tokio_metrics/task.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
use futures_util::task::{ArcWake, AtomicWaker};
use pin_project_lite::pin_project;
use std::future::Future;
use std::pin::Pin;
use std::sync::atomic::{AtomicU64, Ordering::SeqCst};
use std::sync::Arc;
use std::task::{Context, Poll};
use tokio_stream::Stream;
#[cfg(feature = "rt")]
use tokio::time::{Duration, Instant};
#[cfg(not(feature = "rt"))]
use std::time::{Duration, Instant};
/// Monitors key metrics of instrumented tasks.
///
/// ### Basic Usage
/// A [`TaskMonitor`] tracks key [metrics][TaskMetrics] of async tasks that have been
/// [instrumented][`TaskMonitor::instrument`] with the monitor.
///
/// In the below example, a [`TaskMonitor`] is [constructed][TaskMonitor::new] and used to
/// [instrument][TaskMonitor::instrument] three worker tasks; meanwhile, a fourth task
/// prints [metrics][TaskMetrics] in 500ms [intervals][TaskMonitor::intervals].
/// ```
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// // construct a metrics monitor
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
///
/// // print task metrics every 500ms
/// {
/// let metrics_monitor = metrics_monitor.clone();
/// tokio::spawn(async move {
/// for interval in metrics_monitor.intervals() {
/// // pretty-print the metric interval
/// println!("{:?}", interval);
/// // wait 500ms
/// tokio::time::sleep(Duration::from_millis(500)).await;
/// }
/// });
/// }
///
/// // instrument some tasks and await them
/// // note that the same TaskMonitor can be used for multiple tasks
/// tokio::join![
/// metrics_monitor.instrument(do_work()),
/// metrics_monitor.instrument(do_work()),
/// metrics_monitor.instrument(do_work())
/// ];
/// }
///
/// async fn do_work() {
/// for _ in 0..25 {
/// tokio::task::yield_now().await;
/// tokio::time::sleep(Duration::from_millis(100)).await;
/// }
/// }
/// ```
///
/// ### What should I instrument?
/// In most cases, you should construct a *distinct* [`TaskMonitor`] for each kind of key task.
///
/// #### Instrumenting a web application
/// For instance, a web service should have a distinct [`TaskMonitor`] for each endpoint. Within
/// each endpoint, it's prudent to additionally instrument major sub-tasks, each with their own
/// distinct [`TaskMonitor`]s. [*Why are my tasks slow?*](#why-are-my-tasks-slow) explores a
/// debugging scenario for a web service that takes this approach to instrumentation. This
/// approach is exemplified in the below example:
/// ```no_run
/// // The unabridged version of this snippet is in the examples directory of this crate.
///
/// #[tokio::main]
/// async fn main() {
/// // construct a TaskMonitor for root endpoint
/// let monitor_root = tokio_metrics::TaskMonitor::new();
///
/// // construct TaskMonitors for create_users endpoint
/// let monitor_create_user = CreateUserMonitors {
/// // monitor for the entire endpoint
/// route: tokio_metrics::TaskMonitor::new(),
/// // monitor for database insertion subtask
/// insert: tokio_metrics::TaskMonitor::new(),
/// };
///
/// // build our application with two instrumented endpoints
/// let app = axum::Router::new()
/// // `GET /` goes to `root`
/// .route("/", axum::routing::get({
/// let monitor = monitor_root.clone();
/// move || monitor.instrument(async { "Hello, World!" })
/// }))
/// // `POST /users` goes to `create_user`
/// .route("/users", axum::routing::post({
/// let monitors = monitor_create_user.clone();
/// let route = monitors.route.clone();
/// move |payload| {
/// route.instrument(create_user(payload, monitors))
/// }
/// }));
///
/// // print task metrics for each endpoint every 1s
/// let metrics_frequency = std::time::Duration::from_secs(1);
/// tokio::spawn(async move {
/// let root_intervals = monitor_root.intervals();
/// let create_user_route_intervals =
/// monitor_create_user.route.intervals();
/// let create_user_insert_intervals =
/// monitor_create_user.insert.intervals();
/// let create_user_intervals =
/// create_user_route_intervals.zip(create_user_insert_intervals);
///
/// let intervals = root_intervals.zip(create_user_intervals);
/// for (root_route, (create_user_route, create_user_insert)) in intervals {
/// println!("root_route = {:#?}", root_route);
/// println!("create_user_route = {:#?}", create_user_route);
/// println!("create_user_insert = {:#?}", create_user_insert);
/// tokio::time::sleep(metrics_frequency).await;
/// }
/// });
///
/// // run the server
/// let addr = std::net::SocketAddr::from(([127, 0, 0, 1], 3000));
/// axum::Server::bind(&addr)
/// .serve(app.into_make_service())
/// .await
/// .unwrap();
/// }
///
/// async fn create_user(
/// axum::Json(payload): axum::Json<CreateUser>,
/// monitors: CreateUserMonitors,
/// ) -> impl axum::response::IntoResponse {
/// let user = User { id: 1337, username: payload.username, };
/// // instrument inserting the user into the db:
/// let _ = monitors.insert.instrument(insert_user(user.clone())).await;
/// (axum::http::StatusCode::CREATED, axum::Json(user))
/// }
///
/// /* definitions of CreateUserMonitors, CreateUser and User omitted for brevity */
///
/// #
/// # #[derive(Clone)]
/// # struct CreateUserMonitors {
/// # // monitor for the entire endpoint
/// # route: tokio_metrics::TaskMonitor,
/// # // monitor for database insertion subtask
/// # insert: tokio_metrics::TaskMonitor,
/// # }
/// #
/// # #[derive(serde::Deserialize)] struct CreateUser { username: String, }
/// # #[derive(Clone, serde::Serialize)] struct User { id: u64, username: String, }
/// #
/// // insert the user into the database
/// async fn insert_user(_: User) {
/// /* implementation details elided */
/// tokio::time::sleep(std::time::Duration::from_secs(1)).await;
/// }
/// ```
///
/// ### Why are my tasks slow?
/// **Scenario:** You track key, high-level metrics about the customer response time. An alarm warns
/// you that P90 latency for an endpoint exceeds your targets. What is causing the increase?
///
/// #### Identifying the high-level culprits
/// A set of tasks will appear to execute more slowly if:
/// - they are taking longer to poll (i.e., they consume too much CPU time)
/// - they are waiting longer to be polled (e.g., they're waiting longer in tokio's scheduling
/// queues)
/// - they are waiting longer on external events to complete (e.g., asynchronous network requests)
///
/// The culprits, at a high level, may be some combination of these sources of latency. Fortunately,
/// you have instrumented the key tasks of each of your endpoints with distinct [`TaskMonitor`]s.
/// Using the monitors on the endpoint experiencing elevated latency, you begin by answering:
/// - [*Are my tasks taking longer to poll?*](#are-my-tasks-taking-longer-to-poll)
/// - [*Are my tasks spending more time waiting to be polled?*](#are-my-tasks-spending-more-time-waiting-to-be-polled)
/// - [*Are my tasks spending more time waiting on external events to complete?*](#are-my-tasks-spending-more-time-waiting-on-external-events-to-complete)
///
/// ##### Are my tasks taking longer to poll?
/// - **Did [`mean_poll_duration`][TaskMetrics::mean_poll_duration] increase?**
/// This metric reflects the mean poll duration. If it increased, it means that, on average,
/// individual polls tended to take longer. However, this does not necessarily imply increased
/// task latency: An increase in poll durations could be offset by fewer polls.
/// - **Did [`slow_poll_ratio`][TaskMetrics::slow_poll_ratio] increase?**
/// This metric reflects the proportion of polls that were 'slow'. If it increased, it means that
/// a greater proportion of polls performed excessive computation before yielding. This does not
/// necessarily imply increased task latency: An increase in the proportion of slow polls could be
/// offset by fewer or faster polls.
/// - **Did [`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration] increase?**
/// This metric reflects the mean duration of slow polls. If it increased, it means that, on
/// average, slow polls got slower. This does not necessarily imply increased task latency: An
/// increase in average slow poll duration could be offset by fewer or faster polls.
///
/// If so, [*why are my tasks taking longer to poll?*](#why-are-my-tasks-taking-longer-to-poll)
///
/// ##### Are my tasks spending more time waiting to be polled?
/// - **Did [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] increase?**
/// This metric reflects the mean delay between the instant a task is first instrumented and the
/// instant it is first polled. If it increases, it means that, on average, tasks spent longer
/// waiting to be initially run.
/// - **Did [`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration] increase?**
/// This metric reflects the mean duration that tasks spent in the scheduled state. The
/// 'scheduled' state of a task is the duration between the instant a task is awoken and the
/// instant it is subsequently polled. If this metric increases, it means that, on average, tasks
/// spent longer in tokio's queues before being polled.
/// - **Did [`long_delay_ratio`][TaskMetrics::long_delay_ratio] increase?**
/// This metric reflects the proportion of scheduling delays which were 'long'. If it increased,
/// it means that a greater proportion of tasks experienced excessive delays before they could
/// execute after being woken. This does not necessarily indicate an increase in latency, as this
/// could be offset by fewer or faster task polls.
/// - **Did [`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration] increase?**
/// This metric reflects the mean duration of long delays. If it increased, it means that, on
/// average, long delays got even longer. This does not necessarily imply increased task latency:
/// an increase in average long delay duration could be offset by fewer or faster polls or more
/// short schedules.
///
/// If so, [*why are my tasks spending more time waiting to be polled?*](#why-are-my-tasks-spending-more-time-waiting-to-be-polled)
///
/// ##### Are my tasks spending more time waiting on external events to complete?
/// - **Did [`mean_idle_duration`][TaskMetrics::mean_idle_duration] increase?**
/// This metric reflects the mean duration that tasks spent in the idle state. The idle state is
/// the duration spanning the instant a task completes a poll, and the instant that it is next
/// awoken. Tasks inhabit this state when they are waiting for task-external events to complete
/// (e.g., an asynchronous sleep, a network request, file I/O, etc.). If this metric increases,
/// tasks, in aggregate, spent more time waiting for task-external events to complete.
///
/// If so, [*why are my tasks spending more time waiting on external events to complete?*](#why-are-my-tasks-spending-more-time-waiting-on-external-events-to-complete)
///
/// #### Digging deeper
/// Having [established the high-level culprits](#identifying-the-high-level-culprits), you now
/// search for further explanation...
///
/// ##### Why are my tasks taking longer to poll?
/// You observed that [your tasks are taking longer to poll](#are-my-tasks-taking-longer-to-poll).
/// The culprit is likely some combination of:
/// - **Your tasks are accidentally blocking.** Common culprits include:
/// 1. Using the Rust standard library's [filesystem](https://doc.rust-lang.org/std/fs/) or
/// [networking](https://doc.rust-lang.org/std/net/) APIs.
/// These APIs are synchronous; use tokio's [filesystem](https://docs.rs/tokio/latest/tokio/fs/)
/// and [networking](https://docs.rs/tokio/latest/tokio/net/) APIs, instead.
