persistcli/maelstrom/txn_list_append_multi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An implementation of the Maelstrom txn-list-append workload using the
//! multi-shard txn abstraction.
use std::collections::btree_map::Entry;
use std::collections::hash_map::DefaultHasher;
use std::collections::{BTreeMap, BTreeSet};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use std::time::{Duration, SystemTime, UNIX_EPOCH};
use async_trait::async_trait;
use differential_dataflow::consolidation::consolidate_updates;
use mz_ore::metrics::MetricsRegistry;
use mz_ore::now::{NOW_ZERO, SYSTEM_TIME};
use mz_persist::cfg::{BlobConfig, ConsensusConfig};
use mz_persist::location::{Blob, Consensus, ExternalError};
use mz_persist::unreliable::{UnreliableBlob, UnreliableConsensus, UnreliableHandle};
use mz_persist_client::async_runtime::IsolatedRuntime;
use mz_persist_client::cache::StateCache;
use mz_persist_client::cfg::PersistConfig;
use mz_persist_client::metrics::Metrics as PersistMetrics;
use mz_persist_client::read::ReadHandle;
use mz_persist_client::rpc::PubSubClientConnection;
use mz_persist_client::{Diagnostics, PersistClient, ShardId};
use mz_persist_types::codec_impls::{StringSchema, UnitSchema};
use mz_timestamp_oracle::postgres_oracle::{
PostgresTimestampOracle, PostgresTimestampOracleConfig,
};
use mz_timestamp_oracle::TimestampOracle;
use mz_txn_wal::metrics::Metrics as TxnMetrics;
use mz_txn_wal::operator::DataSubscribeTask;
use mz_txn_wal::txns::{Tidy, TxnsHandle};
use timely::progress::Timestamp;
use tokio::sync::Mutex;
use tracing::{debug, info};
use crate::maelstrom::api::{Body, MaelstromError, NodeId, ReqTxnOp, ResTxnOp};
use crate::maelstrom::node::{Handle, Service};
use crate::maelstrom::services::{
CachingBlob, MaelstromBlob, MaelstromConsensus, MemTimestampOracle,
};
use crate::maelstrom::Args;
#[derive(Debug)]
pub struct Transactor {
txns_id: ShardId,
oracle: Box<dyn TimestampOracle<mz_repr::Timestamp> + Send>,
client: PersistClient,
txns: TxnsHandle<String, (), u64, i64>,
tidy: Tidy,
data_reads: BTreeMap<ShardId, (u64, ReadHandle<String, (), u64, i64>)>,
peeks: BTreeMap<ShardId, DataSubscribeTask>,
}
impl Transactor {
pub async fn new(
client: PersistClient,
txns_id: ShardId,
oracle: Box<dyn TimestampOracle<mz_repr::Timestamp> + Send>,
) -> Result<Self, MaelstromError> {
let init_ts = u64::from(oracle.write_ts().await.timestamp);
let txns = TxnsHandle::open(
init_ts,
client.clone(),
mz_txn_wal::all_dyncfgs(client.dyncfgs().clone()),
Arc::new(TxnMetrics::new(&MetricsRegistry::new())),
txns_id,
)
.await;
oracle.apply_write(init_ts.into()).await;
Ok(Transactor {
txns_id,
oracle,
txns,
tidy: Tidy::default(),
client,
data_reads: BTreeMap::default(),
peeks: BTreeMap::default(),
})
}
pub async fn transact(
&mut self,
req_ops: &[ReqTxnOp],
) -> Result<Vec<ResTxnOp>, MaelstromError> {
let mut read_ids = Vec::new();
let mut writes = BTreeMap::<ShardId, Vec<(String, i64)>>::new();
for op in req_ops {
match op {
ReqTxnOp::Read { key } => {
read_ids.push(self.key_shard(*key));
}
ReqTxnOp::Append { key, val } => writes
.entry(self.key_shard(*key))
.or_default()
.push((val.to_string(), 1)),
}
}
// First create and register any data shards as necessary.
for data_id in writes.keys().chain(read_ids.iter()) {
let _init_ts = self.ensure_registered(data_id).await;
}
// Run the core read+write, retry-at-a-higher-ts-on-conflict loop.
