regex_automata/dfa/accel.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
// This module defines some core types for dealing with accelerated DFA states.
// Briefly, a DFA state can be "accelerated" if all of its transitions except
// for a few loop back to itself. This directly implies that the only way out
// of such a state is if a byte corresponding to one of those non-loopback
// transitions is found. Such states are often found in simple repetitions in
// non-Unicode regexes. For example, consider '(?-u)[^a]+a'. We can look at its
// DFA with regex-cli:
//
// $ regex-cli debug dense dfa -p '(?-u)[^a]+a' -BbC --no-table
// D 000000:
// Q 000001:
// *000002:
// A 000003: \x00-` => 3, a => 8, b-\xFF => 3
// A 000004: \x00-` => 4, a => 7, b-\xFF => 4
// 000005: \x00-` => 4, b-\xFF => 4
// 000006: \x00-` => 3, a => 6, b-\xFF => 3
// 000007: \x00-\xFF => 2, EOI => 2
// 000008: \x00-\xFF => 2, EOI => 2
//
// In particular, state 3 is accelerated (shown via the 'A' indicator) since
// the only way to leave that state once entered is to see an 'a' byte. If
// there is a long run of non-'a' bytes, then using something like 'memchr'
// to find the next 'a' byte can be significantly faster than just using the
// standard byte-at-a-time state machine.
//
// Unfortunately, this optimization rarely applies when Unicode is enabled.
// For example, patterns like '[^a]' don't actually match any byte that isn't
// 'a', but rather, any UTF-8 encoding of a Unicode scalar value that isn't
// 'a'. This makes the state machine much more complex---far beyond a single
// state---and removes the ability to easily accelerate it. (Because if the
// machine sees a non-UTF-8 sequence, then the machine won't match through it.)
//
// In practice, we only consider accelerating states that have 3 or fewer
// non-loop transitions. At a certain point, you get diminishing returns, but
// also because that's what the memchr crate supports. The structures below
// hard-code this assumption and provide (de)serialization APIs for use inside
// a DFA.
//
// And finally, note that there is some trickery involved in making it very
// fast to not only check whether a state is accelerated at search time, but
// also to access the bytes to search for to implement the acceleration itself.
// dfa/special.rs provides more detail, but the short story is that all
// accelerated states appear contiguously in a DFA. This means we can represent
// the ID space of all accelerated DFA states with a single range. So given
// a state ID, we can determine whether it's accelerated via
//
// min_accel_id <= id <= max_accel_id
//
// And find its corresponding accelerator with:
//
// accels.get((id - min_accel_id) / dfa_stride)
#[cfg(feature = "dfa-build")]
use alloc::{vec, vec::Vec};
use crate::util::{
int::Pointer,
memchr,
wire::{self, DeserializeError, Endian, SerializeError},
};
/// The base type used to represent a collection of accelerators.
///
/// While an `Accel` is represented as a fixed size array of bytes, a
/// *collection* of `Accel`s (called `Accels`) is represented internally as a
/// slice of u32. While it's a bit unnatural to do this and costs us a bit of
/// fairly low-risk not-safe code, it lets us remove the need for a second type
/// parameter in the definition of dense::DFA. (Which really wants everything
/// to be a slice of u32.)
type AccelTy = u32;
/// The size of the unit of representation for accelerators.
///
/// ACCEL_CAP *must* be a multiple of this size.
const ACCEL_TY_SIZE: usize = core::mem::size_of::<AccelTy>();
/// The maximum length in bytes that a single Accel can be. This is distinct
/// from the capacity of an accelerator in that the length represents only the
/// bytes that should be read.
const ACCEL_LEN: usize = 4;
/// The capacity of each accelerator, in bytes. We set this to 8 since it's a
/// multiple of 4 (our ID size) and because it gives us a little wiggle room
/// if we want to support more accel bytes in the future without a breaking
/// change.
///
/// This MUST be a multiple of ACCEL_TY_SIZE.
const ACCEL_CAP: usize = 8;
/// Search for between 1 and 3 needle bytes in the given haystack, starting the
/// search at the given position. If `needles` has a length other than 1-3,
/// then this panics.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn find_fwd(
needles: &[u8],
haystack: &[u8],
at: usize,
) -> Option<usize> {
let bs = needles;
let i = match needles.len() {
1 => memchr::memchr(bs[0], &haystack[at..])?,
2 => memchr::memchr2(bs[0], bs[1], &haystack[at..])?,
3 => memchr::memchr3(bs[0], bs[1], bs[2], &haystack[at..])?,
0 => panic!("cannot find with empty needles"),
n => panic!("invalid needles length: {}", n),
};
Some(at + i)
}
/// Search for between 1 and 3 needle bytes in the given haystack in reverse,
/// starting the search at the given position. If `needles` has a length other
/// than 1-3, then this panics.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn find_rev(
needles: &[u8],
haystack: &[u8],
at: usize,
) -> Option<usize> {
let bs = needles;
match needles.len() {
1 => memchr::memrchr(bs[0], &haystack[..at]),
2 => memchr::memrchr2(bs[0], bs[1], &haystack[..at]),
3 => memchr::memrchr3(bs[0], bs[1], bs[2], &haystack[..at]),
0 => panic!("cannot find with empty needles"),
n => panic!("invalid needles length: {}", n),
}
}
/// Represents the accelerators for all accelerated states in a dense DFA.