/// 3. Calling [`block_on`](https://docs.rs/tokio/latest/tokio/runtime/struct.Handle.html#method.block_on).
/// 4. Invoking `println!` or other synchronous logging routines.
/// Invocations of `println!` involve acquiring an exclusive lock on stdout, followed by a
/// synchronous write to stdout.
/// 2. **Your tasks are computationally expensive.** Common culprits include:
/// 1. TLS/cryptographic routines
/// 2. doing a lot of processing on bytes
/// 3. calling non-Tokio resources
///
/// ##### Why are my tasks spending more time waiting to be polled?
/// You observed that [your tasks are spending more time waiting to be polled](#are-my-tasks-spending-more-time-waiting-to-be-polled)
/// suggesting some combination of:
/// - Your application is inflating the time elapsed between instrumentation and first poll.
/// - Your tasks are being scheduled into tokio's injection queue.
/// - Other tasks are spending too long without yielding, thus backing up tokio's queues.
///
/// Start by asking: [*Is time-to-first-poll unusually high?*](#is-time-to-first-poll-unusually-high)
///
/// ##### Why are my tasks spending more time waiting on external events to complete?
/// You observed that [your tasks are spending more time waiting waiting on external events to
/// complete](#are-my-tasks-spending-more-time-waiting-on-external-events-to-complete). But what
/// event? Fortunately, within the task experiencing increased idle times, you monitored several
/// sub-tasks with distinct [`TaskMonitor`]s. For each of these sub-tasks, you [*you try to identify
/// the performance culprits...*](#identifying-the-high-level-culprits)
///
/// #### Digging even deeper
///
/// ##### Is time-to-first-poll unusually high?
/// Contrast these two metrics:
/// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**
/// This metric reflects the mean delay between the instant a task is first instrumented and the
/// instant it is *first* polled.
/// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**
/// This metric reflects the mean delay between the instant when tasks were awoken and the
/// instant they were subsequently polled.
///
/// If the former metric exceeds the latter (or increased unexpectedly more than the latter), then
/// start by investigating [*if your application is artificially delaying the time-to-first-poll*](#is-my-application-delaying-the-time-to-first-poll).
///
/// Otherwise, investigate [*if other tasks are polling too long without yielding*](#are-other-tasks-polling-too-long-without-yielding).
///
/// ##### Is my application delaying the time-to-first-poll?
/// You observed that [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] increased, more
/// than [`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]. Your application may be
/// needlessly inflating the time elapsed between instrumentation and first poll. Are you
/// constructing (and instrumenting) tasks separately from awaiting or spawning them?
///
/// For instance, in the below example, the application induces 1 second delay between when `task`
/// is instrumented and when it is awaited:
/// ```rust
/// #[tokio::main]
/// async fn main() {
/// use tokio::time::Duration;
/// let monitor = tokio_metrics::TaskMonitor::new();
///
/// let task = monitor.instrument(async move {});
///
/// let one_sec = Duration::from_secs(1);
/// tokio::time::sleep(one_sec).await;
///
/// let _ = tokio::spawn(task).await;
///
/// assert!(monitor.cumulative().total_first_poll_delay >= one_sec);
/// }
/// ```
///
/// Otherwise, [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] might be unusually high
/// because [*your application is spawning key tasks into tokio's injection queue...*](#is-my-application-spawning-more-tasks-into-tokio’s-injection-queue)
///
/// ##### Is my application spawning more tasks into tokio's injection queue?
/// Tasks awoken from threads *not* managed by the tokio runtime are scheduled with a slower,
/// global "injection" queue.
///
/// You may be notifying runtime tasks from off-runtime. For instance, Given the following:
/// ```ignore
/// #[tokio::main]
/// async fn main() {
/// for _ in 0..100 {
/// let (tx, rx) = oneshot::channel();
/// tokio::spawn(async move {
/// tx.send(());
/// })
///
/// rx.await;
/// }
/// }
/// ```
/// One would expect this to run efficiently, however, the main task is run *off* the main runtime
/// and the spawned tasks are *on* runtime, which means the snippet will run much slower than:
/// ```ignore
/// #[tokio::main]
/// async fn main() {
/// tokio::spawn(async {
/// for _ in 0..100 {
/// let (tx, rx) = oneshot::channel();
/// tokio::spawn(async move {
/// tx.send(());
/// })
///
/// rx.await;
/// }
/// }).await;
/// }
/// ```
/// The slowdown is caused by a higher time between the `rx` task being notified (in `tx.send()`)
/// and the task being polled.
///
/// ##### Are other tasks polling too long without yielding?
/// You suspect that your tasks are slow because they're backed up in tokio's scheduling queues. For
/// *each* of your application's [`TaskMonitor`]s you check to see [*if their associated tasks are
/// taking longer to poll...*](#are-my-tasks-taking-longer-to-poll)
///
/// ### Limitations
/// The [`TaskMetrics`] type uses [`u64`] to represent both event counters and durations (measured
/// in nanoseconds). Consequently, event counters are accurate for ≤ [`u64::MAX`] events, and
/// durations are accurate for ≤ [`u64::MAX`] nanoseconds.
///
/// The counters and durations of [`TaskMetrics`] produced by [`TaskMonitor::cumulative`] increase
/// monotonically with each successive invocation of [`TaskMonitor::cumulative`]. Upon overflow,
/// counters and durations wrap.
///
/// The counters and durations of [`TaskMetrics`] produced by [`TaskMonitor::intervals`] are
/// calculated by computing the difference of metrics in successive invocations of
/// [`TaskMonitor::cumulative`]. If, within a monitoring interval, an event occurs more than
/// [`u64::MAX`] times, or a monitored duration exceeds [`u64::MAX`] nanoseconds, the metrics for
/// that interval will overflow and not be accurate.
///
/// ##### Examples at the limits
/// Consider the [`TaskMetrics::total_first_poll_delay`] metric. This metric accurately reflects
/// delays between instrumentation and first-poll ≤ [`u64::MAX`] nanoseconds:
/// ```
/// use tokio::time::Duration;
///
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // construct and instrument a task, but do not `await` it
/// let task = monitor.instrument(async {});
///
/// // this is the maximum duration representable by tokio_metrics
/// let max_duration = Duration::from_nanos(u64::MAX);
///
/// // let's advance the clock by this amount and poll `task`
/// let _ = tokio::time::advance(max_duration).await;
/// task.await;
///
/// // durations ≤ `max_duration` are accurately reflected in this metric
/// assert_eq!(next_interval().total_first_poll_delay, max_duration);
/// assert_eq!(monitor.cumulative().total_first_poll_delay, max_duration);
/// }
/// ```
/// If the total delay between instrumentation and first poll exceeds [`u64::MAX`] nanoseconds,
/// [`total_first_poll_delay`][TaskMetrics::total_first_poll_delay] will overflow:
/// ```
/// # use tokio::time::Duration;
/// #
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// # let monitor = tokio_metrics::TaskMonitor::new();
/// #
/// // construct and instrument a task, but do not `await` it
/// let task_a = monitor.instrument(async {});
/// let task_b = monitor.instrument(async {});
///
/// // this is the maximum duration representable by tokio_metrics
/// let max_duration = Duration::from_nanos(u64::MAX);
///
/// // let's advance the clock by 1.5x this amount and await `task`
/// let _ = tokio::time::advance(3 * (max_duration / 2)).await;
/// task_a.await;
/// task_b.await;
///
/// // the `total_first_poll_delay` has overflowed
/// assert!(monitor.cumulative().total_first_poll_delay < max_duration);
/// # }
/// ```
/// If *many* tasks are spawned, it will take far less than a [`u64::MAX`]-nanosecond delay to bring
/// this metric to the precipice of overflow:
/// ```
/// # use tokio::time::Duration;
/// #
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// # let monitor = tokio_metrics::TaskMonitor::new();
/// # let mut interval = monitor.intervals();
/// # let mut next_interval = || interval.next().unwrap();
/// #
/// // construct and instrument u16::MAX tasks, but do not `await` them
/// let first_poll_count = u16::MAX as u64;
/// let mut tasks = Vec::with_capacity(first_poll_count as usize);
/// for _ in 0..first_poll_count { tasks.push(monitor.instrument(async {})); }
///
/// // this is the maximum duration representable by tokio_metrics
/// let max_duration = u64::MAX;
///
/// // let's advance the clock justenough such that all of the time-to-first-poll
/// // delays summed nearly equals `max_duration_nanos`, less some remainder...
/// let iffy_delay = max_duration / (first_poll_count as u64);
/// let small_remainder = max_duration % first_poll_count;
/// let _ = tokio::time::advance(Duration::from_nanos(iffy_delay)).await;
///
/// // ...then poll all of the instrumented tasks:
/// for task in tasks { task.await; }
///
/// // `total_first_poll_delay` is at the precipice of overflowing!
/// assert_eq!(
/// next_interval().total_first_poll_delay.as_nanos(),
/// (max_duration - small_remainder) as u128
/// );
/// assert_eq!(
/// monitor.cumulative().total_first_poll_delay.as_nanos(),
/// (max_duration - small_remainder) as u128
/// );
/// # }
/// ```
/// Frequent, interval-sampled metrics will retain their accuracy, even if the cumulative
/// metrics counter overflows at most once in the midst of an interval:
/// ```
/// # use tokio::time::Duration;
/// # use tokio_metrics::TaskMonitor;
/// #
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// # let monitor = TaskMonitor::new();
/// # let mut interval = monitor.intervals();
/// # let mut next_interval = || interval.next().unwrap();
/// #
/// let first_poll_count = u16::MAX as u64;
/// let batch_size = first_poll_count / 3;
///
/// let max_duration_ns = u64::MAX;
/// let iffy_delay_ns = max_duration_ns / first_poll_count;
///
/// // Instrument `batch_size` number of tasks, wait for `delay` nanoseconds,
/// // then await the instrumented tasks.
/// async fn run_batch(monitor: &TaskMonitor, batch_size: usize, delay: u64) {
/// let mut tasks = Vec::with_capacity(batch_size);
/// for _ in 0..batch_size { tasks.push(monitor.instrument(async {})); }
/// let _ = tokio::time::advance(Duration::from_nanos(delay)).await;
/// for task in tasks { task.await; }
/// }
///
/// // this is how much `total_time_to_first_poll_ns` will
/// // increase with each batch we run
/// let batch_delay = iffy_delay_ns * batch_size;
///
/// // run batches 1, 2, and 3
/// for i in 1..=3 {
/// run_batch(&monitor, batch_size as usize, iffy_delay_ns).await;
/// assert_eq!(1 * batch_delay as u128, next_interval().total_first_poll_delay.as_nanos());
/// assert_eq!(i * batch_delay as u128, monitor.cumulative().total_first_poll_delay.as_nanos());
/// }
///
/// /* now, the `total_time_to_first_poll_ns` counter is at the precipice of overflow */
/// assert_eq!(monitor.cumulative().total_first_poll_delay.as_nanos(), max_duration_ns as u128);
///
/// // run batch 4
/// run_batch(&monitor, batch_size as usize, iffy_delay_ns).await;
/// // the interval counter remains accurate
/// assert_eq!(1 * batch_delay as u128, next_interval().total_first_poll_delay.as_nanos());
/// // but the cumulative counter has overflowed
/// assert_eq!(batch_delay as u128 - 1, monitor.cumulative().total_first_poll_delay.as_nanos());
/// # }
/// ```
/// If a cumulative metric overflows *more than once* in the midst of an interval,
/// its interval-sampled counterpart will also overflow.
