1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

use std::error::Error;
use std::fmt;

use byteorder::{NetworkEndian, ReadBytesExt};
use bytes::{BufMut, BytesMut};
use dec::OrderedDecimal;
use mz_ore::cast::CastFrom;
use mz_repr::adt::numeric::{self, cx_datum, Numeric as AdtNumeric, NumericAgg};
use once_cell::sync::Lazy;
use postgres_types::{to_sql_checked, FromSql, IsNull, ToSql, Type};

/// A wrapper for the `repr` crate's `Decimal` type that can be serialized to
/// and deserialized from the PostgreSQL binary format.
#[derive(Debug)]
pub struct Numeric(pub OrderedDecimal<AdtNumeric>);

impl fmt::Display for Numeric {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl From<AdtNumeric> for Numeric {
    fn from(n: AdtNumeric) -> Numeric {
        Numeric(OrderedDecimal(n))
    }
}

/// `ToSql` and `FromSql` use base 10,000 units.
const TO_FROM_SQL_BASE_POW: u32 = 4;

static TO_SQL_BASER: Lazy<AdtNumeric> =
    Lazy::new(|| AdtNumeric::from(10u32.pow(TO_FROM_SQL_BASE_POW)));
static FROM_SQL_SCALER: Lazy<AdtNumeric> = Lazy::new(|| AdtNumeric::from(TO_FROM_SQL_BASE_POW));

/// The maximum number of units necessary to represent a valid [`AdtNumeric`] value.
const UNITS_LEN: usize = 11;

impl ToSql for Numeric {
    fn to_sql(
        &self,
        _: &Type,
        out: &mut BytesMut,
    ) -> Result<IsNull, Box<dyn Error + 'static + Send + Sync>> {
        let mut d = self.0 .0.clone();
        let scale = u16::try_from(numeric::get_scale(&d))?;
        let is_zero = d.is_zero();
        let is_nan = d.is_nan();
        let is_neg = d.is_negative() && !is_zero;
        let is_infinite = d.is_infinite();

        let mut cx = numeric::cx_datum();
        // Need to extend exponents slightly because fractional components need
        // to be aligned to base 10,000.
        cx.set_max_exponent(cx.max_exponent() + isize::cast_from(i64::from(TO_FROM_SQL_BASE_POW)))
            .unwrap();
        cx.set_min_exponent(cx.min_exponent() - isize::cast_from(i64::from(TO_FROM_SQL_BASE_POW)))
            .unwrap();
        cx.abs(&mut d);

        let mut digits = [0u16; UNITS_LEN];
        let mut d_i = UNITS_LEN;

        let (fract_units, leading_zero_units) = if d.exponent() < 0 {
            let pos_exp = usize::try_from(-d.exponent()).expect("positive value < 40");
            // You have leading zeroes in the case where:
            // - The exponent's absolute value exceeds the number of digits
            // - `d` only contains fractional zeroes
            let leading_zero_units = if pos_exp >= usize::cast_from(d.digits()) {
                // If the value is zero, one zero digit gets double counted
                // (this is also why the above inequality is not strict)
                let digits = if d.is_zero() {
                    0
                } else {
                    usize::cast_from(d.digits())
                };
                // integer division with rounding up instead of down
                (pos_exp - digits + usize::cast_from(TO_FROM_SQL_BASE_POW) - 1)
                    / usize::cast_from(TO_FROM_SQL_BASE_POW)
            } else {
                0
            };

            // Ensure most significant fractional digit in ten's place of base
            // 10,000 value.
            let s = pos_exp % usize::cast_from(TO_FROM_SQL_BASE_POW);
            let unit_shift_exp = if s != 0 {
                pos_exp + usize::cast_from(TO_FROM_SQL_BASE_POW) - s
            } else {
                pos_exp
            };

            // Convert d into a "canonical coefficient" with most significant
            // fractional digit properly aligned.
            cx.scaleb(&mut d, &AdtNumeric::from(unit_shift_exp));

            (
                u16::try_from(unit_shift_exp / usize::cast_from(TO_FROM_SQL_BASE_POW))
                    .expect("value < 40"),
                leading_zero_units,
            )
        } else {
            (0, 0)
        };

        let mut w = d.clone();
        while !d.is_zero() && !d.is_special() {
            d_i -= 1;
            // Get unit value, i.e. d % 10,000
            cx.rem(&mut d, &TO_SQL_BASER);
            // Decimal library doesn't support direct u16 conversion.
            digits[d_i] =
                u16::try_from(u32::try_from(d).expect("value < 10,000")).expect("value < 10,000");
            cx.div_integer(&mut w, &TO_SQL_BASER);
            d = w;
        }
        d_i -= leading_zero_units;

        let units = u16::try_from(UNITS_LEN - d_i).unwrap();
        let weight = if is_zero {
            0
        } else {
            i16::try_from(units - fract_units).unwrap() - 1
        };

        out.put_u16(units);
        out.put_i16(weight);
        // sign
        out.put_u16(if is_infinite {
            if is_neg {
                0xF000
            } else {
                0xD000
            }
        } else if is_nan {
            0xC000
        } else if is_neg {
            0x4000
        } else {
            0
        });
        out.put_u16(scale);
        if !is_nan {
            for digit in digits[d_i..].iter() {
                out.put_u16(*digit);
            }
        }