let mut read_ts = u64::from(self.oracle.read_ts().await);
info!("read ts {}", read_ts);
self.peeks.clear();
self.read_at(read_ts, read_ids.iter()).await;
if writes.is_empty() {
debug!("req committed at read_ts={}", read_ts);
} else {
let mut txn = self.txns.begin();
for (data_id, writes) in writes {
for (data, diff) in writes {
txn.write(&data_id, data, (), diff).await;
}
}
let mut write_ts = u64::from(self.oracle.write_ts().await.timestamp);
loop {
// To be linearizable, we need to ensure that reads are done at
// the timestamp previous to the write_ts. However, we're not
// guaranteed that this is readable (someone could have consumed
// the write_ts and then crashed), so we first have to do an
// empty write at read_ts.
let new_read_ts = write_ts.checked_sub(1).expect("write_ts should be > 0");
info!("read ts {} write ts {}", new_read_ts, write_ts);
if new_read_ts != read_ts {
self.unblock_and_read_at(new_read_ts, read_ids.iter()).await;
read_ts = new_read_ts;
}
txn.tidy(std::mem::take(&mut self.tidy));
match txn.commit_at(&mut self.txns, write_ts).await {
Ok(maintenance) => {
self.oracle.apply_write(write_ts.into()).await;
// Aggressively allow the txns shard to compact. To
// exercise more edge cases, do it before we apply the
// newly committed txn.
self.txns.compact_to(write_ts).await;
debug!("req committed at read_ts={} write_ts={}", read_ts, write_ts);
let tidy = maintenance.apply(&mut self.txns).await;
self.tidy.merge(tidy);
break;
}
Err(current) => {
write_ts = current;
// Have to redo our reads, but that's taken care of at
// the top of the loop.
continue;
}
}
}
}
// Normally, txns would have to be all reads followed by all writes. To
// support any txn-list-append txns, this map is filled in with writes
// from _this_ txn as we walk through the request, allowing us to append
// them to reads.
let mut this_txn_writes = BTreeMap::<_, Vec<_>>::new();
let res = req_ops
.iter()
.map(|op| match op {
ReqTxnOp::Read { key } => {
let key_shard = self.key_shard(*key);
let mut data = self
.peeks
.get(&key_shard)
.expect("key should have been read")
.output()
.iter()
// The DataSubscribe only guarantees that this output contains
// everything <= read_ts, but it might contain things after it,
// too. Filter them out.
.filter(|(_, t, _)| *t <= read_ts)
.map(|(k, t, d)| {
let k = k.parse().expect("valid u64");
(k, *t, *d)
})
.collect::<Vec<_>>();
let mut seen = BTreeSet::new();
let mut val = Vec::new();
consolidate_updates(&mut data);
// Sort things in commit (ts) order, then by key, then with
// insertions before retractions (so we can assert that
// retractions mean removal from the `seen` map).
data.sort_by_key(|(k, t, d)| (*t, *k, std::cmp::Reverse(*d)));
debug!(
"{} {:.9} read after sort {:?}",
key,
key_shard.to_string(),
data
);
for (x, _, d) in data {
if d == 1 {
assert!(seen.insert(x));
val.push(x);
} else if d == -1 {
assert!(seen.remove(&x));
val.retain(|y| *y != x);
} else {
panic!("unexpected diff: {}", d);
}
}
if let Some(this_writes) = this_txn_writes.get(key) {
val.extend(this_writes.iter().copied());
}
ResTxnOp::Read { key: *key, val }
}
ReqTxnOp::Append { key, val } => {
this_txn_writes.entry(key).or_default().push(val);
ResTxnOp::Append {
key: *key,
val: *val,
}
}
})
.collect();
Ok(res)
}
// Returns the minimum timestamp at which this can be read.
async fn ensure_registered(&mut self, data_id: &ShardId) -> Result<u64, ExternalError> {
// Already registered.