///
/// The `A` type parameter represents the type of the underlying bytes.
/// Generally, this is either `&[AccelTy]` or `Vec<AccelTy>`.
#[derive(Clone)]
pub(crate) struct Accels<A> {
/// A length prefixed slice of contiguous accelerators. See the top comment
/// in this module for more details on how we can jump from a DFA's state
/// ID to an accelerator in this list.
///
/// The first 4 bytes always correspond to the number of accelerators
/// that follow.
accels: A,
}
#[cfg(feature = "dfa-build")]
impl Accels<Vec<AccelTy>> {
/// Create an empty sequence of accelerators for a DFA.
pub fn empty() -> Accels<Vec<AccelTy>> {
Accels { accels: vec![0] }
}
/// Add an accelerator to this sequence.
///
/// This adds to the accelerator to the end of the sequence and therefore
/// should be done in correspondence with its state in the DFA.
///
/// This panics if this results in more accelerators than AccelTy::MAX.
pub fn add(&mut self, accel: Accel) {
self.accels.extend_from_slice(&accel.as_accel_tys());
let len = self.len();
self.set_len(len + 1);
}
/// Set the number of accelerators in this sequence, which is encoded in
/// the first 4 bytes of the underlying bytes.
fn set_len(&mut self, new_len: usize) {
// The only way an accelerator gets added is if a state exists for
// it, and if a state exists, then its index is guaranteed to be
// representable by a AccelTy by virtue of the guarantees provided by
// StateID.
let new_len = AccelTy::try_from(new_len).unwrap();
self.accels[0] = new_len;
}
}
impl<'a> Accels<&'a [AccelTy]> {
/// Deserialize a sequence of accelerators from the given bytes. If there
/// was a problem deserializing, then an error is returned.
///
/// This is guaranteed to run in constant time. This does not guarantee
/// that every accelerator in the returned collection is valid. Thus,
/// accessing one may panic, or not-safe code that relies on accelerators
/// being correct my result in UB.
///
/// Callers may check the validity of every accelerator with the `validate`
/// method.
pub fn from_bytes_unchecked(
mut slice: &'a [u8],
) -> Result<(Accels<&'a [AccelTy]>, usize), DeserializeError> {
let slice_start = slice.as_ptr().as_usize();
let (accel_len, _) =
wire::try_read_u32_as_usize(slice, "accelerators length")?;
// The accelerator length is part of the accel_tys slice that
// we deserialize. This is perhaps a bit idiosyncratic. It would
// probably be better to split out the length into a real field.
let accel_tys_len = wire::add(
wire::mul(accel_len, 2, "total number of accelerator accel_tys")?,
1,
"total number of accel_tys",
)?;
let accel_tys_bytes_len = wire::mul(
ACCEL_TY_SIZE,
accel_tys_len,
"total number of bytes in accelerators",
)?;
wire::check_slice_len(slice, accel_tys_bytes_len, "accelerators")?;
wire::check_alignment::<AccelTy>(slice)?;
let accel_tys = &slice[..accel_tys_bytes_len];
slice = &slice[accel_tys_bytes_len..];
// SAFETY: We've checked the length and alignment above, and since
// slice is just bytes and AccelTy is just a u32, we can safely cast to
// a slice of &[AccelTy].
let accels = unsafe {
core::slice::from_raw_parts(
accel_tys.as_ptr().cast::<AccelTy>(),
accel_tys_len,
)
};
Ok((Accels { accels }, slice.as_ptr().as_usize() - slice_start))
}
}
impl<A: AsRef<[AccelTy]>> Accels<A> {
/// Return an owned version of the accelerators.
