crossbeam_epoch/
internal.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
//! The global data and participant for garbage collection.
//!
//! # Registration
//!
//! In order to track all participants in one place, we need some form of participant
//! registration. When a participant is created, it is registered to a global lock-free
//! singly-linked list of registries; and when a participant is leaving, it is unregistered from the
//! list.
//!
//! # Pinning
//!
//! Every participant contains an integer that tells whether the participant is pinned and if so,
//! what was the global epoch at the time it was pinned. Participants also hold a pin counter that
//! aids in periodic global epoch advancement.
//!
//! When a participant is pinned, a `Guard` is returned as a witness that the participant is pinned.
//! Guards are necessary for performing atomic operations, and for freeing/dropping locations.
//!
//! # Thread-local bag
//!
//! Objects that get unlinked from concurrent data structures must be stashed away until the global
//! epoch sufficiently advances so that they become safe for destruction. Pointers to such objects
//! are pushed into a thread-local bag, and when it becomes full, the bag is marked with the current
//! global epoch and pushed into the global queue of bags. We store objects in thread-local storages
//! for amortizing the synchronization cost of pushing the garbages to a global queue.
//!
//! # Global queue
//!
//! Whenever a bag is pushed into a queue, the objects in some bags in the queue are collected and
//! destroyed along the way. This design reduces contention on data structures. The global queue
//! cannot be explicitly accessed: the only way to interact with it is by calling functions
//! `defer()` that adds an object to the thread-local bag, or `collect()` that manually triggers
//! garbage collection.
//!
//! Ideally each instance of concurrent data structure may have its own queue that gets fully
//! destroyed as soon as the data structure gets dropped.

use crate::primitive::cell::UnsafeCell;
use crate::primitive::sync::atomic;
use core::cell::Cell;
use core::mem::{self, ManuallyDrop};
use core::num::Wrapping;
use core::sync::atomic::Ordering;
use core::{fmt, ptr};

use crossbeam_utils::CachePadded;
use memoffset::offset_of;

use crate::atomic::{Owned, Shared};
use crate::collector::{Collector, LocalHandle};
use crate::deferred::Deferred;
use crate::epoch::{AtomicEpoch, Epoch};
use crate::guard::{unprotected, Guard};
use crate::sync::list::{Entry, IsElement, IterError, List};
use crate::sync::queue::Queue;

/// Maximum number of objects a bag can contain.
#[cfg(not(any(crossbeam_sanitize, miri)))]
const MAX_OBJECTS: usize = 64;
// Makes it more likely to trigger any potential data races.
#[cfg(any(crossbeam_sanitize, miri))]
const MAX_OBJECTS: usize = 4;

/// A bag of deferred functions.
pub(crate) struct Bag {
    /// Stashed objects.
    deferreds: [Deferred; MAX_OBJECTS],
    len: usize,
}

/// `Bag::try_push()` requires that it is safe for another thread to execute the given functions.
unsafe impl Send for Bag {}

impl Bag {
    /// Returns a new, empty bag.
    pub(crate) fn new() -> Self {
        Self::default()
    }

    /// Returns `true` if the bag is empty.
    pub(crate) fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Attempts to insert a deferred function into the bag.
    ///
    /// Returns `Ok(())` if successful, and `Err(deferred)` for the given `deferred` if the bag is
    /// full.
    ///
    /// # Safety
    ///
    /// It should be safe for another thread to execute the given function.
    pub(crate) unsafe fn try_push(&mut self, deferred: Deferred) -> Result<(), Deferred> {
        if self.len < MAX_OBJECTS {
            self.deferreds[self.len] = deferred;
            self.len += 1;
            Ok(())
        } else {
            Err(deferred)
        }
    }

    /// Seals the bag with the given epoch.
    fn seal(self, epoch: Epoch) -> SealedBag {
        SealedBag { epoch, _bag: self }
    }
}

impl Default for Bag {
    fn default() -> Self {
        Bag {
            len: 0,
            deferreds: [Deferred::NO_OP; MAX_OBJECTS],
        }
    }
}

impl Drop for Bag {
    fn drop(&mut self) {
        // Call all deferred functions.
        for deferred in &mut self.deferreds[..self.len] {
            let no_op = Deferred::NO_OP;
            let owned_deferred = mem::replace(deferred, no_op);
            owned_deferred.call();
        }
    }
}