if let Some((init_ts, _)) = self.data_reads.get(data_id) {
return Ok(*init_ts);
}
// Not registered
let data_read = self
.client
.open_leased_reader(
*data_id,
Arc::new(StringSchema),
Arc::new(UnitSchema),
Diagnostics::from_purpose("txn data"),
true,
)
.await
.expect("data schema shouldn't change");
let mut init_ts = u64::from(self.oracle.write_ts().await.timestamp);
loop {
let data_write = self
.client
.open_writer(
*data_id,
Arc::new(StringSchema),
Arc::new(UnitSchema),
Diagnostics::from_purpose("txn data"),
)
.await
.expect("data schema shouldn't change");
let res = self.txns.register(init_ts, [data_write]).await;
match res {
Ok(_) => {
self.oracle.apply_write(init_ts.into()).await;
self.data_reads.insert(*data_id, (init_ts, data_read));
return Ok(init_ts);
}
Err(new_init_ts) => {
debug!(
"register {:.9} at {} mismatch current={}",
data_id, init_ts, new_init_ts
);
init_ts = u64::from(self.oracle.write_ts().await.timestamp);
continue;
}
}
}
}
async fn read_at(&mut self, read_ts: u64, data_ids: impl Iterator<Item = &ShardId>) {
// Ensure these reads don't block.
let tidy = self.txns.apply_le(&read_ts).await;
self.tidy.merge(tidy);
// SUBTLE! Maelstrom txn-list-append requires that we be able to
// reconstruct the order in which we appended list items. To avoid
// needing to change the staged writes if our read_ts advances, we
// instead do something overly clever and use the update timestamps. To
// recover them, instead of grabbing a snapshot at the read_ts, we have
// to start a subscription at time 0 and walk it forward until we pass
// read_ts.
for data_id in data_ids {
let peek = match self.peeks.entry(*data_id) {
Entry::Occupied(x) => x.into_mut(),
Entry::Vacant(x) => {
let peek =
DataSubscribeTask::new(self.client.clone(), self.txns_id, *data_id, 0)
.await;
x.insert(peek)
}
};
peek.step_past(read_ts).await;
}
}
async fn unblock_and_read_at(
&mut self,
read_ts: u64,
data_ids: impl Iterator<Item = &ShardId>,
) {
debug!("unblock_and_read_at {}", read_ts);
let mut txn = self.txns.begin();
match txn.commit_at(&mut self.txns, read_ts).await {
Ok(apply) => {
self.tidy.merge(apply.apply(&mut self.txns).await);
}
// Already unblocked.
Err(_) => {}
}
self.read_at(read_ts, data_ids).await
}
// Constructs a ShardId that is stable per key (so each maelstrom process
// gets the same one) and per txns_id (so runs of maelstrom don't interfere
// with each other).
fn key_shard(&self, key: u64) -> ShardId {
let mut h = DefaultHasher::new();
key.hash(&mut h);
self.txns_id.hash(&mut h);
let mut buf = [0u8; 16];
buf[0..8].copy_from_slice(&h.finish().to_le_bytes());
let shard_id = format!("s{}", uuid::Uuid::from_bytes(buf));
shard_id.parse().expect("valid shard id")
}
}
/// An adaptor to implement [Service] using [Transactor]
#[derive(Debug)]
pub struct TransactorService(pub Arc<Mutex<Transactor>>);
#[async_trait]
impl Service for TransactorService {
async fn init(args: &Args, handle: &Handle) -> Result<Self, MaelstromError> {
// Use the Maelstrom services to initialize a new random ShardId (so we
// can repeatedly run tests against the same Blob and Consensus without
// conflicting) and communicate it between processes.
let shard_id = handle.maybe_init_shard_id().await?;
// Make sure the seed is recomputed each time through the retry
// closure, so we don't retry the same deterministic timeouts.
let seed: u64 = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap_or_default()
.subsec_nanos()
.into();
// It doesn't particularly matter what we set should_happen to, so we do
// this to have a convenient single tunable param.
let should_happen = 1.0 - args.unreliability;
// For consensus, set should_timeout to `args.unreliability` so that once we split
// ExternalErrors into determinate vs indeterminate, then
// `args.unreliability` will also be the fraction of txns that it's
// not save for Maelstrom to retry (b/c indeterminate error in
// Consensus CaS).
let should_timeout = args.unreliability;
// It doesn't particularly matter what we set should_happen and
// should_timeout to for blobs, so use the same handle for both.
let unreliable = UnreliableHandle::new(seed, should_happen, should_timeout);
let mut config =
PersistConfig::new_default_configs(&mz_persist_client::BUILD_INFO, SYSTEM_TIME.clone());
let metrics_registry = MetricsRegistry::new();
let metrics = Arc::new(PersistMetrics::new(&config, &metrics_registry));
// Construct requested Blob.
