1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Optimizer implementation for `CREATE MATERIALIZED VIEW` statements.
//!
//! Note that, in contrast to other optimization pipelines, timestamp selection is not part of
//! MV optimization. Instead users are expected to separately set the as-of on the optimized
//! `DataflowDescription` received from `GlobalLirPlan::unapply`. Reasons for choosing to exclude
//! timestamp selection from the MV optimization pipeline are:
//!
//! (a) MVs don't support non-empty `until` frontiers, so they don't provide opportunity for
//! optimizations based on the selected timestamp.
//! (b) We want to generate dataflow plans early during environment bootstrapping, before we have
//! access to all information required for timestamp selection.
//!
//! None of this is set in stone though. If we find an opportunity for optimizing MVs based on
//! their timestamps, we'll want to make timestamp selection part of the MV optimization again and
//! find a different approach to bootstrapping.
//!
//! See also MaterializeInc/materialize#22940.
use std::collections::BTreeSet;
use std::sync::Arc;
use std::time::{Duration, Instant};
use mz_compute_types::plan::Plan;
use mz_compute_types::sinks::{
ComputeSinkConnection, ComputeSinkDesc, MaterializedViewSinkConnection,
};
use mz_expr::{MirRelationExpr, OptimizedMirRelationExpr};
use mz_repr::explain::trace_plan;
use mz_repr::refresh_schedule::RefreshSchedule;
use mz_repr::{ColumnName, GlobalId, RelationDesc};
use mz_sql::optimizer_metrics::OptimizerMetrics;
use mz_sql::plan::HirRelationExpr;
use mz_transform::dataflow::DataflowMetainfo;
use mz_transform::normalize_lets::normalize_lets;
use mz_transform::typecheck::{empty_context, SharedContext as TypecheckContext};
use mz_transform::TransformCtx;
use timely::progress::Antichain;
use crate::optimize::dataflows::{
prep_relation_expr, prep_scalar_expr, ComputeInstanceSnapshot, DataflowBuilder, ExprPrepStyle,
};
use crate::optimize::{
optimize_mir_local, trace_plan, LirDataflowDescription, MirDataflowDescription, Optimize,
OptimizeMode, OptimizerCatalog, OptimizerConfig, OptimizerError,
};
pub struct Optimizer {
/// A typechecking context to use throughout the optimizer pipeline.
typecheck_ctx: TypecheckContext,
/// A snapshot of the catalog state.
catalog: Arc<dyn OptimizerCatalog>,
/// A snapshot of the cluster that will run the dataflows.
compute_instance: ComputeInstanceSnapshot,
/// A durable GlobalId to be used with the exported materialized view sink.
sink_id: GlobalId,
/// A transient GlobalId to be used when constructing the dataflow.
view_id: GlobalId,
/// The resulting column names.
column_names: Vec<ColumnName>,
/// Output columns that are asserted to be not null in the `CREATE VIEW`
/// statement.
non_null_assertions: Vec<usize>,
/// Refresh schedule, e.g., `REFRESH EVERY '1 day'`
refresh_schedule: Option<RefreshSchedule>,
/// A human-readable name exposed internally (useful for debugging).
debug_name: String,
/// Optimizer config.
config: OptimizerConfig,
/// Optimizer metrics.
metrics: OptimizerMetrics,
/// The time spent performing optimization so far.
duration: Duration,
/// Overrides monotonicity for the given source collections.
///
/// This is here only for continual tasks, which at runtime introduce
/// synthetic retractions to "input sources". If/when we split a CT
/// optimizer out of the MV optimizer, this can be removed.
///
/// TODO(ct3): There are other differences between a GlobalId used as a CT
/// input vs as a normal collection, such as the statistical size estimates.
/// Plus, at the moment, it is not possible to use the same GlobalId as both
/// an "input" and a "reference" in a CT. So, better than this approach
/// would be for the optimizer itself to somehow understand the distinction
/// between a CT input and a normal collection.