#[derive(Clone, Debug)]
pub struct TaskMonitor {
metrics: Arc<RawMetrics>,
}
/// Provides an interface for constructing a [`TaskMonitor`] with specialized configuration
/// parameters.
#[derive(Clone, Debug, Default)]
pub struct TaskMonitorBuilder {
slow_poll_threshold: Option<Duration>,
long_delay_threshold: Option<Duration>,
}
impl TaskMonitorBuilder {
pub fn new() -> Self {
Self {
slow_poll_threshold: None,
long_delay_threshold: None,
}
}
/// Specifies the threshold at which polls are considered 'slow'.
pub fn with_slow_poll_threshold(&mut self, threshold: Duration) -> &mut Self {
self.slow_poll_threshold = Some(threshold);
self
}
/// Specifies the threshold at which schedules are considered 'long'.
pub fn with_long_delay_threshold(&mut self, threshold: Duration) -> &mut Self {
self.long_delay_threshold = Some(threshold);
self
}
/// Consume the builder, producing a [`TaskMonitor`].
pub fn build(self) -> TaskMonitor {
TaskMonitor::create(
self.slow_poll_threshold
.unwrap_or(TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD),
self.long_delay_threshold
.unwrap_or(TaskMonitor::DEFAULT_LONG_DELAY_THRESHOLD),
)
}
}
pin_project! {
/// An async task that has been instrumented with [`TaskMonitor::instrument`].
#[derive(Debug)]
pub struct Instrumented<T> {
// The task being instrumented
#[pin]
task: T,
// True when the task is polled for the first time
did_poll_once: bool,
// The instant, tracked as nanoseconds since `instrumented_at`, at which the future finished
// its last poll.
idled_at: u64,
// State shared between the task and its instrumented waker.
state: Arc<State>,
}
impl<T> PinnedDrop for Instrumented<T> {
fn drop(this: Pin<&mut Self>) {
this.state.metrics.dropped_count.fetch_add(1, SeqCst);
}
}
}
/// Key metrics of [instrumented][`TaskMonitor::instrument`] tasks.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, Default)]
pub struct TaskMetrics {
/// The number of tasks instrumented.
///
/// ##### Examples
/// ```
/// #[tokio::main]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // 0 tasks have been instrumented
/// assert_eq!(next_interval().instrumented_count, 0);
///
/// monitor.instrument(async {});
///
/// // 1 task has been instrumented
/// assert_eq!(next_interval().instrumented_count, 1);
///
/// monitor.instrument(async {});
/// monitor.instrument(async {});
///
/// // 2 tasks have been instrumented
/// assert_eq!(next_interval().instrumented_count, 2);
///
/// // since the last interval was produced, 0 tasks have been instrumented
/// assert_eq!(next_interval().instrumented_count, 0);
/// }
/// ```
pub instrumented_count: u64,
/// The number of tasks dropped.
///
/// ##### Examples
/// ```
/// #[tokio::main]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // 0 tasks have been dropped
/// assert_eq!(next_interval().dropped_count, 0);
///
/// let _task = monitor.instrument(async {});
///
/// // 0 tasks have been dropped
/// assert_eq!(next_interval().dropped_count, 0);
///
/// monitor.instrument(async {}).await;
/// drop(monitor.instrument(async {}));
///
/// // 2 tasks have been dropped
/// assert_eq!(next_interval().dropped_count, 2);
///
/// // since the last interval was produced, 0 tasks have been dropped
/// assert_eq!(next_interval().dropped_count, 0);
/// }
/// ```
pub dropped_count: u64,
/// The number of tasks polled for the first time.
///
/// ##### Derived metrics
/// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**
/// The mean duration elapsed between the instant tasks are instrumented, and the instant they
/// are first polled.
///
/// ##### Examples
/// In the below example, no tasks are instrumented or polled in the first sampling interval;
/// one task is instrumented (but not polled) in the second sampling interval; that task is
/// awaited to completion (and, thus, polled at least once) in the third sampling interval; no
/// additional tasks are polled for the first time within the fourth sampling interval:
/// ```
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, and polled at least once
/// assert_eq!(next_interval().first_poll_count, 0);
///
/// let task = metrics_monitor.instrument(async {});
///
/// // `task` has been constructed and instrumented, but has not yet been polled
/// assert_eq!(next_interval().first_poll_count, 0);
///
/// // poll `task` to completion
/// task.await;
///
/// // `task` has been constructed, instrumented, and polled at least once
/// assert_eq!(next_interval().first_poll_count, 1);
///
/// // since the last interval was produced, 0 tasks have been constructed, instrumented and polled
/// assert_eq!(next_interval().first_poll_count, 0);
///
/// }
/// ```
pub first_poll_count: u64,
/// The total duration elapsed between the instant tasks are instrumented, and the instant they
/// are first polled.
///
/// ##### Derived metrics
/// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**
/// The mean duration elapsed between the instant tasks are instrumented, and the instant they
/// are first polled.
///
/// ##### Examples
/// In the below example, 0 tasks have been instrumented or polled within the first sampling
/// interval, a total of 500ms elapse between the instrumentation and polling of tasks within
/// the second sampling interval, and a total of 350ms elapse between the instrumentation and
/// polling of tasks within the third sampling interval:
/// ```
/// use tokio::time::Duration;
///
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have yet been created, instrumented, or polled
/// assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
/// assert_eq!(next_interval().total_first_poll_delay, Duration::ZERO);
///
/// // constructs and instruments a task, pauses a given duration, then awaits the task
/// async fn instrument_pause_await(monitor: &tokio_metrics::TaskMonitor, pause: Duration) {
/// let task = monitor.instrument(async move {});
/// tokio::time::sleep(pause).await;
/// task.await;
/// }
///
/// // construct and await a task that pauses for 500ms between instrumentation and first poll
/// let task_a_pause_time = Duration::from_millis(500);
/// instrument_pause_await(&monitor, task_a_pause_time).await;
///
/// assert_eq!(next_interval().total_first_poll_delay, task_a_pause_time);
/// assert_eq!(monitor.cumulative().total_first_poll_delay, task_a_pause_time);
///
/// // construct and await a task that pauses for 250ms between instrumentation and first poll
/// let task_b_pause_time = Duration::from_millis(250);
/// instrument_pause_await(&monitor, task_b_pause_time).await;
///
/// // construct and await a task that pauses for 100ms between instrumentation and first poll
/// let task_c_pause_time = Duration::from_millis(100);
/// instrument_pause_await(&monitor, task_c_pause_time).await;
///
/// assert_eq!(
/// next_interval().total_first_poll_delay,
/// task_b_pause_time + task_c_pause_time
/// );
/// assert_eq!(
/// monitor.cumulative().total_first_poll_delay,
/// task_a_pause_time + task_b_pause_time + task_c_pause_time
/// );
/// }
/// ```
///
/// ##### When is this metric recorded?
/// The delay between instrumentation and first poll is not recorded until the first poll
/// actually occurs:
/// ```
/// # use tokio::time::Duration;
/// #
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// # let monitor = tokio_metrics::TaskMonitor::new();
/// # let mut interval = monitor.intervals();
/// # let mut next_interval = || interval.next().unwrap();
/// #
/// // we construct and instrument a task, but do not `await` it
/// let task = monitor.instrument(async {});
///
/// // let's sleep for 1s before we poll `task`
/// let one_sec = Duration::from_secs(1);
/// let _ = tokio::time::sleep(one_sec).await;
///
/// // although 1s has now elapsed since the instrumentation of `task`,
/// // this is not reflected in `total_first_poll_delay`...
/// assert_eq!(next_interval().total_first_poll_delay, Duration::ZERO);
/// assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
///
/// // ...and won't be until `task` is actually polled
/// task.await;
///
/// // now, the 1s delay is reflected in `total_first_poll_delay`:
/// assert_eq!(next_interval().total_first_poll_delay, one_sec);
/// assert_eq!(monitor.cumulative().total_first_poll_delay, one_sec);
/// # }
/// ```
///
/// ##### What if first-poll-delay is very large?
/// The first-poll-delay of *individual* tasks saturates at `u64::MAX` nanoseconds. However, if
/// the *total* first-poll-delay *across* monitored tasks exceeds `u64::MAX` nanoseconds, this
/// metric will wrap around:
/// ```
/// use tokio::time::Duration;
///
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
///
/// // construct and instrument a task, but do not `await` it
/// let task = monitor.instrument(async {});
///
/// // this is the maximum duration representable by tokio_metrics
/// let max_duration = Duration::from_nanos(u64::MAX);
///
/// // let's advance the clock by double this amount and await `task`
/// let _ = tokio::time::advance(max_duration * 2).await;
/// task.await;
///
/// // the time-to-first-poll of `task` saturates at `max_duration`
/// assert_eq!(monitor.cumulative().total_first_poll_delay, max_duration);
///
/// // ...but note that the metric *will* wrap around if more tasks are involved
/// let task = monitor.instrument(async {});
/// let _ = tokio::time::advance(Duration::from_nanos(1)).await;
/// task.await;
/// assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
/// }
/// ```
pub total_first_poll_delay: Duration,
/// The total number of times that tasks idled, waiting to be awoken.
///
/// An idle is recorded as occurring if a non-zero duration elapses between the instant a
/// task completes a poll, and the instant that it is next awoken.
///
/// ##### Derived metrics
/// - **[`mean_idle_duration`][TaskMetrics::mean_idle_duration]**
/// The mean duration of idles.
///
/// ##### Examples
/// ```
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = move || interval.next().unwrap();
/// let one_sec = std::time::Duration::from_secs(1);
///
/// monitor.instrument(async {}).await;
///
/// assert_eq!(next_interval().total_idled_count, 0);
/// assert_eq!(monitor.cumulative().total_idled_count, 0);
///
/// monitor.instrument(async move {
/// tokio::time::sleep(one_sec).await;
/// }).await;
///
/// assert_eq!(next_interval().total_idled_count, 1);
/// assert_eq!(monitor.cumulative().total_idled_count, 1);
///
/// monitor.instrument(async {
/// tokio::time::sleep(one_sec).await;
/// tokio::time::sleep(one_sec).await;
/// }).await;
///
/// assert_eq!(next_interval().total_idled_count, 2);
/// assert_eq!(monitor.cumulative().total_idled_count, 3);
/// }
/// ```
pub total_idled_count: u64,
/// The total duration that tasks idled.
///
/// An idle is recorded as occurring if a non-zero duration elapses between the instant a
/// task completes a poll, and the instant that it is next awoken.