let blob = match &args.blob_uri {
Some(blob_uri) => {
let cfg = BlobConfig::try_from(
blob_uri,
Box::new(config.clone()),
metrics.s3_blob.clone(),
Arc::clone(&config.configs),
)
.await
.expect("blob_uri should be valid");
loop {
match cfg.clone().open().await {
Ok(x) => break x,
Err(err) => {
info!("failed to open blob, trying again: {}", err);
}
}
}
}
None => MaelstromBlob::new(handle.clone()),
};
let blob: Arc<dyn Blob> = Arc::new(UnreliableBlob::new(blob, unreliable.clone()));
// Normal production persist usage (even including a real SQL txn impl)
// isn't particularly benefitted by a cache, so we don't have one baked
// into persist. In contrast, our Maelstrom transaction model
// intentionally exercises both a new snapshot and new listener on each
// txn. As a result, without a cache, things would be terribly slow,
// unreliable would cause more retries than are interesting, and the
// Lamport diagrams that Maelstrom generates would be noisy.
let blob = CachingBlob::new(blob);
// to simplify some downstream logic (+ a bit more stress testing),
// always downgrade the since of critical handles when asked
config.critical_downgrade_interval = Duration::from_secs(0);
// set a live diff scan limit such that we'll explore both the fast and slow paths
config.set_state_versions_recent_live_diffs_limit(5);
let consensus = match &args.consensus_uri {
Some(consensus_uri) => {
let cfg = ConsensusConfig::try_from(
consensus_uri,
Box::new(config.clone()),
metrics.postgres_consensus.clone(),
)
.expect("consensus_uri should be valid");
loop {
match cfg.clone().open().await {
Ok(x) => break x,
Err(err) => {
info!("failed to open consensus, trying again: {}", err);
}
}
}
}
None => MaelstromConsensus::new(handle.clone()),
};
let consensus: Arc<dyn Consensus> =
Arc::new(UnreliableConsensus::new(consensus, unreliable));
// Wire up the TransactorService.
let isolated_runtime = Arc::new(IsolatedRuntime::default());
let pubsub_sender = PubSubClientConnection::noop().sender;
let shared_states = Arc::new(StateCache::new(
&config,
Arc::clone(&metrics),
Arc::clone(&pubsub_sender),
));
let client = PersistClient::new(
config,
blob,
consensus,
metrics,
isolated_runtime,
shared_states,
pubsub_sender,
)?;
// It's an annoying refactor to add an oracle_uri cli flag, so for now,
// piggy-back on --consensus_uri.
let oracle_uri = args.consensus_uri.clone();
let oracle_scheme = oracle_uri.as_ref().map(|x| (x.scheme(), x));
let oracle: Box<dyn TimestampOracle<mz_repr::Timestamp> + Send> = match oracle_scheme {
Some(("postgres", uri)) | Some(("postgresql", uri)) => {
let cfg = PostgresTimestampOracleConfig::new(uri, &metrics_registry);
Box::new(
PostgresTimestampOracle::open(
cfg,
"maelstrom".to_owned(),
mz_repr::Timestamp::minimum(),
NOW_ZERO.clone(),
false, /* read-only */
)
.await,
)
}
Some(("mem", _)) => Box::new(MemTimestampOracle::default()),
Some((scheme, _)) => unimplemented!("unsupported oracle type: {}", scheme),
None => unimplemented!("TODO: support maelstrom oracle"),
};
let transactor = Transactor::new(client, shard_id, oracle).await?;
let service = TransactorService(Arc::new(Mutex::new(transactor)));
Ok(service)
}
async fn eval(&self, handle: Handle, src: NodeId, req: Body) {
match req {
Body::ReqTxn { msg_id, txn } => {
let in_reply_to = msg_id;
match self.0.lock().await.transact(&txn).await {
Ok(txn) => handle.send_res(src, |msg_id| Body::ResTxn {
msg_id,
in_reply_to,
txn,
}),
Err(MaelstromError { code, text }) => {
handle.send_res(src, |msg_id| Body::Error {
msg_id: Some(msg_id),
in_reply_to,
code,
text,
})
}
}
}
req => unimplemented!("unsupported req: {:?}", req),
}
}
}