///
/// In the meantime, it might be desirable to refactor the MV optimizer to
/// have a small amount of knowledge about CTs, in particular producing the
/// CT sink connection directly. This would allow us to replace this field
/// with something derived directly from that sink connection.
force_source_non_monotonic: BTreeSet<GlobalId>,
}
impl Optimizer {
pub fn new(
catalog: Arc<dyn OptimizerCatalog>,
compute_instance: ComputeInstanceSnapshot,
sink_id: GlobalId,
view_id: GlobalId,
column_names: Vec<ColumnName>,
non_null_assertions: Vec<usize>,
refresh_schedule: Option<RefreshSchedule>,
debug_name: String,
config: OptimizerConfig,
metrics: OptimizerMetrics,
force_source_non_monotonic: BTreeSet<GlobalId>,
) -> Self {
Self {
typecheck_ctx: empty_context(),
catalog,
compute_instance,
sink_id,
view_id,
column_names,
non_null_assertions,
refresh_schedule,
debug_name,
config,
metrics,
duration: Default::default(),
force_source_non_monotonic,
}
}
}
/// The (sealed intermediate) result after HIR ⇒ MIR lowering and decorrelation
/// and MIR optimization.
#[derive(Clone, Debug)]
pub struct LocalMirPlan {
expr: MirRelationExpr,
df_meta: DataflowMetainfo,
}
/// The (sealed intermediate) result after:
///
/// 1. embedding a [`LocalMirPlan`] into a [`MirDataflowDescription`],
/// 2. transitively inlining referenced views, and
/// 3. jointly optimizing the `MIR` plans in the [`MirDataflowDescription`].
#[derive(Clone, Debug)]
pub struct GlobalMirPlan {
df_desc: MirDataflowDescription,
df_meta: DataflowMetainfo,
}
impl GlobalMirPlan {
pub fn df_desc(&self) -> &MirDataflowDescription {
&self.df_desc
}
}
/// The (final) result after MIR ⇒ LIR lowering and optimizing the resulting
/// `DataflowDescription` with `LIR` plans.
#[derive(Clone, Debug)]
pub struct GlobalLirPlan {
df_desc: LirDataflowDescription,
df_meta: DataflowMetainfo,
}
impl GlobalLirPlan {
pub fn df_desc(&self) -> &LirDataflowDescription {
&self.df_desc
}
pub fn df_meta(&self) -> &DataflowMetainfo {
&self.df_meta
}
pub fn desc(&self) -> &RelationDesc {
let sink_exports = &self.df_desc.sink_exports;
let sink = sink_exports.values().next().expect("valid sink");
&sink.from_desc
}
}
impl Optimize<HirRelationExpr> for Optimizer {
type To = LocalMirPlan;
fn optimize(&mut self, expr: HirRelationExpr) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
// Trace the pipeline input under `optimize/raw`.
trace_plan!(at: "raw", &expr);
// HIR ⇒ MIR lowering and decorrelation
let expr = expr.lower(&self.config, Some(&self.metrics))?;
// MIR ⇒ MIR optimization (local)
let mut df_meta = DataflowMetainfo::default();
let mut transform_ctx =
TransformCtx::local(&self.config.features, &self.typecheck_ctx, &mut df_meta);
let expr = optimize_mir_local(expr, &mut transform_ctx)?.into_inner();
self.duration += time.elapsed();
// Return the (sealed) plan at the end of this optimization step.
Ok(LocalMirPlan { expr, df_meta })
}
}
impl LocalMirPlan {
pub fn expr(&self) -> OptimizedMirRelationExpr {
OptimizedMirRelationExpr(self.expr.clone())
}
}
/// This is needed only because the pipeline in the bootstrap code starts from an
/// [`OptimizedMirRelationExpr`] attached to a [`mz_catalog::memory::objects::CatalogItem`].