        Ok(IsNull::No)
    }

    fn accepts(ty: &Type) -> bool {
        matches!(*ty, Type::NUMERIC)
    }

    to_sql_checked!();
}

impl<'a> FromSql<'a> for Numeric {
    fn from_sql(_: &Type, mut raw: &'a [u8]) -> Result<Numeric, Box<dyn Error + Sync + Send>> {
        let units = raw.read_i16::<NetworkEndian>()?;
        let weight = raw.read_i16::<NetworkEndian>()?;
        let sign = raw.read_u16::<NetworkEndian>()?;
        let in_scale = raw.read_i16::<NetworkEndian>()?;
        let mut digits = vec![];
        for _ in 0..units {
            digits.push(raw.read_u16::<NetworkEndian>()?)
        }

        // We need wider context because decoding values can require >39 digits
        // of precision given how alignment works.
        let mut cx = numeric::cx_agg();
        let mut d = NumericAgg::zero();

        let units_usize =
            usize::try_from(units).map_err(|_| "units must not be negative: {units}")?;

        for digit in digits[..units_usize].iter() {
            cx.scaleb(&mut d, &FROM_SQL_SCALER);
            let n = AdtNumeric::from(u32::from(*digit));
            cx.add(&mut d, &n);
        }

        match sign {
            0 => (),
            // Infinity
            0xD000 => return Ok(Numeric::from(AdtNumeric::infinity())),
            // -Infinity
            0xF000 => {
                let mut cx = numeric::cx_datum();
                let mut d = AdtNumeric::infinity();
                cx.neg(&mut d);
                return Ok(Numeric::from(d));
            }
            // Negative
            0x4000 => cx.neg(&mut d),
            // NaN
            0xC000 => return Ok(Numeric::from(AdtNumeric::nan())),
            _ => return Err("bad sign in numeric".into()),
        }

        let mut scale = (units - weight - 1) * 4;

        // Adjust scales
        if scale < 0 {
            // Multiply by 10^scale
            cx.scaleb(&mut d, &AdtNumeric::from(-i32::from(scale)));
            scale = 0;
        } else if scale > in_scale {
            // Divide by 10^(difference in scale and in_scale)
            cx.scaleb(&mut d, &AdtNumeric::from(-i32::from(scale - in_scale)));
            scale = in_scale;
        }

        cx.scaleb(&mut d, &AdtNumeric::from(-i32::from(scale)));
        cx.reduce(&mut d);

        let mut cx = cx_datum();
        let d_datum = cx.to_width(d);

        // Reducing before taking to datum width lets us check for any status
        // for errors.
        if d.is_infinite() || cx.status().any() {
            return Err(format!("Unable to take bytes to numeric value; rendered {}", d).into());
        }
        Ok(Numeric::from(d_datum))
    }

    fn accepts(ty: &Type) -> bool {
        matches!(*ty, Type::NUMERIC)
    }
}

#[mz_ore::test]
#[cfg_attr(miri, ignore)] // unsupported operation: can't call foreign function `decContextDefault` on OS `linux`
fn test_to_from_sql_roundtrip() {
    fn inner(s: &str) {
        let mut cx = numeric::cx_datum();
        let d = cx.parse(s).unwrap();
        let r = Numeric(OrderedDecimal(d));

        let mut out = BytesMut::new();

        let _ = r.to_sql(&Type::NUMERIC, &mut out).unwrap();

        let d_from_sql = Numeric::from_sql(&Type::NUMERIC, &out).unwrap();
        assert_eq!(r.0, d_from_sql.0);
    }
    inner("0");
    inner("-0");
    inner("0.1");
    inner("0.0");
    inner("0.00");
    inner("0.000");
    inner("0.0000");
    inner("0.00000");
    inner("123456789.012346789");
    inner("000000000000000000000000000000000000001");
    inner("000000000000000000000000000000000000000");
    inner("999999999999999999999999999999999999999");
    inner("123456789012345678901234567890123456789");
    inner("-123456789012345678901234567890123456789");
    inner(".123456789012345678901234567890123456789");
    inner(".000000000000000000000000000000000000001");
    inner(".000000000000000000000000000000000000000");
    inner(".999999999999999999999999999999999999999");
    inner("-0.123456789012345678901234567890123456789");
    inner("1e25");
    inner("-1e25");
    inner("9.876e-25");
    inner("-9.876e-25");
    inner("98760000");
    inner(".00009876");
    inner("-.00009876");
    inner("NaN");

    // Test infinity, which is a valid value in aggregations over numeric
    let mut cx = numeric::cx_datum();
    let v = [
        cx.parse("-999999999999999999999999999999999999999")
            .unwrap(),
        cx.parse("-999999999999999999999999999999999999999")
            .unwrap(),
    ];
    // -Infinity
    let s = cx.sum(v.iter());
    assert!(s.is_infinite());
    let r = Numeric::from(s);
    let mut out = BytesMut::new();

    let _ = r.to_sql(&Type::NUMERIC, &mut out).unwrap();

    let d_from_sql = Numeric::from_sql(&Type::NUMERIC, &out).unwrap();
    assert_eq!(r.0, d_from_sql.0);
}