// can't #[derive(Debug)] because Debug is not implemented for arrays 64 items long
impl fmt::Debug for Bag {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Bag")
            .field("deferreds", &&self.deferreds[..self.len])
            .finish()
    }
}

/// A pair of an epoch and a bag.
#[derive(Default, Debug)]
struct SealedBag {
    epoch: Epoch,
    _bag: Bag,
}

/// It is safe to share `SealedBag` because `is_expired` only inspects the epoch.
unsafe impl Sync for SealedBag {}

impl SealedBag {
    /// Checks if it is safe to drop the bag w.r.t. the given global epoch.
    fn is_expired(&self, global_epoch: Epoch) -> bool {
        // A pinned participant can witness at most one epoch advancement. Therefore, any bag that
        // is within one epoch of the current one cannot be destroyed yet.
        global_epoch.wrapping_sub(self.epoch) >= 2
    }
}

/// The global data for a garbage collector.
pub(crate) struct Global {
    /// The intrusive linked list of `Local`s.
    locals: List<Local>,

    /// The global queue of bags of deferred functions.
    queue: Queue<SealedBag>,

    /// The global epoch.
    pub(crate) epoch: CachePadded<AtomicEpoch>,
}

impl Global {
    /// Number of bags to destroy.
    const COLLECT_STEPS: usize = 8;

    /// Creates a new global data for garbage collection.
    #[inline]
    pub(crate) fn new() -> Self {
        Self {
            locals: List::new(),
            queue: Queue::new(),
            epoch: CachePadded::new(AtomicEpoch::new(Epoch::starting())),
        }
    }

    /// Pushes the bag into the global queue and replaces the bag with a new empty bag.
    pub(crate) fn push_bag(&self, bag: &mut Bag, guard: &Guard) {
        let bag = mem::replace(bag, Bag::new());

        atomic::fence(Ordering::SeqCst);

        let epoch = self.epoch.load(Ordering::Relaxed);
        self.queue.push(bag.seal(epoch), guard);
    }

    /// Collects several bags from the global queue and executes deferred functions in them.
    ///
    /// Note: This may itself produce garbage and in turn allocate new bags.
    ///
    /// `pin()` rarely calls `collect()`, so we want the compiler to place that call on a cold
    /// path. In other words, we want the compiler to optimize branching for the case when
    /// `collect()` is not called.
    #[cold]
    pub(crate) fn collect(&self, guard: &Guard) {
        let global_epoch = self.try_advance(guard);

        let steps = if cfg!(crossbeam_sanitize) {
            usize::max_value()
        } else {
            Self::COLLECT_STEPS
        };

        for _ in 0..steps {
            match self.queue.try_pop_if(
                &|sealed_bag: &SealedBag| sealed_bag.is_expired(global_epoch),
                guard,
            ) {
                None => break,
                Some(sealed_bag) => drop(sealed_bag),
            }
        }
    }

    /// Attempts to advance the global epoch.
    ///
    /// The global epoch can advance only if all currently pinned participants have been pinned in
    /// the current epoch.
    ///
    /// Returns the current global epoch.
    ///
    /// `try_advance()` is annotated `#[cold]` because it is rarely called.
    #[cold]
    pub(crate) fn try_advance(&self, guard: &Guard) -> Epoch {
        let global_epoch = self.epoch.load(Ordering::Relaxed);
        atomic::fence(Ordering::SeqCst);

        // TODO(stjepang): `Local`s are stored in a linked list because linked lists are fairly
        // easy to implement in a lock-free manner. However, traversal can be slow due to cache
        // misses and data dependencies. We should experiment with other data structures as well.
        for local in self.locals.iter(guard) {
            match local {
                Err(IterError::Stalled) => {
                    // A concurrent thread stalled this iteration. That thread might also try to
                    // advance the epoch, in which case we leave the job to it. Otherwise, the
                    // epoch will not be advanced.
                    return global_epoch;
                }
                Ok(local) => {
                    let local_epoch = local.epoch.load(Ordering::Relaxed);