#[cfg(feature = "alloc")]
pub fn to_owned(&self) -> Accels<alloc::vec::Vec<AccelTy>> {
Accels { accels: self.accels.as_ref().to_vec() }
}
/// Return a borrowed version of the accelerators.
pub fn as_ref(&self) -> Accels<&[AccelTy]> {
Accels { accels: self.accels.as_ref() }
}
/// Return the bytes representing the serialization of the accelerators.
pub fn as_bytes(&self) -> &[u8] {
let accels = self.accels.as_ref();
// SAFETY: This is safe because accels is a just a slice of AccelTy,
// and u8 always has a smaller alignment.
unsafe {
core::slice::from_raw_parts(
accels.as_ptr().cast::<u8>(),
accels.len() * ACCEL_TY_SIZE,
)
}
}
/// Returns the memory usage, in bytes, of these accelerators.
///
/// The memory usage is computed based on the number of bytes used to
/// represent all of the accelerators.
///
/// This does **not** include the stack size used by this value.
pub fn memory_usage(&self) -> usize {
self.as_bytes().len()
}
/// Return the bytes to search for corresponding to the accelerator in this
/// sequence at index `i`. If no such accelerator exists, then this panics.
///
/// The significance of the index is that it should be in correspondence
/// with the index of the corresponding DFA. That is, accelerated DFA
/// states are stored contiguously in the DFA and have an ordering implied
/// by their respective state IDs. The state's index in that sequence
/// corresponds to the index of its corresponding accelerator.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn needles(&self, i: usize) -> &[u8] {
if i >= self.len() {
panic!("invalid accelerator index {}", i);
}
let bytes = self.as_bytes();
let offset = ACCEL_TY_SIZE + i * ACCEL_CAP;
let len = usize::from(bytes[offset]);
&bytes[offset + 1..offset + 1 + len]
}
/// Return the total number of accelerators in this sequence.
pub fn len(&self) -> usize {
// This should never panic since deserialization checks that the
// length can fit into a usize.
usize::try_from(self.accels.as_ref()[0]).unwrap()
}
/// Return the accelerator in this sequence at index `i`. If no such
/// accelerator exists, then this returns None.
///
/// See the docs for `needles` on the significance of the index.
fn get(&self, i: usize) -> Option<Accel> {
if i >= self.len() {
return None;
}
let offset = ACCEL_TY_SIZE + i * ACCEL_CAP;
let accel = Accel::from_slice(&self.as_bytes()[offset..])
.expect("Accels must contain valid accelerators");
Some(accel)
}
/// Returns an iterator of accelerators in this sequence.
fn iter(&self) -> IterAccels<'_, A> {
IterAccels { accels: self, i: 0 }
}
/// Writes these accelerators to the given byte buffer using the indicated
/// endianness. If the given buffer is too small, then an error is
/// returned. Upon success, the total number of bytes written is returned.
/// The number of bytes written is guaranteed to be a multiple of 8.
pub fn write_to<E: Endian>(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
assert_eq!(
nwrite % ACCEL_TY_SIZE,
0,
"expected accelerator bytes written to be a multiple of {}",
ACCEL_TY_SIZE,
);
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("accelerators"));
}
// The number of accelerators can never exceed AccelTy::MAX.
E::write_u32(AccelTy::try_from(self.len()).unwrap(), dst);
// The actual accelerators are just raw bytes and thus their endianness
// is irrelevant. So we can copy them as bytes.
dst[ACCEL_TY_SIZE..nwrite]
.copy_from_slice(&self.as_bytes()[ACCEL_TY_SIZE..nwrite]);
Ok(nwrite)
}
/// Validates that every accelerator in this collection can be successfully
/// deserialized as a valid accelerator.
pub fn validate(&self) -> Result<(), DeserializeError> {
for chunk in self.as_bytes()[ACCEL_TY_SIZE..].chunks(ACCEL_CAP) {
let _ = Accel::from_slice(chunk)?;
}
Ok(())
}
/// Returns the total number of bytes written by `write_to`.
pub fn write_to_len(&self) -> usize {
self.as_bytes().len()
}
}
impl<A: AsRef<[AccelTy]>> core::fmt::Debug for Accels<A> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "Accels(")?;
let mut list = f.debug_list();
for a in self.iter() {
list.entry(&a);
}
list.finish()?;
write!(f, ")")
}
}
#[derive(Debug)]
struct IterAccels<'a, A: AsRef<[AccelTy]>> {
accels: &'a Accels<A>,
i: usize,
}
impl<'a, A: AsRef<[AccelTy]>> Iterator for IterAccels<'a, A> {
type Item = Accel;
fn next(&mut self) -> Option<Accel> {
let accel = self.accels.get(self.i)?;
self.i += 1;
Some(accel)
}
}
/// Accel represents a structure for determining how to "accelerate" a DFA
/// state.
///
/// Namely, it contains zero or more bytes that must be seen in order for the
/// DFA to leave the state it is associated with. In practice, the actual range
/// is 1 to 3 bytes.