///
/// ##### Derived metrics
/// - **[`mean_idle_duration`][TaskMetrics::mean_idle_duration]**
/// The mean duration of idles.
///
/// ##### Examples
/// ```
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = move || interval.next().unwrap();
/// let one_sec = std::time::Duration::from_secs(1);
/// let two_sec = std::time::Duration::from_secs(2);
///
/// assert_eq!(next_interval().total_idle_duration.as_nanos(), 0);
/// assert_eq!(monitor.cumulative().total_idle_duration.as_nanos(), 0);
///
/// monitor.instrument(async move {
/// tokio::time::sleep(one_sec).await;
/// }).await;
///
/// assert_eq!(next_interval().total_idle_duration, one_sec);
/// assert_eq!(monitor.cumulative().total_idle_duration, one_sec);
///
/// monitor.instrument(async move {
/// tokio::time::sleep(two_sec).await;
/// }).await;
///
/// assert_eq!(next_interval().total_idle_duration, two_sec);
/// assert_eq!(monitor.cumulative().total_idle_duration, one_sec + two_sec);
/// }
/// ```
pub total_idle_duration: Duration,
/// The total number of times that tasks were awoken (and then, presumably, scheduled for
/// execution).
///
/// ##### Definition
/// This metric is equal to [`total_short_delay_duration`][TaskMetrics::total_short_delay_duration]
/// + [`total_long_delay_duration`][TaskMetrics::total_long_delay_duration].
///
/// ##### Derived metrics
/// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**
/// The mean duration that tasks spent waiting to be executed after awakening.
///
/// ##### Examples
/// In the below example, a task yields to the scheduler a varying number of times between
/// sampling intervals; this metric is equal to the number of times the task yielded:
/// ```
/// #[tokio::main]
/// async fn main(){
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
///
/// // [A] no tasks have been created, instrumented, and polled more than once
/// assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 0);
///
/// // [B] a `task` is created and instrumented
/// let task = {
/// let monitor = metrics_monitor.clone();
/// metrics_monitor.instrument(async move {
/// let mut interval = monitor.intervals();
/// let mut next_interval = move || interval.next().unwrap();
///
/// // [E] `task` has not yet yielded to the scheduler, and
/// // thus has not yet been scheduled since its first `poll`
/// assert_eq!(next_interval().total_scheduled_count, 0);
///
/// tokio::task::yield_now().await; // yield to the scheduler
///
/// // [F] `task` has yielded to the scheduler once (and thus been
/// // scheduled once) since the last sampling interval
/// assert_eq!(next_interval().total_scheduled_count, 1);
///
/// tokio::task::yield_now().await; // yield to the scheduler
/// tokio::task::yield_now().await; // yield to the scheduler
/// tokio::task::yield_now().await; // yield to the scheduler
///
/// // [G] `task` has yielded to the scheduler thrice (and thus been
/// // scheduled thrice) since the last sampling interval
/// assert_eq!(next_interval().total_scheduled_count, 3);
///
/// tokio::task::yield_now().await; // yield to the scheduler
///
/// next_interval
/// })
/// };
///
/// // [C] `task` has not yet been polled at all
/// assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
/// assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 0);
///
/// // [D] poll `task` to completion
/// let mut next_interval = task.await;
///
/// // [H] `task` has been polled 1 times since the last sample
/// assert_eq!(next_interval().total_scheduled_count, 1);
///
/// // [I] `task` has been polled 0 times since the last sample
/// assert_eq!(next_interval().total_scheduled_count, 0);
///
/// // [J] `task` has yielded to the scheduler a total of five times
/// assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 5);
/// }
/// ```
#[doc(alias = "total_delay_count")]
pub total_scheduled_count: u64,
/// The total duration that tasks spent waiting to be polled after awakening.
///
/// ##### Definition
/// This metric is equal to [`total_short_delay_count`][TaskMetrics::total_short_delay_count]
/// + [`total_long_delay_count`][TaskMetrics::total_long_delay_count].
///
/// ##### Derived metrics
/// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**
/// The mean duration that tasks spent waiting to be executed after awakening.
///
/// ##### Examples
/// ```
/// use tokio::time::Duration;
///
/// #[tokio::main(flavor = "current_thread")]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // construct and instrument and spawn a task that yields endlessly
/// tokio::spawn(metrics_monitor.instrument(async {
/// loop { tokio::task::yield_now().await }
/// }));
///
/// tokio::task::yield_now().await;
///
/// // block the executor for 1 second
/// std::thread::sleep(Duration::from_millis(1000));
///
/// tokio::task::yield_now().await;
///
/// // `endless_task` will have spent approximately one second waiting
/// let total_scheduled_duration = next_interval().total_scheduled_duration;
/// assert!(total_scheduled_duration >= Duration::from_millis(1000));
/// assert!(total_scheduled_duration <= Duration::from_millis(1100));
/// }
/// ```
#[doc(alias = "total_delay_duration")]
pub total_scheduled_duration: Duration,
/// The total number of times that tasks were polled.
///
/// ##### Definition
/// This metric is equal to [`total_fast_poll_count`][TaskMetrics::total_fast_poll_count]
/// + [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count].
///
/// ##### Derived metrics
/// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**
/// The mean duration of polls.
///
/// ##### Examples
/// In the below example, a task with multiple yield points is await'ed to completion; this
/// metric reflects the number of `await`s within each sampling interval:
/// ```
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
///
/// // [A] no tasks have been created, instrumented, and polled more than once
/// assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
///
/// // [B] a `task` is created and instrumented
/// let task = {
/// let monitor = metrics_monitor.clone();
/// metrics_monitor.instrument(async move {
/// let mut interval = monitor.intervals();
/// let mut next_interval = move || interval.next().unwrap();
///
/// // [E] task is in the midst of its first poll
/// assert_eq!(next_interval().total_poll_count, 0);
///
/// tokio::task::yield_now().await; // poll 1
///
/// // [F] task has been polled 1 time
/// assert_eq!(next_interval().total_poll_count, 1);
///
/// tokio::task::yield_now().await; // poll 2
/// tokio::task::yield_now().await; // poll 3
/// tokio::task::yield_now().await; // poll 4
///
/// // [G] task has been polled 3 times
/// assert_eq!(next_interval().total_poll_count, 3);
///
/// tokio::task::yield_now().await; // poll 5
///
/// next_interval // poll 6
/// })
/// };
///
/// // [C] `task` has not yet been polled at all
/// assert_eq!(metrics_monitor.cumulative().total_poll_count, 0);
///
/// // [D] poll `task` to completion
/// let mut next_interval = task.await;
///
/// // [H] `task` has been polled 2 times since the last sample
/// assert_eq!(next_interval().total_poll_count, 2);
///
/// // [I] `task` has been polled 0 times since the last sample
/// assert_eq!(next_interval().total_poll_count, 0);
///
/// // [J] `task` has been polled 6 times
/// assert_eq!(metrics_monitor.cumulative().total_poll_count, 6);
/// }
/// ```
pub total_poll_count: u64,
/// The total duration elapsed during polls.
///
/// ##### Definition
/// This metric is equal to [`total_fast_poll_duration`][TaskMetrics::total_fast_poll_duration]
/// + [`total_slow_poll_duration`][TaskMetrics::total_slow_poll_duration].
///
/// ##### Derived metrics
/// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**
/// The mean duration of polls.
///
/// #### Examples
/// ```
/// use tokio::time::Duration;
///
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = move || interval.next().unwrap();
///
/// assert_eq!(next_interval().total_poll_duration, Duration::ZERO);
///
/// monitor.instrument(async {
/// tokio::time::advance(Duration::from_secs(1)).await; // poll 1 (1s)
/// tokio::time::advance(Duration::from_secs(1)).await; // poll 2 (1s)
/// () // poll 3 (0s)
/// }).await;
///
/// assert_eq!(next_interval().total_poll_duration, Duration::from_secs(2));
/// }
/// ```
pub total_poll_duration: Duration,
/// The total number of times that polling tasks completed swiftly.
///
/// Here, 'swiftly' is defined as completing in strictly less time than
/// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
///
/// ##### Derived metrics
/// - **[`mean_fast_poll_duration`][TaskMetrics::mean_fast_poll_duration]**
/// The mean duration of fast polls.
///
/// ##### Examples
/// In the below example, 0 polls occur within the first sampling interval, 3 fast polls occur
/// within the second sampling interval, and 2 fast polls occur within the third sampling
/// interval:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, or polled
/// assert_eq!(next_interval().total_fast_poll_count, 0);
///
/// let fast = Duration::ZERO;
///
/// // this task completes in three fast polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(fast).await; // fast poll 1
/// spin_for(fast).await; // fast poll 2
/// spin_for(fast) // fast poll 3
/// }).await;
///
/// assert_eq!(next_interval().total_fast_poll_count, 3);
///
/// // this task completes in two fast polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(fast).await; // fast poll 1
/// spin_for(fast) // fast poll 2
/// }).await;
///
/// assert_eq!(next_interval().total_fast_poll_count, 2);
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub total_fast_poll_count: u64,
/// The total duration of fast polls.
///
/// Here, 'fast' is defined as completing in strictly less time than
/// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
///
/// ##### Derived metrics
/// - **[`mean_fast_poll_duration`][TaskMetrics::mean_fast_poll_duration]**
/// The mean duration of fast polls.
///
/// ##### Examples
/// In the below example, no tasks are polled in the first sampling interval; three fast polls
/// consume a total of 3μs time in the second sampling interval; and two fast polls consume a
/// total of 2μs time in the third sampling interval:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, or polled
/// let interval = next_interval();
/// assert_eq!(interval.total_fast_poll_duration, Duration::ZERO);
///
/// let fast = Duration::from_micros(1);
///
/// // this task completes in three fast polls
/// let task_a_time = time(metrics_monitor.instrument(async {
/// spin_for(fast).await; // fast poll 1
/// spin_for(fast).await; // fast poll 2
/// spin_for(fast) // fast poll 3
/// })).await;
///
/// let interval = next_interval();
/// assert!(interval.total_fast_poll_duration >= fast * 3);
/// assert!(interval.total_fast_poll_duration <= task_a_time);
///
/// // this task completes in two fast polls
/// let task_b_time = time(metrics_monitor.instrument(async {
/// spin_for(fast).await; // fast poll 1
/// spin_for(fast) // fast poll 2
/// })).await;
///
/// let interval = next_interval();
/// assert!(interval.total_fast_poll_duration >= fast * 2);
/// assert!(interval.total_fast_poll_duration <= task_b_time);
/// }
///
/// /// Produces the amount of time it took to await a given async task.
/// async fn time(task: impl Future) -> Duration {
/// let start = tokio::time::Instant::now();
/// task.await;
/// start.elapsed()
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub total_fast_poll_duration: Duration,
/// The total number of times that polling tasks completed slowly.
///
/// Here, 'slowly' is defined as completing in at least as much time as
/// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
///
/// ##### Derived metrics
/// - **[`mean_slow_poll_duration`][`TaskMetrics::mean_slow_poll_duration`]**
/// The mean duration of slow polls.