                    // If the participant was pinned in a different epoch, we cannot advance the
                    // global epoch just yet.
                    if local_epoch.is_pinned() && local_epoch.unpinned() != global_epoch {
                        return global_epoch;
                    }
                }
            }
        }
        atomic::fence(Ordering::Acquire);

        // All pinned participants were pinned in the current global epoch.
        // Now let's advance the global epoch...
        //
        // Note that if another thread already advanced it before us, this store will simply
        // overwrite the global epoch with the same value. This is true because `try_advance` was
        // called from a thread that was pinned in `global_epoch`, and the global epoch cannot be
        // advanced two steps ahead of it.
        let new_epoch = global_epoch.successor();
        self.epoch.store(new_epoch, Ordering::Release);
        new_epoch
    }
}

/// Participant for garbage collection.
pub(crate) struct Local {
    /// A node in the intrusive linked list of `Local`s.
    entry: Entry,

    /// The local epoch.
    epoch: AtomicEpoch,

    /// A reference to the global data.
    ///
    /// When all guards and handles get dropped, this reference is destroyed.
    collector: UnsafeCell<ManuallyDrop<Collector>>,

    /// The local bag of deferred functions.
    pub(crate) bag: UnsafeCell<Bag>,

    /// The number of guards keeping this participant pinned.
    guard_count: Cell<usize>,

    /// The number of active handles.
    handle_count: Cell<usize>,

    /// Total number of pinnings performed.
    ///
    /// This is just an auxiliary counter that sometimes kicks off collection.
    pin_count: Cell<Wrapping<usize>>,
}

// Make sure `Local` is less than or equal to 2048 bytes.
// https://github.com/crossbeam-rs/crossbeam/issues/551
#[cfg(not(any(crossbeam_sanitize, miri)))] // `crossbeam_sanitize` and `miri` reduce the size of `Local`
#[test]
fn local_size() {
    // TODO: https://github.com/crossbeam-rs/crossbeam/issues/869
    // assert!(
    //     core::mem::size_of::<Local>() <= 2048,
    //     "An allocation of `Local` should be <= 2048 bytes."
    // );
}

impl Local {
    /// Number of pinnings after which a participant will execute some deferred functions from the
    /// global queue.
    const PINNINGS_BETWEEN_COLLECT: usize = 128;

    /// Registers a new `Local` in the provided `Global`.
    pub(crate) fn register(collector: &Collector) -> LocalHandle {
        unsafe {
            // Since we dereference no pointers in this block, it is safe to use `unprotected`.

            let local = Owned::new(Local {
                entry: Entry::default(),
                epoch: AtomicEpoch::new(Epoch::starting()),
                collector: UnsafeCell::new(ManuallyDrop::new(collector.clone())),
                bag: UnsafeCell::new(Bag::new()),
                guard_count: Cell::new(0),
                handle_count: Cell::new(1),
                pin_count: Cell::new(Wrapping(0)),
            })
            .into_shared(unprotected());
            collector.global.locals.insert(local, unprotected());
            LocalHandle {
                local: local.as_raw(),
            }
        }
    }

    /// Returns a reference to the `Global` in which this `Local` resides.
    #[inline]
    pub(crate) fn global(&self) -> &Global {
        &self.collector().global
    }

    /// Returns a reference to the `Collector` in which this `Local` resides.
    #[inline]
    pub(crate) fn collector(&self) -> &Collector {
        self.collector.with(|c| unsafe { &**c })
    }

    /// Returns `true` if the current participant is pinned.
    #[inline]
    pub(crate) fn is_pinned(&self) -> bool {
        self.guard_count.get() > 0
    }