///
/// The purpose of acceleration is to identify states whose vast majority
/// of transitions are just loops back to the same state. For example,
/// in the regex `(?-u)^[^a]+b`, the corresponding DFA will have a state
/// (corresponding to `[^a]+`) where all transitions *except* for `a` and
/// `b` loop back to itself. Thus, this state can be "accelerated" by simply
/// looking for the next occurrence of either `a` or `b` instead of explicitly
/// following transitions. (In this case, `b` transitions to the next state
/// where as `a` would transition to the dead state.)
#[derive(Clone)]
pub(crate) struct Accel {
/// The first byte is the length. Subsequent bytes are the accelerated
/// bytes.
///
/// Note that we make every accelerator 8 bytes as a slightly wasteful
/// way of making sure alignment is always correct for state ID sizes of
/// 1, 2, 4 and 8. This should be okay since accelerated states aren't
/// particularly common, especially when Unicode is enabled.
bytes: [u8; ACCEL_CAP],
}
impl Accel {
/// Returns an empty accel, where no bytes are accelerated.
#[cfg(feature = "dfa-build")]
pub fn new() -> Accel {
Accel { bytes: [0; ACCEL_CAP] }
}
/// Returns a verified accelerator derived from the beginning of the given
/// slice.
///
/// If the slice is not long enough or contains invalid bytes for an
/// accelerator, then this returns an error.
pub fn from_slice(mut slice: &[u8]) -> Result<Accel, DeserializeError> {
slice = &slice[..core::cmp::min(ACCEL_LEN, slice.len())];
let bytes = slice
.try_into()
.map_err(|_| DeserializeError::buffer_too_small("accelerator"))?;
Accel::from_bytes(bytes)
}
/// Returns a verified accelerator derived from raw bytes.
///
/// If the given bytes are invalid, then this returns an error.
fn from_bytes(bytes: [u8; 4]) -> Result<Accel, DeserializeError> {
if usize::from(bytes[0]) >= ACCEL_LEN {
return Err(DeserializeError::generic(
"accelerator bytes cannot have length more than 3",
));
}
Ok(Accel::from_bytes_unchecked(bytes))
}
/// Returns an accelerator derived from raw bytes.
///
/// This does not check whether the given bytes are valid. Invalid bytes
/// cannot sacrifice memory safety, but may result in panics or silent
/// logic bugs.
fn from_bytes_unchecked(bytes: [u8; 4]) -> Accel {
Accel { bytes: [bytes[0], bytes[1], bytes[2], bytes[3], 0, 0, 0, 0] }
}
/// Attempts to add the given byte to this accelerator. If the accelerator
/// is already full or thinks the byte is a poor accelerator, then this
/// returns false. Otherwise, returns true.
///
/// If the given byte is already in this accelerator, then it panics.
#[cfg(feature = "dfa-build")]
pub fn add(&mut self, byte: u8) -> bool {
if self.len() >= 3 {
return false;
}
// As a special case, we totally reject trying to accelerate a state
// with an ASCII space. In most cases, it occurs very frequently, and
// tends to result in worse overall performance.
if byte == b' ' {
return false;
}
assert!(
!self.contains(byte),
"accelerator already contains {:?}",
crate::util::escape::DebugByte(byte)
);
self.bytes[self.len() + 1] = byte;
self.bytes[0] += 1;
true
}
/// Return the number of bytes in this accelerator.
pub fn len(&self) -> usize {
usize::from(self.bytes[0])
}
/// Returns true if and only if there are no bytes in this accelerator.
#[cfg(feature = "dfa-build")]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the slice of bytes to accelerate.
///
/// If this accelerator is empty, then this returns an empty slice.
fn needles(&self) -> &[u8] {
&self.bytes[1..1 + self.len()]
}
/// Returns true if and only if this accelerator will accelerate the given
/// byte.
#[cfg(feature = "dfa-build")]
fn contains(&self, byte: u8) -> bool {
self.needles().iter().position(|&b| b == byte).is_some()
}
/// Returns the accelerator bytes as an array of AccelTys.
#[cfg(feature = "dfa-build")]
fn as_accel_tys(&self) -> [AccelTy; 2] {
assert_eq!(ACCEL_CAP, 8);
// These unwraps are OK since ACCEL_CAP is set to 8.
let first =
AccelTy::from_ne_bytes(self.bytes[0..4].try_into().unwrap());
let second =
AccelTy::from_ne_bytes(self.bytes[4..8].try_into().unwrap());
[first, second]
}
}
impl core::fmt::Debug for Accel {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "Accel(")?;
let mut set = f.debug_set();
for &b in self.needles() {
set.entry(&crate::util::escape::DebugByte(b));
}
set.finish()?;
write!(f, ")")
}
}