///
/// ##### Examples
/// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
/// within the second sampling interval, and 2 slow polls occur within the third sampling
/// interval:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, or polled
/// assert_eq!(next_interval().total_slow_poll_count, 0);
///
/// let slow = 10 * metrics_monitor.slow_poll_threshold();
///
/// // this task completes in three slow polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow).await; // slow poll 2
/// spin_for(slow) // slow poll 3
/// }).await;
///
/// assert_eq!(next_interval().total_slow_poll_count, 3);
///
/// // this task completes in two slow polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow) // slow poll 2
/// }).await;
///
/// assert_eq!(next_interval().total_slow_poll_count, 2);
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub total_slow_poll_count: u64,
/// The total duration of slow polls.
///
/// Here, 'slowly' is defined as completing in at least as much time as
/// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
///
/// ##### Derived metrics
/// - **[`mean_slow_poll_duration`][`TaskMetrics::mean_slow_poll_duration`]**
/// The mean duration of slow polls.
///
/// ##### Examples
/// In the below example, no tasks are polled in the first sampling interval; three slow polls
/// consume a total of
/// 30 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD]
/// time in the second sampling interval; and two slow polls consume a total of
/// 20 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
/// third sampling interval:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, or polled
/// let interval = next_interval();
/// assert_eq!(interval.total_slow_poll_duration, Duration::ZERO);
///
/// let slow = 10 * metrics_monitor.slow_poll_threshold();
///
/// // this task completes in three slow polls
/// let task_a_time = time(metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow).await; // slow poll 2
/// spin_for(slow) // slow poll 3
/// })).await;
///
/// let interval = next_interval();
/// assert!(interval.total_slow_poll_duration >= slow * 3);
/// assert!(interval.total_slow_poll_duration <= task_a_time);
///
/// // this task completes in two slow polls
/// let task_b_time = time(metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow) // slow poll 2
/// })).await;
///
/// let interval = next_interval();
/// assert!(interval.total_slow_poll_duration >= slow * 2);
/// assert!(interval.total_slow_poll_duration <= task_b_time);
/// }
///
/// /// Produces the amount of time it took to await a given async task.
/// async fn time(task: impl Future) -> Duration {
/// let start = tokio::time::Instant::now();
/// task.await;
/// start.elapsed()
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub total_slow_poll_duration: Duration,
/// The total count of tasks with short scheduling delays.
///
/// This is defined as tasks taking strictly less than
/// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] to be executed after being
/// scheduled.
///
/// ##### Derived metrics
/// - **[`mean_short_delay_duration`][TaskMetrics::mean_short_delay_duration]**
/// The mean duration of short scheduling delays.
pub total_short_delay_count: u64,
/// The total count of tasks with long scheduling delays.
///
/// This is defined as tasks taking
/// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] or longer to be executed
/// after being scheduled.
///
/// ##### Derived metrics
/// - **[`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration]**
/// The mean duration of short scheduling delays.
pub total_long_delay_count: u64,
/// The total duration of tasks with short scheduling delays.
///
/// This is defined as tasks taking strictly less than
/// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] to be executed after being
/// scheduled.
///
/// ##### Derived metrics
/// - **[`mean_short_delay_duration`][TaskMetrics::mean_short_delay_duration]**
/// The mean duration of short scheduling delays.
pub total_short_delay_duration: Duration,
/// The total number of times that a task had a long scheduling duration.
///
/// Here, a long scheduling duration is defined as taking longer to start execution after
/// scheduling than [`long_delay_threshold`][TaskMonitor::long_delay_threshold].
///
/// ##### Derived metrics
/// - **[`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration]**
/// The mean duration of short scheduling delays.
pub total_long_delay_duration: Duration,
}
/// Tracks the metrics, shared across the various types.
#[derive(Debug)]
struct RawMetrics {
/// A task poll takes longer than this, it is considered a slow poll.
slow_poll_threshold: Duration,
/// A scheduling delay of at least this long will be considered a long delay
long_delay_threshold: Duration,
/// Total number of instrumented tasks.
instrumented_count: AtomicU64,
/// Total number of instrumented tasks polled at least once.
first_poll_count: AtomicU64,
/// Total number of times tasks entered the `idle` state.
total_idled_count: AtomicU64,
/// Total number of times tasks were scheduled.
total_scheduled_count: AtomicU64,
/// Total number of times tasks were polled fast
total_fast_poll_count: AtomicU64,
/// Total number of times tasks were polled slow
total_slow_poll_count: AtomicU64,
/// Total number of times tasks had long delay,
total_long_delay_count: AtomicU64,
/// Total number of times tasks had little delay
total_short_delay_count: AtomicU64,
/// Total number of times tasks were dropped
dropped_count: AtomicU64,
/// Total amount of time until the first poll
total_first_poll_delay_ns: AtomicU64,
/// Total amount of time tasks spent in the `idle` state.
total_idle_duration_ns: AtomicU64,
/// Total amount of time tasks spent in the waking state.
total_scheduled_duration_ns: AtomicU64,
/// Total amount of time tasks spent being polled below the slow cut off.
total_fast_poll_duration_ns: AtomicU64,
/// Total amount of time tasks spent being polled above the slow cut off.
total_slow_poll_duration: AtomicU64,
/// Total amount of time tasks spent being polled below the long delay cut off.
total_short_delay_duration_ns: AtomicU64,
/// Total amount of time tasks spent being polled at or above the long delay cut off.
total_long_delay_duration_ns: AtomicU64,
}
#[derive(Debug)]
struct State {
/// Where metrics should be recorded
metrics: Arc<RawMetrics>,
/// Instant at which the task was instrumented. This is used to track the time to first poll.
instrumented_at: Instant,
/// The instant, tracked as nanoseconds since `instrumented_at`, at which the future
/// was last woken.
woke_at: AtomicU64,
/// Waker to forward notifications to.
waker: AtomicWaker,
}
impl TaskMonitor {
/// The default duration at which polls cross the threshold into being categorized as 'slow' is
/// 50μs.
#[cfg(not(test))]
pub const DEFAULT_SLOW_POLL_THRESHOLD: Duration = Duration::from_micros(50);
#[cfg(test)]
pub const DEFAULT_SLOW_POLL_THRESHOLD: Duration = Duration::from_millis(500);
/// The default duration at which schedules cross the threshold into being categorized as 'long'
/// is 50μs.
#[cfg(not(test))]
pub const DEFAULT_LONG_DELAY_THRESHOLD: Duration = Duration::from_micros(50);
#[cfg(test)]
pub const DEFAULT_LONG_DELAY_THRESHOLD: Duration = Duration::from_millis(500);
/// Constructs a new task monitor.
///
/// Uses [`Self::DEFAULT_SLOW_POLL_THRESHOLD`] as the threshold at which polls will be
/// considered 'slow'.
///
/// Uses [`Self::DEFAULT_LONG_DELAY_THRESHOLD`] as the threshold at which scheduling will be
/// considered 'long'.
pub fn new() -> TaskMonitor {
TaskMonitor::with_slow_poll_threshold(Self::DEFAULT_SLOW_POLL_THRESHOLD)
}
/// Constructs a builder for a task monitor.
pub fn builder() -> TaskMonitorBuilder {
TaskMonitorBuilder::new()
}
/// Constructs a new task monitor with a given threshold at which polls are considered 'slow'.
///
/// ##### Selecting an appropriate threshold
/// TODO. What advice can we give here?
///
/// ##### Examples
/// In the below example, low-threshold and high-threshold monitors are constructed and
/// instrument identical tasks; the low-threshold monitor reports4 slow polls, and the
/// high-threshold monitor reports only 2 slow polls:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
/// use tokio_metrics::TaskMonitor;
///
/// #[tokio::main]
/// async fn main() {
/// let lo_threshold = Duration::from_micros(10);
/// let hi_threshold = Duration::from_millis(10);
///
/// let lo_monitor = TaskMonitor::with_slow_poll_threshold(lo_threshold);
/// let hi_monitor = TaskMonitor::with_slow_poll_threshold(hi_threshold);
///
/// let make_task = || async {
/// spin_for(lo_threshold).await; // faster poll 1
/// spin_for(lo_threshold).await; // faster poll 2
/// spin_for(hi_threshold).await; // slower poll 3
/// spin_for(hi_threshold).await // slower poll 4
/// };
///
/// lo_monitor.instrument(make_task()).await;
/// hi_monitor.instrument(make_task()).await;
///
/// // the low-threshold monitor reported 4 slow polls:
/// assert_eq!(lo_monitor.cumulative().total_slow_poll_count, 4);
/// // the high-threshold monitor reported only 2 slow polls:
/// assert_eq!(hi_monitor.cumulative().total_slow_poll_count, 2);
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub fn with_slow_poll_threshold(slow_poll_cut_off: Duration) -> TaskMonitor {
Self::create(slow_poll_cut_off, Self::DEFAULT_LONG_DELAY_THRESHOLD)
}
fn create(slow_poll_cut_off: Duration, long_delay_cut_off: Duration) -> TaskMonitor {
TaskMonitor {
metrics: Arc::new(RawMetrics {
slow_poll_threshold: slow_poll_cut_off,
first_poll_count: AtomicU64::new(0),
total_idled_count: AtomicU64::new(0),
total_scheduled_count: AtomicU64::new(0),
total_fast_poll_count: AtomicU64::new(0),
total_slow_poll_count: AtomicU64::new(0),
total_long_delay_count: AtomicU64::new(0),
instrumented_count: AtomicU64::new(0),
dropped_count: AtomicU64::new(0),
total_first_poll_delay_ns: AtomicU64::new(0),
total_scheduled_duration_ns: AtomicU64::new(0),
total_idle_duration_ns: AtomicU64::new(0),
total_fast_poll_duration_ns: AtomicU64::new(0),
total_slow_poll_duration: AtomicU64::new(0),
total_short_delay_duration_ns: AtomicU64::new(0),
long_delay_threshold: long_delay_cut_off,
total_short_delay_count: AtomicU64::new(0),
total_long_delay_duration_ns: AtomicU64::new(0),
}),
}
}
/// Produces the duration greater-than-or-equal-to at which polls are categorized as slow.
///
/// ##### Examples
/// In the below example, [`TaskMonitor`] is initialized with [`TaskMonitor::new`];
/// consequently, its slow-poll threshold equals [`TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD`]:
/// ```
/// use tokio_metrics::TaskMonitor;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = TaskMonitor::new();
///
/// assert_eq!(
/// metrics_monitor.slow_poll_threshold(),
/// TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD
/// );
/// }
/// ```
pub fn slow_poll_threshold(&self) -> Duration {
self.metrics.slow_poll_threshold
}
/// Produces the duration greater-than-or-equal-to at which scheduling delays are categorized
/// as long.
pub fn long_delay_threshold(&self) -> Duration {
self.metrics.long_delay_threshold
}
/// Produces an instrumented façade around a given async task.
