
//! # Higher-level Processing
//!
//! This crate aims to provide reusable, low-level primitives for operating on columnar data. For
//! more sophisticated query processing workloads, consider checking out [DataFusion]. This
//! orchestrates the primitives exported by this crate into an embeddable query engine, with
//! SQL and DataFrame frontends, and heavily influences this crate's roadmap.
//!
//! [`arrow`]: https://github.com/apache/arrow-rs
//! [`array`]: mod@array
//! [`Array`]: array::Array
//! [`ArrayRef`]: array::ArrayRef
//! [`ArrayData`]: array::ArrayData
//! [`make_array`]: array::make_array
//! [`Buffer`]: buffer::Buffer
//! [`RecordBatch`]: record_batch::RecordBatch
//! [`arrow-flight`]: https://docs.rs/arrow-flight/latest/arrow_flight/
//! [`arrow-integration-test`]: https://docs.rs/arrow-integration-test/latest/arrow_integration_test/
//! [`parquet`]: https://docs.rs/parquet/latest/parquet/
//! [Arrow Flight RPC]: https://arrow.apache.org/docs/format/Flight.html
//! [Arrow JSON Test Format]: https://github.com/apache/arrow/blob/master/docs/source/format/Integration.rst#json-test-data-format
//! [Apache Parquet]: https://parquet.apache.org/
//! [DataFusion]: https://github.com/apache/arrow-datafusion
//! [issue tracker]: https://github.com/apache/arrow-rs/issues
#![deny(clippy::redundant_clone)]
#![warn(missing_debug_implementations)]
#![warn(missing_docs)]
#![allow(rustdoc::invalid_html_tags)]
pub use arrow_array::{downcast_dictionary_array, downcast_primitive_array};
pub use arrow_buffer::{alloc, buffer};
/// Arrow crate version
pub const ARROW_VERSION: &str = env!("CARGO_PKG_VERSION");
pub mod array;
pub mod compute;
#[cfg(feature = "csv")]
pub use arrow_csv as csv;
pub mod datatypes;
pub mod error;
#[cfg(feature = "ffi")]
pub use arrow_array::ffi;
#[cfg(feature = "ffi")]
pub use arrow_array::ffi_stream;
#[cfg(feature = "ipc")]
pub use arrow_ipc as ipc;
#[cfg(feature = "json")]
pub use arrow_json as json;
#[cfg(feature = "pyarrow")]
pub mod pyarrow;
/// Contains the `RecordBatch` type and associated traits
pub mod record_batch {
pub use arrow_array::{
RecordBatch, RecordBatchIterator, RecordBatchOptions, RecordBatchReader, RecordBatchWriter,
};
}
pub use arrow_array::temporal_conversions;
pub use arrow_row as row;
pub mod tensor;
pub mod util;