    /// Adds `deferred` to the thread-local bag.
    ///
    /// # Safety
    ///
    /// It should be safe for another thread to execute the given function.
    pub(crate) unsafe fn defer(&self, mut deferred: Deferred, guard: &Guard) {
        let bag = self.bag.with_mut(|b| &mut *b);

        while let Err(d) = bag.try_push(deferred) {
            self.global().push_bag(bag, guard);
            deferred = d;
        }
    }

    pub(crate) fn flush(&self, guard: &Guard) {
        let bag = self.bag.with_mut(|b| unsafe { &mut *b });

        if !bag.is_empty() {
            self.global().push_bag(bag, guard);
        }

        self.global().collect(guard);
    }

    /// Pins the `Local`.
    #[inline]
    pub(crate) fn pin(&self) -> Guard {
        let guard = Guard { local: self };

        let guard_count = self.guard_count.get();
        self.guard_count.set(guard_count.checked_add(1).unwrap());

        if guard_count == 0 {
            let global_epoch = self.global().epoch.load(Ordering::Relaxed);
            let new_epoch = global_epoch.pinned();

            // Now we must store `new_epoch` into `self.epoch` and execute a `SeqCst` fence.
            // The fence makes sure that any future loads from `Atomic`s will not happen before
            // this store.
            if cfg!(all(
                any(target_arch = "x86", target_arch = "x86_64"),
                not(miri)
            )) {
                // HACK(stjepang): On x86 architectures there are two different ways of executing
                // a `SeqCst` fence.
                //
                // 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction.
                // 2. `_.compare_exchange(_, _, SeqCst, SeqCst)`, which compiles into a `lock cmpxchg`
                //    instruction.
                //
                // Both instructions have the effect of a full barrier, but benchmarks have shown
                // that the second one makes pinning faster in this particular case.  It is not
                // clear that this is permitted by the C++ memory model (SC fences work very
                // differently from SC accesses), but experimental evidence suggests that this
                // works fine.  Using inline assembly would be a viable (and correct) alternative,
                // but alas, that is not possible on stable Rust.
                let current = Epoch::starting();
                let res = self.epoch.compare_exchange(
                    current,
                    new_epoch,
                    Ordering::SeqCst,
                    Ordering::SeqCst,
                );
                debug_assert!(res.is_ok(), "participant was expected to be unpinned");
                // We add a compiler fence to make it less likely for LLVM to do something wrong
                // here.  Formally, this is not enough to get rid of data races; practically,
                // it should go a long way.
                atomic::compiler_fence(Ordering::SeqCst);
            } else {
                self.epoch.store(new_epoch, Ordering::Relaxed);
                atomic::fence(Ordering::SeqCst);
            }

            // Increment the pin counter.
            let count = self.pin_count.get();
            self.pin_count.set(count + Wrapping(1));

            // After every `PINNINGS_BETWEEN_COLLECT` try advancing the epoch and collecting
            // some garbage.
            if count.0 % Self::PINNINGS_BETWEEN_COLLECT == 0 {
                self.global().collect(&guard);
            }
        }

        guard
    }

    /// Unpins the `Local`.
    #[inline]
    pub(crate) fn unpin(&self) {
        let guard_count = self.guard_count.get();
        self.guard_count.set(guard_count - 1);

        if guard_count == 1 {
            self.epoch.store(Epoch::starting(), Ordering::Release);

            if self.handle_count.get() == 0 {
                self.finalize();
            }
        }
    }

    /// Unpins and then pins the `Local`.
    #[inline]
    pub(crate) fn repin(&self) {
        let guard_count = self.guard_count.get();

        // Update the local epoch only if there's only one guard.
        if guard_count == 1 {
            let epoch = self.epoch.load(Ordering::Relaxed);
            let global_epoch = self.global().epoch.load(Ordering::Relaxed).pinned();

            // Update the local epoch only if the global epoch is greater than the local epoch.
            if epoch != global_epoch {
                // We store the new epoch with `Release` because we need to ensure any memory
                // accesses from the previous epoch do not leak into the new one.
                self.epoch.store(global_epoch, Ordering::Release);

                // However, we don't need a following `SeqCst` fence, because it is safe for memory
                // accesses from the new epoch to be executed before updating the local epoch. At
                // worse, other threads will see the new epoch late and delay GC slightly.
            }
        }
    }