///
/// ##### Examples
/// Instrument an async task by passing it to [`TaskMonitor::instrument`]:
/// ```
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
///
/// // 0 tasks have been instrumented, much less polled
/// assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
///
/// // instrument a task and poll it to completion
/// metrics_monitor.instrument(async {}).await;
///
/// // 1 task has been instrumented and polled
/// assert_eq!(metrics_monitor.cumulative().first_poll_count, 1);
///
/// // instrument a task and poll it to completion
/// metrics_monitor.instrument(async {}).await;
///
/// // 2 tasks have been instrumented and polled
/// assert_eq!(metrics_monitor.cumulative().first_poll_count, 2);
/// }
/// ```
/// An aync task may be tracked by multiple [`TaskMonitor`]s; e.g.:
/// ```
/// #[tokio::main]
/// async fn main() {
/// let monitor_a = tokio_metrics::TaskMonitor::new();
/// let monitor_b = tokio_metrics::TaskMonitor::new();
///
/// // 0 tasks have been instrumented, much less polled
/// assert_eq!(monitor_a.cumulative().first_poll_count, 0);
/// assert_eq!(monitor_b.cumulative().first_poll_count, 0);
///
/// // instrument a task and poll it to completion
/// monitor_a.instrument(monitor_b.instrument(async {})).await;
///
/// // 1 task has been instrumented and polled
/// assert_eq!(monitor_a.cumulative().first_poll_count, 1);
/// assert_eq!(monitor_b.cumulative().first_poll_count, 1);
/// }
/// ```
/// It is also possible (but probably undesirable) to instrument an async task multiple times
/// with the same [`TaskMonitor`]; e.g.:
/// ```
/// #[tokio::main]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
///
/// // 0 tasks have been instrumented, much less polled
/// assert_eq!(monitor.cumulative().first_poll_count, 0);
///
/// // instrument a task and poll it to completion
/// monitor.instrument(monitor.instrument(async {})).await;
///
/// // 2 tasks have been instrumented and polled, supposedly
/// assert_eq!(monitor.cumulative().first_poll_count, 2);
/// }
/// ```
pub fn instrument<F>(&self, task: F) -> Instrumented<F> {
self.metrics.instrumented_count.fetch_add(1, SeqCst);
Instrumented {
task,
did_poll_once: false,
idled_at: 0,
state: Arc::new(State {
metrics: self.metrics.clone(),
instrumented_at: Instant::now(),
woke_at: AtomicU64::new(0),
waker: AtomicWaker::new(),
}),
}
}
/// Produces [`TaskMetrics`] for the tasks instrumented by this [`TaskMonitor`], collected since
/// the construction of [`TaskMonitor`].
///
/// ##### See also
/// - [`TaskMonitor::intervals`]:
/// produces [`TaskMetrics`] for user-defined sampling intervals, instead of cumulatively
///
/// ##### Examples
/// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
/// within the second sampling interval, and 2 slow polls occur within the third sampling
/// interval; five slow polls occur across all sampling intervals:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
///
/// // initialize a stream of sampling intervals
/// let mut intervals = metrics_monitor.intervals();
/// // each call of `next_interval` will produce metrics for the last sampling interval
/// let mut next_interval = || intervals.next().unwrap();
///
/// let slow = 10 * metrics_monitor.slow_poll_threshold();
///
/// // this task completes in three slow polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow).await; // slow poll 2
/// spin_for(slow) // slow poll 3
/// }).await;
///
/// // in the previous sampling interval, there were 3 slow polls
/// assert_eq!(next_interval().total_slow_poll_count, 3);
/// assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 3);
///
/// // this task completes in two slow polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow) // slow poll 2
/// }).await;
///
/// // in the previous sampling interval, there were 2 slow polls
/// assert_eq!(next_interval().total_slow_poll_count, 2);
///
/// // across all sampling interval, there were a total of 5 slow polls
/// assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 5);
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub fn cumulative(&self) -> TaskMetrics {
self.metrics.metrics()
}
/// Produces an unending iterator of metric sampling intervals.
///
/// Each sampling interval is defined by the time elapsed between advancements of the iterator
/// produced by [`TaskMonitor::intervals`]. The item type of this iterator is [`TaskMetrics`],
/// which is a bundle of task metrics that describe *only* events occurring within that sampling
/// interval.
///
/// ##### Examples
/// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
/// within the second sampling interval, and 2 slow polls occur within the third sampling
/// interval; five slow polls occur across all sampling intervals:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
///
/// // initialize a stream of sampling intervals
/// let mut intervals = metrics_monitor.intervals();
/// // each call of `next_interval` will produce metrics for the last sampling interval
/// let mut next_interval = || intervals.next().unwrap();
///
/// let slow = 10 * metrics_monitor.slow_poll_threshold();
///
/// // this task completes in three slow polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow).await; // slow poll 2
/// spin_for(slow) // slow poll 3
/// }).await;
///
/// // in the previous sampling interval, there were 3 slow polls
/// assert_eq!(next_interval().total_slow_poll_count, 3);
///
/// // this task completes in two slow polls
/// let _ = metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow) // slow poll 2
/// }).await;
///
/// // in the previous sampling interval, there were 2 slow polls
/// assert_eq!(next_interval().total_slow_poll_count, 2);
///
/// // across all sampling intervals, there were a total of 5 slow polls
/// assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 5);
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub fn intervals(&self) -> impl Iterator<Item = TaskMetrics> {
let latest = self.metrics.clone();
let mut previous: Option<TaskMetrics> = None;
std::iter::from_fn(move || {
let latest: TaskMetrics = latest.metrics();
let next = if let Some(previous) = previous {
TaskMetrics {
instrumented_count: latest
.instrumented_count
.wrapping_sub(previous.instrumented_count),
dropped_count: latest.dropped_count.wrapping_sub(previous.dropped_count),
total_poll_count: latest
.total_poll_count
.wrapping_sub(previous.total_poll_count),
total_poll_duration: sub(
latest.total_poll_duration,
previous.total_poll_duration,
),
first_poll_count: latest
.first_poll_count
.wrapping_sub(previous.first_poll_count),
total_idled_count: latest
.total_idled_count
.wrapping_sub(previous.total_idled_count),
total_scheduled_count: latest
.total_scheduled_count
.wrapping_sub(previous.total_scheduled_count),
total_fast_poll_count: latest
.total_fast_poll_count
.wrapping_sub(previous.total_fast_poll_count),
total_short_delay_count: latest
.total_short_delay_count
.wrapping_sub(previous.total_short_delay_count),
total_slow_poll_count: latest
.total_slow_poll_count
.wrapping_sub(previous.total_slow_poll_count),
total_long_delay_count: latest
.total_long_delay_count
.wrapping_sub(previous.total_long_delay_count),
total_first_poll_delay: sub(
latest.total_first_poll_delay,
previous.total_first_poll_delay,
),
total_idle_duration: sub(
latest.total_idle_duration,
previous.total_idle_duration,
),
total_scheduled_duration: sub(
latest.total_scheduled_duration,
previous.total_scheduled_duration,
),
total_fast_poll_duration: sub(
latest.total_fast_poll_duration,
previous.total_fast_poll_duration,
),
total_short_delay_duration: sub(
latest.total_short_delay_duration,
previous.total_short_delay_duration,
),
total_slow_poll_duration: sub(
latest.total_slow_poll_duration,
previous.total_slow_poll_duration,
),
total_long_delay_duration: sub(
latest.total_long_delay_duration,
previous.total_long_delay_duration,
),
}
} else {
latest
};
previous = Some(latest);
Some(next)
})
}
}
impl RawMetrics {
fn metrics(&self) -> TaskMetrics {
let total_fast_poll_count = self.total_fast_poll_count.load(SeqCst);
let total_slow_poll_count = self.total_slow_poll_count.load(SeqCst);
let total_fast_poll_duration =
Duration::from_nanos(self.total_fast_poll_duration_ns.load(SeqCst));
let total_slow_poll_duration =
Duration::from_nanos(self.total_slow_poll_duration.load(SeqCst));
let total_poll_count = total_fast_poll_count + total_slow_poll_count;
let total_poll_duration = total_fast_poll_duration + total_slow_poll_duration;
TaskMetrics {
instrumented_count: self.instrumented_count.load(SeqCst),
dropped_count: self.dropped_count.load(SeqCst),
total_poll_count,
total_poll_duration,
first_poll_count: self.first_poll_count.load(SeqCst),
total_idled_count: self.total_idled_count.load(SeqCst),
total_scheduled_count: self.total_scheduled_count.load(SeqCst),
total_fast_poll_count: self.total_fast_poll_count.load(SeqCst),
total_slow_poll_count: self.total_slow_poll_count.load(SeqCst),
total_short_delay_count: self.total_short_delay_count.load(SeqCst),
total_long_delay_count: self.total_long_delay_count.load(SeqCst),
total_first_poll_delay: Duration::from_nanos(
self.total_first_poll_delay_ns.load(SeqCst),
),
total_idle_duration: Duration::from_nanos(self.total_idle_duration_ns.load(SeqCst)),
total_scheduled_duration: Duration::from_nanos(
self.total_scheduled_duration_ns.load(SeqCst),
),
total_fast_poll_duration: Duration::from_nanos(
self.total_fast_poll_duration_ns.load(SeqCst),
),
total_slow_poll_duration: Duration::from_nanos(
self.total_slow_poll_duration.load(SeqCst),
),
total_short_delay_duration: Duration::from_nanos(
self.total_short_delay_duration_ns.load(SeqCst),
),
total_long_delay_duration: Duration::from_nanos(
self.total_long_delay_duration_ns.load(SeqCst),
),
}
}
}
impl Default for TaskMonitor {
fn default() -> TaskMonitor {
TaskMonitor::new()
}
}
impl TaskMetrics {
/// The mean duration elapsed between the instant tasks are instrumented, and the instant they
/// are first polled.
///
/// ##### Definition
/// This metric is derived from [`total_first_poll_delay`][TaskMetrics::total_first_poll_delay]
/// ÷ [`first_poll_count`][TaskMetrics::first_poll_count].
///
/// ##### Interpretation
/// If this metric increases, it means that, on average, tasks spent longer waiting to be
/// initially polled.
///
/// ##### See also
/// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**
/// The mean duration that tasks spent waiting to be executed after awakening.