impl Optimize<OptimizedMirRelationExpr> for Optimizer {
type To = GlobalMirPlan;
fn optimize(&mut self, expr: OptimizedMirRelationExpr) -> Result<Self::To, OptimizerError> {
let expr = expr.into_inner();
let df_meta = DataflowMetainfo::default();
self.optimize(LocalMirPlan { expr, df_meta })
}
}
impl Optimize<LocalMirPlan> for Optimizer {
type To = GlobalMirPlan;
fn optimize(&mut self, plan: LocalMirPlan) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
let expr = OptimizedMirRelationExpr(plan.expr);
let mut df_meta = plan.df_meta;
let mut rel_typ = expr.typ();
for &i in self.non_null_assertions.iter() {
rel_typ.column_types[i].nullable = false;
}
let rel_desc = RelationDesc::new(rel_typ, self.column_names.clone());
let mut df_builder = {
let compute = self.compute_instance.clone();
DataflowBuilder::new(&*self.catalog, compute).with_config(&self.config)
};
let mut df_desc = MirDataflowDescription::new(self.debug_name.clone());
df_desc.refresh_schedule.clone_from(&self.refresh_schedule);
df_builder.import_view_into_dataflow(
&self.view_id,
&expr,
&mut df_desc,
&self.config.features,
)?;
df_builder.maybe_reoptimize_imported_views(&mut df_desc, &self.config)?;
let sink_description = ComputeSinkDesc {
from: self.view_id,
from_desc: rel_desc.clone(),
connection: ComputeSinkConnection::MaterializedView(MaterializedViewSinkConnection {
value_desc: rel_desc,
storage_metadata: (),
}),
with_snapshot: true,
up_to: Antichain::default(),
non_null_assertions: self.non_null_assertions.clone(),
refresh_schedule: self.refresh_schedule.clone(),
};
df_desc.export_sink(self.sink_id, sink_description);
// Prepare expressions in the assembled dataflow.
let style = ExprPrepStyle::Index;
df_desc.visit_children(
|r| prep_relation_expr(r, style),
|s| prep_scalar_expr(s, style),
)?;
// Construct TransformCtx for global optimization.
let mut transform_ctx = TransformCtx::global(
&df_builder,
&mz_transform::EmptyStatisticsOracle, // TODO: wire proper stats
&self.config.features,
&self.typecheck_ctx,
&mut df_meta,
);
// Apply source monotonicity overrides.
for id in self.force_source_non_monotonic.iter() {
if let Some((_desc, monotonic)) = df_desc.source_imports.get_mut(id) {
*monotonic = false;
}
}
// Run global optimization.
mz_transform::optimize_dataflow(&mut df_desc, &mut transform_ctx, false)?;
if self.config.mode == OptimizeMode::Explain {
// Collect the list of indexes used by the dataflow at this point.
trace_plan!(at: "global", &df_meta.used_indexes(&df_desc));
}
self.duration += time.elapsed();
// Return the (sealed) plan at the end of this optimization step.
Ok(GlobalMirPlan { df_desc, df_meta })
}
}
impl Optimize<GlobalMirPlan> for Optimizer {
type To = GlobalLirPlan;
fn optimize(&mut self, plan: GlobalMirPlan) -> Result<Self::To, OptimizerError> {
let time = Instant::now();
let GlobalMirPlan {
mut df_desc,
df_meta,
} = plan;
// Ensure all expressions are normalized before finalizing.
for build in df_desc.objects_to_build.iter_mut() {
normalize_lets(&mut build.plan.0, &self.config.features)?
}
// Finalize the dataflow. This includes:
// - MIR ⇒ LIR lowering
// - LIR ⇒ LIR transforms
let df_desc = Plan::finalize_dataflow(df_desc, &self.config.features)?;
// Trace the pipeline output under `optimize`.
trace_plan(&df_desc);
self.duration += time.elapsed();
self.metrics
.observe_e2e_optimization_time("materialized_view", self.duration);
// Return the plan at the end of this `optimize` step.
Ok(GlobalLirPlan { df_desc, df_meta })
}
}
impl GlobalLirPlan {
/// Unwraps the parts of the final result of the optimization pipeline.
pub fn unapply(self) -> (LirDataflowDescription, DataflowMetainfo) {
(self.df_desc, self.df_meta)
}
}