    /// Increments the handle count.
    #[inline]
    pub(crate) fn acquire_handle(&self) {
        let handle_count = self.handle_count.get();
        debug_assert!(handle_count >= 1);
        self.handle_count.set(handle_count + 1);
    }

    /// Decrements the handle count.
    #[inline]
    pub(crate) fn release_handle(&self) {
        let guard_count = self.guard_count.get();
        let handle_count = self.handle_count.get();
        debug_assert!(handle_count >= 1);
        self.handle_count.set(handle_count - 1);

        if guard_count == 0 && handle_count == 1 {
            self.finalize();
        }
    }

    /// Removes the `Local` from the global linked list.
    #[cold]
    fn finalize(&self) {
        debug_assert_eq!(self.guard_count.get(), 0);
        debug_assert_eq!(self.handle_count.get(), 0);

        // Temporarily increment handle count. This is required so that the following call to `pin`
        // doesn't call `finalize` again.
        self.handle_count.set(1);
        unsafe {
            // Pin and move the local bag into the global queue. It's important that `push_bag`
            // doesn't defer destruction on any new garbage.
            let guard = &self.pin();
            self.global()
                .push_bag(self.bag.with_mut(|b| &mut *b), guard);
        }
        // Revert the handle count back to zero.
        self.handle_count.set(0);

        unsafe {
            // Take the reference to the `Global` out of this `Local`. Since we're not protected
            // by a guard at this time, it's crucial that the reference is read before marking the
            // `Local` as deleted.
            let collector: Collector = ptr::read(self.collector.with(|c| &*(*c)));

            // Mark this node in the linked list as deleted.
            self.entry.delete(unprotected());

            // Finally, drop the reference to the global. Note that this might be the last reference
            // to the `Global`. If so, the global data will be destroyed and all deferred functions
            // in its queue will be executed.
            drop(collector);
        }
    }
}

impl IsElement<Local> for Local {
    fn entry_of(local: &Local) -> &Entry {
        let entry_ptr = (local as *const Local as usize + offset_of!(Local, entry)) as *const Entry;
        unsafe { &*entry_ptr }
    }

    unsafe fn element_of(entry: &Entry) -> &Local {
        // offset_of! macro uses unsafe, but it's unnecessary in this context.
        #[allow(unused_unsafe)]
        let local_ptr = (entry as *const Entry as usize - offset_of!(Local, entry)) as *const Local;
        &*local_ptr
    }

    unsafe fn finalize(entry: &Entry, guard: &Guard) {
        guard.defer_destroy(Shared::from(Self::element_of(entry) as *const _));
    }
}

#[cfg(all(test, not(crossbeam_loom)))]
mod tests {
    use std::sync::atomic::{AtomicUsize, Ordering};

    use super::*;

    #[test]
    fn check_defer() {
        static FLAG: AtomicUsize = AtomicUsize::new(0);
        fn set() {
            FLAG.store(42, Ordering::Relaxed);
        }

        let d = Deferred::new(set);
        assert_eq!(FLAG.load(Ordering::Relaxed), 0);
        d.call();
        assert_eq!(FLAG.load(Ordering::Relaxed), 42);
    }

    #[test]
    fn check_bag() {
        static FLAG: AtomicUsize = AtomicUsize::new(0);
        fn incr() {
            FLAG.fetch_add(1, Ordering::Relaxed);
        }

        let mut bag = Bag::new();
        assert!(bag.is_empty());

        for _ in 0..MAX_OBJECTS {
            assert!(unsafe { bag.try_push(Deferred::new(incr)).is_ok() });
            assert!(!bag.is_empty());
            assert_eq!(FLAG.load(Ordering::Relaxed), 0);
        }

        let result = unsafe { bag.try_push(Deferred::new(incr)) };
        assert!(result.is_err());
        assert!(!bag.is_empty());
        assert_eq!(FLAG.load(Ordering::Relaxed), 0);

        drop(bag);
        assert_eq!(FLAG.load(Ordering::Relaxed), MAX_OBJECTS);
    }
}