///
/// ##### Examples
/// In the below example, no tasks are instrumented or polled within the first sampling
/// interval; in the second sampling interval, 500ms elapse between the instrumentation of a
/// task and its first poll; in the third sampling interval, a mean of 750ms elapse between the
/// instrumentation and first poll of two tasks:
/// ```
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have yet been created, instrumented, or polled
/// assert_eq!(next_interval().mean_first_poll_delay(), Duration::ZERO);
///
/// // constructs and instruments a task, pauses for `pause_time`, awaits the task, then
/// // produces the total time it took to do all of the aforementioned
/// async fn instrument_pause_await(
/// metrics_monitor: &tokio_metrics::TaskMonitor,
/// pause_time: Duration
/// ) -> Duration
/// {
/// let before_instrumentation = tokio::time::Instant::now();
/// let task = metrics_monitor.instrument(async move {});
/// tokio::time::sleep(pause_time).await;
/// task.await;
/// before_instrumentation.elapsed()
/// }
///
/// // construct and await a task that pauses for 500ms between instrumentation and first poll
/// let task_a_pause_time = Duration::from_millis(500);
/// let task_a_total_time = instrument_pause_await(&metrics_monitor, task_a_pause_time).await;
///
/// // the `mean_first_poll_delay` will be some duration greater-than-or-equal-to the
/// // pause time of 500ms, and less-than-or-equal-to the total runtime of `task_a`
/// let mean_first_poll_delay = next_interval().mean_first_poll_delay();
/// assert!(mean_first_poll_delay >= task_a_pause_time);
/// assert!(mean_first_poll_delay <= task_a_total_time);
///
/// // construct and await a task that pauses for 500ms between instrumentation and first poll
/// let task_b_pause_time = Duration::from_millis(500);
/// let task_b_total_time = instrument_pause_await(&metrics_monitor, task_b_pause_time).await;
///
/// // construct and await a task that pauses for 1000ms between instrumentation and first poll
/// let task_c_pause_time = Duration::from_millis(1000);
/// let task_c_total_time = instrument_pause_await(&metrics_monitor, task_c_pause_time).await;
///
/// // the `mean_first_poll_delay` will be some duration greater-than-or-equal-to the
/// // average pause time of 500ms, and less-than-or-equal-to the combined total runtime of
/// // `task_b` and `task_c`
/// let mean_first_poll_delay = next_interval().mean_first_poll_delay();
/// assert!(mean_first_poll_delay >= (task_b_pause_time + task_c_pause_time) / 2);
/// assert!(mean_first_poll_delay <= (task_b_total_time + task_c_total_time) / 2);
/// }
/// ```
pub fn mean_first_poll_delay(&self) -> Duration {
mean(self.total_first_poll_delay, self.first_poll_count)
}
/// The mean duration of idles.
///
/// ##### Definition
/// This metric is derived from [`total_idle_duration`][TaskMetrics::total_idle_duration] ÷
/// [`total_idled_count`][TaskMetrics::total_idled_count].
///
/// ##### Interpretation
/// The idle state is the duration spanning the instant a task completes a poll, and the instant
/// that it is next awoken. Tasks inhabit this state when they are waiting for task-external
/// events to complete (e.g., an asynchronous sleep, a network request, file I/O, etc.). If this
/// metric increases, it means that tasks, in aggregate, spent more time waiting for
/// task-external events to complete.
///
/// ##### Examples
/// ```
/// #[tokio::main]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let one_sec = std::time::Duration::from_secs(1);
///
/// monitor.instrument(async move {
/// tokio::time::sleep(one_sec).await;
/// }).await;
///
/// assert!(monitor.cumulative().mean_idle_duration() >= one_sec);
/// }
/// ```
pub fn mean_idle_duration(&self) -> Duration {
mean(self.total_idle_duration, self.total_idled_count)
}
/// The mean duration that tasks spent waiting to be executed after awakening.
///
/// ##### Definition
/// This metric is derived from
/// [`total_scheduled_duration`][TaskMetrics::total_scheduled_duration] ÷
/// [`total_scheduled_count`][`TaskMetrics::total_scheduled_count`].
///
/// ##### Interpretation
/// If this metric increases, it means that, on average, tasks spent longer in the runtime's
/// queues before being polled.
///
/// ##### See also
/// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**
/// The mean duration elapsed between the instant tasks are instrumented, and the instant they
/// are first polled.
///
/// ##### Examples
/// ```
/// use tokio::time::Duration;
///
/// #[tokio::main(flavor = "current_thread")]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // construct and instrument and spawn a task that yields endlessly
/// tokio::spawn(metrics_monitor.instrument(async {
/// loop { tokio::task::yield_now().await }
/// }));
///
/// tokio::task::yield_now().await;
///
/// // block the executor for 1 second
/// std::thread::sleep(Duration::from_millis(1000));
///
/// // get the task to run twice
/// // the first will have a 1 sec scheduling delay, the second will have almost none
/// tokio::task::yield_now().await;
/// tokio::task::yield_now().await;
///
/// // `endless_task` will have spent approximately one second waiting
/// let mean_scheduled_duration = next_interval().mean_scheduled_duration();
/// assert!(mean_scheduled_duration >= Duration::from_millis(500), "{}", mean_scheduled_duration.as_secs_f64());
/// assert!(mean_scheduled_duration <= Duration::from_millis(600), "{}", mean_scheduled_duration.as_secs_f64());
/// }
/// ```
pub fn mean_scheduled_duration(&self) -> Duration {
mean(self.total_scheduled_duration, self.total_scheduled_count)
}
/// The mean duration of polls.
///
/// ##### Definition
/// This metric is derived from [`total_poll_duration`][TaskMetrics::total_poll_duration] ÷
/// [`total_poll_count`][TaskMetrics::total_poll_count].
///
/// ##### Interpretation
/// If this metric increases, it means that, on average, individual polls are tending to take
/// longer. However, this does not necessarily imply increased task latency: An increase in poll
/// durations could be offset by fewer polls.
///
/// ##### See also
/// - **[`slow_poll_ratio`][TaskMetrics::slow_poll_ratio]**
/// The ratio between the number polls categorized as slow and fast.
/// - **[`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration]**
/// The mean duration of slow polls.
///
/// ##### Examples
/// ```
/// use std::time::Duration;
///
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = monitor.intervals();
/// let mut next_interval = move || interval.next().unwrap();
///
/// assert_eq!(next_interval().mean_poll_duration(), Duration::ZERO);
///
/// monitor.instrument(async {
/// tokio::time::advance(Duration::from_secs(1)).await; // poll 1 (1s)
/// tokio::time::advance(Duration::from_secs(1)).await; // poll 2 (1s)
/// () // poll 3 (0s)
/// }).await;
///
/// assert_eq!(next_interval().mean_poll_duration(), Duration::from_secs(2) / 3);
/// }
/// ```
pub fn mean_poll_duration(&self) -> Duration {
mean(self.total_poll_duration, self.total_poll_count)
}
/// The ratio between the number polls categorized as slow and fast.
///
/// ##### Definition
/// This metric is derived from [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count] ÷
/// [`total_poll_count`][TaskMetrics::total_poll_count].
///
/// ##### Interpretation
/// If this metric increases, it means that a greater proportion of polls took excessively long
/// before yielding to the scheduler. This does not necessarily imply increased task latency:
/// An increase in the proportion of slow polls could be offset by fewer or faster polls.
/// However, as a rule, *should* yield to the scheduler frequently.
///
/// ##### See also
/// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**
/// The mean duration of polls.
/// - **[`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration]**
/// The mean duration of slow polls.
///
/// ##### Examples
/// Changes in this metric may be observed by varying the ratio of slow and slow fast within
/// sampling intervals; for instance:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, or polled
/// let interval = next_interval();
/// assert_eq!(interval.total_fast_poll_count, 0);
/// assert_eq!(interval.total_slow_poll_count, 0);
/// assert!(interval.slow_poll_ratio().is_nan());
///
/// let fast = Duration::ZERO;
/// let slow = 10 * metrics_monitor.slow_poll_threshold();
///
/// // this task completes in three fast polls
/// metrics_monitor.instrument(async {
/// spin_for(fast).await; // fast poll 1
/// spin_for(fast).await; // fast poll 2
/// spin_for(fast); // fast poll 3
/// }).await;
///
/// // this task completes in two slow polls
/// metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow); // slow poll 2
/// }).await;
///
/// let interval = next_interval();
/// assert_eq!(interval.total_fast_poll_count, 3);
/// assert_eq!(interval.total_slow_poll_count, 2);
/// assert_eq!(interval.slow_poll_ratio(), ratio(2., 3.));
///
/// // this task completes in three slow polls
/// metrics_monitor.instrument(async {
/// spin_for(slow).await; // slow poll 1
/// spin_for(slow).await; // slow poll 2
/// spin_for(slow); // slow poll 3
/// }).await;
///
/// // this task completes in two fast polls
/// metrics_monitor.instrument(async {
/// spin_for(fast).await; // fast poll 1
/// spin_for(fast); // fast poll 2
/// }).await;
///
/// let interval = next_interval();
/// assert_eq!(interval.total_fast_poll_count, 2);
/// assert_eq!(interval.total_slow_poll_count, 3);
/// assert_eq!(interval.slow_poll_ratio(), ratio(3., 2.));
/// }
///
/// fn ratio(a: f64, b: f64) -> f64 {
/// a / (a + b)
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub fn slow_poll_ratio(&self) -> f64 {
self.total_slow_poll_count as f64 / self.total_poll_count as f64
}
/// The ratio of tasks exceeding [`long_delay_threshold`][TaskMonitor::long_delay_threshold].
///
/// ##### Definition
/// This metric is derived from [`total_long_delay_count`][TaskMetrics::total_long_delay_count] ÷
/// [`total_scheduled_count`][TaskMetrics::total_scheduled_count].
pub fn long_delay_ratio(&self) -> f64 {
self.total_long_delay_count as f64 / self.total_scheduled_count as f64
}
/// The mean duration of fast polls.
///
/// ##### Definition
/// This metric is derived from
/// [`total_fast_poll_duration`][TaskMetrics::total_fast_poll_duration] ÷
/// [`total_fast_poll_count`][TaskMetrics::total_fast_poll_count].
///
/// ##### Examples
/// In the below example, no tasks are polled in the first sampling interval; three fast polls
/// consume a mean of
/// ⅜ × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
/// second sampling interval; and two fast polls consume a total of
/// ½ × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
/// third sampling interval:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, or polled
/// assert_eq!(next_interval().mean_fast_poll_duration(), Duration::ZERO);
///
/// let threshold = metrics_monitor.slow_poll_threshold();
/// let fast_1 = 1 * Duration::from_micros(1);
/// let fast_2 = 2 * Duration::from_micros(1);
/// let fast_3 = 3 * Duration::from_micros(1);
///
/// // this task completes in two fast polls
/// let total_time = time(metrics_monitor.instrument(async {
/// spin_for(fast_1).await; // fast poll 1
/// spin_for(fast_2) // fast poll 2
/// })).await;
///
/// // `mean_fast_poll_duration` ≈ the mean of `fast_1` and `fast_2`
/// let mean_fast_poll_duration = next_interval().mean_fast_poll_duration();
/// assert!(mean_fast_poll_duration >= (fast_1 + fast_2) / 2);
/// assert!(mean_fast_poll_duration <= total_time / 2);
///
/// // this task completes in three fast polls
/// let total_time = time(metrics_monitor.instrument(async {
/// spin_for(fast_1).await; // fast poll 1
/// spin_for(fast_2).await; // fast poll 2
/// spin_for(fast_3) // fast poll 3
/// })).await;
///
/// // `mean_fast_poll_duration` ≈ the mean of `fast_1`, `fast_2`, `fast_3`
/// let mean_fast_poll_duration = next_interval().mean_fast_poll_duration();
/// assert!(mean_fast_poll_duration >= (fast_1 + fast_2 + fast_3) / 3);
/// assert!(mean_fast_poll_duration <= total_time / 3);
/// }
///
/// /// Produces the amount of time it took to await a given task.
/// async fn time(task: impl Future) -> Duration {
/// let start = tokio::time::Instant::now();
/// task.await;
/// start.elapsed()
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub fn mean_fast_poll_duration(&self) -> Duration {
mean(self.total_fast_poll_duration, self.total_fast_poll_count)
}
/// The average time taken for a task with a short scheduling delay to be executed after being
/// scheduled.
///
/// ##### Definition
/// This metric is derived from
/// [`total_short_delay_duration`][TaskMetrics::total_short_delay_duration] ÷
/// [`total_short_delay_count`][TaskMetrics::total_short_delay_count].
pub fn mean_short_delay_duration(&self) -> Duration {
mean(
self.total_short_delay_duration,
self.total_short_delay_count,
)
}
/// The mean duration of slow polls.
///
/// ##### Definition
/// This metric is derived from
/// [`total_slow_poll_duration`][TaskMetrics::total_slow_poll_duration] ÷
/// [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count].
///
/// ##### Interpretation
/// If this metric increases, it means that a greater proportion of polls took excessively long
/// before yielding to the scheduler. This does not necessarily imply increased task latency:
/// An increase in the proportion of slow polls could be offset by fewer or faster polls.
///
/// ##### See also
/// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**
/// The mean duration of polls.
/// - **[`slow_poll_ratio`][TaskMetrics::slow_poll_ratio]**
/// The ratio between the number polls categorized as slow and fast.
///
/// ##### Interpretation
/// If this metric increases, it means that, on average, slow polls got even slower. This does
/// necessarily imply increased task latency: An increase in average slow poll duration could be
/// offset by fewer or faster polls. However, as a rule, *should* yield to the scheduler
/// frequently.
///
/// ##### Examples
/// In the below example, no tasks are polled in the first sampling interval; three slow polls
/// consume a mean of
/// 1.5 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
/// second sampling interval; and two slow polls consume a total of
/// 2 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
/// third sampling interval:
/// ```
/// use std::future::Future;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let metrics_monitor = tokio_metrics::TaskMonitor::new();
/// let mut interval = metrics_monitor.intervals();
/// let mut next_interval = || interval.next().unwrap();
///
/// // no tasks have been constructed, instrumented, or polled
/// assert_eq!(next_interval().mean_slow_poll_duration(), Duration::ZERO);
///
/// let threshold = metrics_monitor.slow_poll_threshold();
/// let slow_1 = 1 * threshold;
/// let slow_2 = 2 * threshold;
/// let slow_3 = 3 * threshold;
///
/// // this task completes in two slow polls
/// let total_time = time(metrics_monitor.instrument(async {
/// spin_for(slow_1).await; // slow poll 1
/// spin_for(slow_2) // slow poll 2
/// })).await;
///
/// // `mean_slow_poll_duration` ≈ the mean of `slow_1` and `slow_2`
/// let mean_slow_poll_duration = next_interval().mean_slow_poll_duration();
/// assert!(mean_slow_poll_duration >= (slow_1 + slow_2) / 2);
/// assert!(mean_slow_poll_duration <= total_time / 2);
///
/// // this task completes in three slow polls
/// let total_time = time(metrics_monitor.instrument(async {
/// spin_for(slow_1).await; // slow poll 1
/// spin_for(slow_2).await; // slow poll 2
/// spin_for(slow_3) // slow poll 3
/// })).await;
///
/// // `mean_slow_poll_duration` ≈ the mean of `slow_1`, `slow_2`, `slow_3`
/// let mean_slow_poll_duration = next_interval().mean_slow_poll_duration();
/// assert!(mean_slow_poll_duration >= (slow_1 + slow_2 + slow_3) / 3);
/// assert!(mean_slow_poll_duration <= total_time / 3);
/// }
///
/// /// Produces the amount of time it took to await a given task.
/// async fn time(task: impl Future) -> Duration {
/// let start = tokio::time::Instant::now();
/// task.await;
/// start.elapsed()
/// }
///
/// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
/// fn spin_for(duration: Duration) -> impl Future<Output=()> {
/// let start = tokio::time::Instant::now();
/// while start.elapsed() <= duration {}
/// tokio::task::yield_now()
/// }
/// ```
pub fn mean_slow_poll_duration(&self) -> Duration {
mean(self.total_slow_poll_duration, self.total_slow_poll_count)
}
/// The average scheduling delay for a task which takes a long time to start executing after
/// being scheduled.
///
/// ##### Definition
/// This metric is derived from
/// [`total_long_delay_duration`][TaskMetrics::total_long_delay_duration] ÷
/// [`total_long_delay_count`][TaskMetrics::total_long_delay_count].
pub fn mean_long_delay_duration(&self) -> Duration {
mean(self.total_long_delay_duration, self.total_long_delay_count)
}
}
impl<T: Future> Future for Instrumented<T> {
type Output = T::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
instrument_poll(cx, self, Future::poll)
}
}
impl<T: Stream> Stream for Instrumented<T> {
type Item = T::Item;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
instrument_poll(cx, self, Stream::poll_next)
}
}
fn instrument_poll<T, Out>(
cx: &mut Context,
instrumented: Pin<&mut Instrumented<T>>,
poll_fn: impl FnOnce(Pin<&mut T>, &mut Context) -> Poll<Out>,
) -> Poll<Out> {
let poll_start = Instant::now();
let this = instrumented.project();
let idled_at = this.idled_at;
let state = this.state;
let instrumented_at = state.instrumented_at;
let metrics = &state.metrics;
/* accounting for time-to-first-poll and tasks-count */
// is this the first time this task has been polled?
if !*this.did_poll_once {
// if so, we need to do three things:
/* 1. note that this task *has* been polled */
*this.did_poll_once = true;
/* 2. account for the time-to-first-poll of this task */
// if the time-to-first-poll of this task exceeds `u64::MAX` ns,
// round down to `u64::MAX` nanoseconds
let elapsed = (poll_start - instrumented_at)
.as_nanos()
.try_into()
.unwrap_or(u64::MAX);
// add this duration to `time_to_first_poll_ns_total`
metrics.total_first_poll_delay_ns.fetch_add(elapsed, SeqCst);
/* 3. increment the count of tasks that have been polled at least once */
state.metrics.first_poll_count.fetch_add(1, SeqCst);
}
/* accounting for time-idled and time-scheduled */
// 1. note (and reset) the instant this task was last awoke
let woke_at = state.woke_at.swap(0, SeqCst);
// The state of a future is *idling* in the interim between the instant
// it completes a `poll`, and the instant it is next awoken.
if *idled_at < woke_at {
// increment the counter of how many idles occurred
metrics.total_idled_count.fetch_add(1, SeqCst);
// compute the duration of the idle
let idle_ns = woke_at - *idled_at;
// adjust the total elapsed time monitored tasks spent idling
metrics.total_idle_duration_ns.fetch_add(idle_ns, SeqCst);
}
// if this task spent any time in the scheduled state after instrumentation,
// and after first poll, `woke_at` will be greater than 0.
if woke_at > 0 {
// increment the counter of how many schedules occurred
metrics.total_scheduled_count.fetch_add(1, SeqCst);
// recall that the `woke_at` field is internally represented as
// nanoseconds-since-instrumentation. here, for accounting purposes,
// we need to instead represent it as a proper `Instant`.
let woke_instant = instrumented_at + Duration::from_nanos(woke_at);
// the duration this task spent scheduled is time time elapsed between
// when this task was awoke, and when it was polled.
let scheduled_ns = (poll_start - woke_instant)
.as_nanos()
.try_into()
.unwrap_or(u64::MAX);
let scheduled = Duration::from_nanos(scheduled_ns);
let (count_bucket, duration_bucket) = // was the scheduling delay long or short?
if scheduled >= metrics.long_delay_threshold {
(&metrics.total_long_delay_count, &metrics.total_long_delay_duration_ns)
} else {
(&metrics.total_short_delay_count, &metrics.total_short_delay_duration_ns)
};
// update the appropriate bucket
count_bucket.fetch_add(1, SeqCst);
duration_bucket.fetch_add(scheduled_ns, SeqCst);
// add `scheduled_ns` to the Monitor's total
metrics
.total_scheduled_duration_ns
.fetch_add(scheduled_ns, SeqCst);
}
// Register the waker
state.waker.register(cx.waker());
// Get the instrumented waker
let waker_ref = futures_util::task::waker_ref(state);
let mut cx = Context::from_waker(&waker_ref);
// Poll the task
let inner_poll_start = Instant::now();
let ret = poll_fn(this.task, &mut cx);
let inner_poll_end = Instant::now();
/* idle time starts now */
*idled_at = (inner_poll_end - instrumented_at)
.as_nanos()
.try_into()
.unwrap_or(u64::MAX);
/* accounting for poll time */
let inner_poll_duration = inner_poll_end - inner_poll_start;
let inner_poll_ns: u64 = inner_poll_duration
.as_nanos()
.try_into()
.unwrap_or(u64::MAX);
let (count_bucket, duration_bucket) = // was this a slow or fast poll?
if inner_poll_duration >= metrics.slow_poll_threshold {
(&metrics.total_slow_poll_count, &metrics.total_slow_poll_duration)
} else {
(&metrics.total_fast_poll_count, &metrics.total_fast_poll_duration_ns)
};
// update the appropriate bucket
count_bucket.fetch_add(1, SeqCst);
duration_bucket.fetch_add(inner_poll_ns, SeqCst);
ret
}
impl State {
fn on_wake(&self) {
let woke_at: u64 = match self.instrumented_at.elapsed().as_nanos().try_into() {
Ok(woke_at) => woke_at,
// This is highly unlikely as it would mean the task ran for over
// 500 years. If you ran your service for 500 years. If you are
// reading this 500 years in the future, I'm sorry.
Err(_) => return,
};
// We don't actually care about the result
let _ = self.woke_at.compare_exchange(0, woke_at, SeqCst, SeqCst);
}
}
impl ArcWake for State {
fn wake_by_ref(arc_self: &Arc<State>) {
arc_self.on_wake();
arc_self.waker.wake();
}
fn wake(self: Arc<State>) {
self.on_wake();
self.waker.wake();
}
}
#[inline(always)]
fn to_nanos(d: Duration) -> u64 {
debug_assert!(d <= Duration::from_nanos(u64::MAX));
d.as_secs()
.wrapping_mul(1_000_000_000)
.wrapping_add(d.subsec_nanos() as u64)
}
#[inline(always)]
fn sub(a: Duration, b: Duration) -> Duration {
let nanos = to_nanos(a).wrapping_sub(to_nanos(b));
Duration::from_nanos(nanos)
}
#[inline(always)]
fn mean(d: Duration, count: u64) -> Duration {
if let Some(quotient) = to_nanos(d).checked_div(count) {
Duration::from_nanos(quotient)
} else {
Duration::ZERO
}
}